Title:

AFE4 Design Specification
Auth:

Nathan Rider

Date:

12-11-08
Rev:

2
INTRODUCTION:

This specification is to serve as a repository for design specific information for the Analog Front End – 4nS (AFE4) printed circuit board. It contains electrical, mechanical and firmware/software information.
The AFE4 is a front end interface board used in the Beam Position Monitoring (BPM) system. The BPM can be seen as a data acquisition system with the AFE4 as the interface to the analog signals which represent beam position in the Cornell Electron Storage Ring (CESR). The AF4 plugs directly into the BPM Digital Board. The Digital Board contains the DSP and FPGA which control all accesses to the AFE4.

The AFE4 contains analog conditioning circuitry, analog to digital conversion, data buffering, temperature monitoring and non volatile storage. The following diagram shows the basic functional blocks and critical integrated circuits of the AFE4.

[image: image1.wmf]Xilinx

XC

3

S

400

A

-

4

FGG

400

C

FPGA

110

Pin

Hard

Metric

Backplane

Connector

SMA

Connector

50

MHz

Oscillator

Microchip

25

LC

040

A

4

k EEPROM

Analog

AD

7814

Temperature

Sensor

Cypress

CY

7

C

1051

DV

33

512

kx

16

SRAM

Xilinx

XCFS

02

S

2

Mbit FLASH

JTAG Header

Analog

AD

8370

VGA

Analog

AD

8370

VGA

Analog

AD

8351

FGA

Analog

AD

8351

FGA

RF

Switch

500

MHz

LPF

RF

Switch

RF

Switch

Analog

AD

9461

ADC

Analog

AD

9461

ADC

RF

Switch

Cypress

CY

7

C

1051

DV

33

512

kx

16

SRAM

Fig 1: AFE4 Functional Block Diagram

CONNECTIONS
110 Pin Backplane Connector (Input/Output):
NOTE: All connections are +3.3V MAXIMUM unless otherwise noted or are a power connection.
[image: image2.wmf]Pin

Signal Name

DSP Function

AFE4 Function

Pin

Signal Name

DSP Function

AFE4 Function

A1

ADDR14

address bus

address line

B1

VCC+4V

power

+4V

A2

ADDR15

address bus

address line

B2

VCC+4V

power

+4V

A3

ADDR16

address bus

address line

B3

VCC-4V

power

-4V

A4

ADDR17

address bus

address line

B4

TEMP_CS

serial bus chip select

temp chip select

A5

ADDR18

address bus

address line

B5

ADDR19

address bus

address line

A6

WR+

differential write strobe

write strobe

B6

GND

ground

GND

A7

WR-

differential write strobe

write strobe

B7

GND

ground

GND

A8

MEM_CS0

memory chip select

B8

GND

ground

GND

A9

MEM_CS3

memory chip select

B9

GND

ground

GND

A10

MEM_CS6

memory chip select

B10

GND

ground

GND

A11

CARD_SEL

memory card_select

card select

B11

GND

ground

GND

A12

B12

A13

B13

A14

B14

A15

OE0

output enable

B15

GND

ground

GND

A16

OE3

output enable

B16

GND

ground

GND

A17

OE6

output enable

B17

GND

ground

GND

A18

TEMP_CLK

serial bus clock

temp clock

B18

GND

ground

GND

A19

DAT3

data bus

data line

B19

GND

ground

GND

A20

DAT6

data bus

data line

B20

GND

ground

GND

A21

DAT9

data bus

data line

B21

GND

ground

GND

A22

REG_CLK0+

differential clock

turn marker0+

B22

GND

ground

GND

A23

REG_CLK0-

differential clock

turn marke0-

B23

GND

ground

GND

A24

REG_CLK1+

differential clock

turnmarker1+

B24

GND

ground

GND

A25

REG_CLK1-

differential clock

turn marker1-

B25

GND

ground

GND

[image: image3.wmf]Pin

Signal Name

DSP Function

AFE4 Function

Pin

Signal Name

DSP Function

AFE4 Function

C1

ADDR7

address bus

address line

D1

VCC+4V

power

+4V

C2

ADDR8

address bus

address line

D2

VCC+4V

power

+4V

C3

ADDR9

address bus

address line

D3

VCC+5.5V

power

+5.5V

C4

ADDR10

address bus

address line

D4

TEMP_DAT

serial bus data

temp data

C5

ADDR11

address bus

address line

D5

GND

ground

GND

C6

ADDR12

address bus

address line

D6

GND

ground

GND

C7

ADDR13

address bus

address line

D7

GND

ground

GND

C8

MEM_CS1

memory chip select

D8

GND

ground

GND

C9

MEM_CS4

memory chip select

D9

GND

ground

GND

C10

MEM_CS7

memory chip select

D10

GND

ground

GND

C11

MEM_OE

 memory output enable

D11

GND

ground

GND

C12

D12

C13

D13

C14

D14

C15

OE1

output enable

D15

GND

ground

GND

C16

OE4

output enable

D16

GND

ground

GND

C17

OE7

output enable

D17

GND

ground

GND

C18

DAT1

data bus

data line

D18

GND

ground

GND

C19

DAT4

data bus

data line

D19

GND

ground

GND

C20

DAT7

data bus

data line

D20

GND

ground

GND

C21

DAT10

data bus

data line

D21

GND

ground

GND

C22

DAT12

data bus

data line

D22

GND

ground

GND

C23

DAT14

data bus

data line

D23

GND

ground

GND

C24

CLK0+

differential clock

adc0 clock

D24

GND

ground

GND

C25

CLKO-

differential clock

adc0 clock

D25

GND

ground

GND

[image: image4.wmf]Pin

Signal Name

DSP Function

AFE4 Function

Pin

Signal Name

DSP Function

AFE4 Function

E1

ADDR0

address bus

address line

F1

GND

ground

GND

E2

ADDR1

address bus

address line

F2

GND

ground

GND

E3

ADDR2

address bus

address line

F3

GND

ground

GND

E4

ADDR3

address bus

address line

F4

GND

ground

GND

E5

ADDR4

address bus

address line

F5

GND

ground

GND

E6

ADDR5

address bus

address line

F6

GND

ground

GND

E7

ADDR6

address bus

address line

F7

GND

ground

GND

E8

MEM_CS2

memory chip select

F8

GND

ground

GND

E9

MEM_CS5

memory chip select

F9

GND

ground

GND

E10

REG_OE

register output enable

F10

GND

ground

GND

E11

BUFFER_DIR

buffer direction

F11

GND

ground

GND

E12

F12

E13

F13

E14

F14

E15

OE2

output enable

F15

GND

ground

GND

E16

OE5

output enable

F16

GND

ground

GND

E17

DAT0

data bus

data line

F17

GND

ground

GND

E18

DAT2

data bus

data line

F18

GND

ground

GND

E19

DAT5

data bus

data line

F19

GND

ground

GND

E20

DAT8

data bus

data line

F20

GND

ground

GND

E21

DAT11

data bus

data line

F21

GND

ground

GND

E22

DAT13

data bus

data line

F22

GND

ground

GND

E23

DAT15

data bus

data line

F23

GND

ground

GND

E24

CLK1+

differential clock

adc1 clock

F24

GND

ground

GND

E25

CLK1-

differential clock

adc1 clock

F25

GND

ground

GND

[image: image5.wmf]Pin

Signal Name

DSP Function

AFE4 Function

G1

GND

ground

GND

G2

GND

ground

GND

G3

GND

ground

GND

G4

GND

ground

GND

G5

GND

ground

GND

G6

GND

ground

GND

G7

GND

ground

GND

G8

GND

ground

GND

G9

GND

ground

GND

G10

GND

ground

GND

G11

GND

ground

GND

G12

G13

G14

G15

GND

ground

GND

G16

GND

ground

GND

G17

GND

ground

GND

G18

GND

ground

GND

G19

GND

ground

GND

G20

GND

ground

GND

G21

GND

ground

GND

G22

GND

ground

GND

G23

GND

ground

GND

G24

GND

ground

GND

G25

GND

ground

GND

JTAG Header (Input/Output):
[image: image6.wmf]Pin

Signal Name

Function

1

GND

GND

2

3.3V

Probe Power

3

GND

GND

4

TMS

JTAG

5

GND

GND

6

TCK

JTAG

7

GND

GND

8

TDO

JTAG

9

GND

GND

10

TDI

JTAG

11

GND

GND

12

NC

None

13

GND

GND

14

NC

None

SMA Connector (Input):
[image: image7.wmf]Pin

Signal Name

Function

Signal Level

Center

Button

Signal

??

Shell

GND

Ground

Ground

DESIGN DETAILS:

Clocking:

The AFE4 has two LVPECL differential clocks delivered to it via the backplane connector. These clocks originate from the timing board and are used to drive the analog to digital converters. These clocks nominally run at 125 MHz and are independently delayable so as to allow for the aforementioned interleaving. These clock connections are passively terminated on the AFE4 pcb prior to being connected to the input of the MAX9175 clock splitter device. This device takes the LVPECl clock and splits it into two separate LVDS clocks which are identical in frequency to the LVPECl input. These LVDS clocks are then distributed to the fpga and the analog to digital converters. Each converter is clocked by one of the independent channels allowing for independent digitization. The fpga receives these clocks in order to assist in the coordination of data storage.

The fpga also has a 50 mHz oscillator connected to it to provide a housekeeping clock for logic operations.
Analog Signal Conditioning:

Impedance Matching:

The input signal chain has been designed to provide matching which is roughly equivalent to 50 ohms.
Filter:

The signal then passes through a 500 MHz low pass filter. This filter is implemented using a passive “T network” which is matched at 50 ohms. A damping resistor is inserted in the “T” leg to provide compensation and reduce ringing.

Signal Switching:

In order to meet the performance requirements set forth for the AFE4, a signal switching scheme is required. The signal switches allow for the selection of two paths for the signal to follow. The first is a low noise path and the second is a variable amplification path. More on this later. The switching is implemented using the Skyworks AS193-73LF GaAs switch chips. These chips utilize GaAs FETs to realize a SPDT switch configuration. A single switch is used to steer the signal to one of the two paths. A set of switches is used to steer the differential output of the paths to the input of the analog to digital converter. Due to the nature of the GaAs devices these switches require DC blocking capacitors in the signal path. The position of the switches is controllable via a register in the fpga.

Low Noise Amplification:

The low noise amplification path is realized through the use of a fixed gain amplifier. The amplifier used is the Analog Devices AD8351. This amplifier has a lower noise contribution than a variable gain amplifier. The AD8351 is used as a differential amplifier and is AC coupled into the signal chain.

Adjustable Amplification:

The adjustable amplification path is realized through the use of a variable gain amplifier. The amplifier used is the Analog Devices AD8370. This device provides for adjustable gain form -11 db to 34 dB. The gain is changed via serial bus connection which is connected to the fpga. A register in the fpga memory map allows the BPM to set the gain of the amplifier. The AD8370 is used as a differential amplifier and is AC coupled into the signal chain.
Analog To Digital Conversion:

The AFE4 has two separate analog to digital conversion channels. At the center of each of these channels is an AD9461, 16 bit, 125 MSPS analog to digital converter. These converters each receive one of the LVDS clocks running at a nominal 125 MHz. These clocks allow for interleaved operation (required for 250 MSPS sampling) or independent operation. They have differential analog inputs which are driven by either the AD8351 or AD8370 amplifiers depending on the state of the signal switches. The results of the conversions are transferred to the fpga via a data bus made up of 16 LVDS differential pairs each representing one of the 16 bits. The AD9461 also delivers an LVDS clock which is synchronous with the data bus as well as an LVDS pair representing an out of range bit. All signals are connected directly to the fpga.
The output common mode voltage of the AD8351 is set by a voltage supplied to the VOCM pin.
The output common mode voltage of the AD8370 is set internally by a resistive divider to half of the positive supply voltage.

The input pins of the AD9461 are internally biased to 3.5V and expect a maximum 3.4 Vpp swing. The VREF pin (or internal source) sets the expected peak to peak differential voltage range.

Note that the connection between the AD8351, AD8370 and the AD9461 must be AC coupled since the common mode output voltages of the amplifiers are different than the input bias of the AD9461.

There are resistive dividers attached to the inputs of the AD9461 which allow a bias to be placed on the lines if necessary. This should not be necessary since the inputs are internally biased to 3.5V.
Local Memory:
The AFE4 has two 512k x 16 asynchronous SRAM chips which are used to buffer the analog to digital conversion results. The parts used are Cypress CY7C1051DV33. These chips are each connected to the fpga via a dedicated 18 bit address bus, 16 bit data bus, and requisite control lines. Access to these memories is controlled by the fpga.
The AFE4 also has a Microchip 25LC040A 4k EEPROM which is connected to the same serial bus which contains the temperature sensor. This EEPROM can be used for non volatile storage by utilizing the register interface which is implemented in the FPGA.
FPGA Functionality:

The fpga used on the AFE4 is a Xilinx XC3S400AFGG400 Spartan 3A device. It is responsible for coordination and control of all of the activities of the AFE4. The fpga is programmed using Verilog. The configuration bit stream is stored in a separate PROM device. The following is list containing some of the functions which are implemented in the fpga. The user interface section should be consulted for a complete description of the fpga functionality.

BPM Bus Interface:

The address, data, and control lines of the BPM parallel bus are connected directly to the fpga. The fpga is responsible for decoding any communication on this bus.

AFE4 Control Registers:

The digital board can control the functionality of the AFE4 by writing to a set of registers which are located within the fpga. These registers, their addresses and functionality are detailed in the Users Guide section of this document.
ADC Memory Interface:

The fpga is used to buffer the results of the analog to digital conversion at the 4 nS rate. This buffer takes the form of a FIFO memory. The data is then written out to the external SRAMs at a lower rate.
EEPROM Interface:

The fpga provides a read write interface to access the contents of the local EEPROM.
ADC Conversion Result Retrieval:

The fpga coordinates access to the external SRAM’s aboard the AFE4. It is in these SRAMS that the results of the analog to digital conversions of the beam button signals reside. The digital board accesses these results via the BPM Bus.
Temperature Sensor Communication Pass Through:

The serial bus connection for the AFE4s temperature sensor is passed through the fpga. This is done so as to provide future expandability in case this serial connection was to be used for something more than just temperature monitoring.
FPGA Image Update:

The fpga provides a means for downloading a new fpga image to the external PROM.
FPGA Configuration:

The fpga is configured via an external PROM device. The device used is the XCF02SVOG20 C flash PROM from Xilinx. The fpga is pin strapped to select Master Serial mode which causes the fpga to automatically clock its configuration data out of the PROM upon power up.

A standard 2x7 JTAG header connection is also provided on the AFE4. This header allows for the connection of a Xilinx based programmer. A JTAG chain is formed with the fpga as the first device and the PROM as the second. Using this header the PROM can be programmed and the fpga can be debugged.

A buffering scheme has been provided which allows the fpga to write to the PROM device. This allows the user to program a new FLASH image into the PROM and execute a reload of the fpga. This enable a field upgrade of the fpga contents. More info about this is available in the user interface section.
Temperature Monitoring:

The AFE4 provides on board temperature monitoring via the AD7814. This device interfaces to the fpga via a standard three wire serial bus and provides a digital representation of the temperature of the AFE4.

Power:

The AFE4 is a mixed signal (analog and digital) design. Therefore it requires careful attention to noise isolation and power supply separation. This results in several dedicated voltage rails for specific functionality. The following figure shows the various voltage rails which are available on the AFE4 and where they are derived from:

[image: image8.jpg]440V

40V

SINGLE POINT

55V CCONNECTION NEAR FRONT

40V

55V-

a0V

55V.

CONNECTOR REGULATORS COMPONENTS ‘GROUNDS

Fig 2: AFE4 Power Layout
Note that there is an analog ground and a digital ground. They are electrically isolated from each other and are connected to each other at a single point. The following table shows preliminary estimates for AFE4 power consumption:
	AFE4 Rail
	Current (Amps)
	Power (Watts)
	Source Rail (Volts)
	Source Rail (Amps)

	5 V
	0.27
	1.37
	5.50
	0.25

	3.3 V
	0.51
	1.67
	4.00
	0.42

	1.2 V
	0.13
	0.15
	4.00
	0.04

	AVDD11 (3.3V)
	0.43
	1.41
	4.00
	0.35

	AVDD12 (5V)
	0.14
	0.72
	5.50
	0.13

	AVDD21 (3.3V)
	0.43
	1.41
	4.00
	0.35

	AVDD22 (5V)
	0.14
	0.72
	5.50
	0.13

	
	Total:
	7.43
	
	

Table 1: AFE4 Power

These rail loads result in a required power of 7.43 W per AFE4. The division of current results in a draw of 0.51 Amps on the 5.5V BPM rail and 1.16 Amps on the 4V BPM rail. These numbers can be used to size the BPM supply.
Mechanical:[image: image9.emf]
Fig 3: AFE4 Mechanical Outline
Heat Sinking:
The analog to digital converters require heat sinking to remain in their stable operating temperature. The heatsink is made from a plate of aluminum which is fastened to the mounting holes provided.
USERS GUIDE:

Memory Map:

From the perspective of the DSP the AFE4 looks like a section of memory. Inside the fpga on the digital board the local address bit 24 is connected to the ana_mem address bit 19. It is this ana_mem address which gets distributed to the AFE4. This results in slightly different local addresses and AFE4 addresses. Someone concerned with DSP code should refer to the local addresses. The following table shows the memory space occupied by the AFE4 functionality:
	Function
	Local Address [24:0]
	AFE4 address[19:0]
	/OE2
	/OE1
	/OE0
	/CARD_SEL

	
	Start
	End
	Start
	End
	
	
	
	0
	1
	2
	3

	AFE4 0, CHANNEL 0
	0X08000000
	0X0807FFFF
	0X00000
	0X7FFFF
	1
	1
	0
	0
	1
	1
	1

	AFE4 0, CHANNEL 1
	0X08080000
	0X080FFFFF
	0X00000
	0X7FFFF
	1
	0
	1
	0
	1
	1
	1

	AFE4 1, CHANNEL 0
	0X08100000
	0X0817FFFF
	0X00000
	0X7FFFF
	1
	1
	0
	1
	0
	1
	1

	AFE4 1, CHANNEL 1
	0X08180000
	0X081FFFFF
	0X00000
	0X7FFFF
	1
	0
	1
	1
	0
	1
	1

	AFE4 2, CHANNEL 0
	0X08200000
	0X0827FFFF
	0X00000
	0X7FFFF
	1
	1
	0
	1
	1
	0
	1

	AFE4 2, CHANNEL 1
	0X08280000
	0X082FFFFF
	0X00000
	0X7FFFF
	1
	0
	1
	1
	1
	0
	1

	AFE4 3, CHANNEL 0
	0X08300000
	0X0837FFFF
	0X00000
	0X7FFFF
	1
	1
	0
	1
	1
	1
	0

	AFE4 3, CHANNEL 1
	0X08380000
	0X083FFFFF
	0X00000
	0X7FFFF
	1
	0
	1
	1
	1
	1
	0

	AFE4 0, REGISTERS
	0X09000000
	0X09000037
	0X80000
	0X80037
	0
	1
	1
	0
	1
	1
	1

	AFE4 1, REGISTERS
	0X09100000
	0X09100037
	0X80000
	0X80037
	0
	1
	1
	1
	0
	1
	1

	AFE4 2, REGISTERS
	0X09200000
	0X09200037
	0X80000
	0X80037
	0
	1
	1
	1
	1
	0
	1

	AFE4 3, REGISTERS
	0X09300000
	0X09300037
	0X80000
	0X80037
	0
	1
	1
	1
	1
	1
	0

Table 2: Memory Map

[image: image10.emf]Name Function Offset Name Function Offset

CONTROL Control 0 BUNCH_PATTERN_17 Bunch Pattern 17 30

DCS_CONTROL DCS Control 1 BUNCH_PATTERN_18 Bunch Pattern 18 31

FPGA_ID FPGA ID 2 BUNCH_PATTERN_19 Bunch Pattern 19 32

CH0_GAIN Ch0 Gain 3 BUNCH_PATTERN_20 Bunch Pattern 20 33

CH1_GAIN Ch1 Gain 4 BUNCH_PATTERN_21 Bunch Pattern 21 34

ADC_MEM_FIRST_1 ADC Memory Start 1 5 BUNCH_PATTERN_22 Bunch Pattern 22 35

ADC_MEM_FIRST_2 ADC Memory Start 2 6 BUNCH_PATTERN_23 Bunch Pattern 23 36

ADC_TURNS_REQ_1 ADC Turns Request 1 7 BUNCH_PATTERN_24 Bunch Pattern 24 37

ADC_TURNS_REQ_2 ADC Turns Request 2 8 BUNCH_PATTERN_25 Bunch Pattern 25 38

TURNS_COUNT_1 Turns Count 1 9 BUNCH_PATTERN_26 Bunch Pattern 26 39

TURNS_COUNT_2 Turns Count 2 10 BUNCH_PATTERN_27 Bunch Pattern 27 40

NEXT_MEM_ADDR_1 Next Memory Address 1 11 BUNCH_PATTERN_28 Bunch Pattern 28 41

NEXT_MEM_ADDR_2 Next Memory address 2 12 BUNCH_PATTERN_29 Bunch Pattern 29 42

TEMPERATURE Temperature 13 BUNCH_PATTERN_30 Bunch Pattern 30 43

BUNCH_PATTERN_1 Bunch Pattern 1 14 BUNCH_PATTERN_31 Bunch Pattern 31 44

BUNCH_PATTERN_2 Bunch Pattern 2 15 BUNCH_PATTERN_32 Bunch Pattern 32 45

BUNCH_PATTERN_3 Bunch Pattern 3 16 BUNCH_PATTERN_33 Bunch Pattern 33 46

BUNCH_PATTERN_4 Bunch Pattern 4 17 BUNCH_PATTERN_34 Bunch Pattern 34 47

BUNCH_PATTERN_5 Bunch Pattern 5 18 BUNCH_PATTERN_35 Bunch Pattern 35 48

BUNCH_PATTERN_6 Bunch Pattern 6 19 BUNCH_PATTERN_36 Bunch Pattern 36 49

BUNCH_PATTERN_7 Bunch Pattern 7 20 BUNCH_PATTERN_37 Bunch Pattern 37 50

BUNCH_PATTERN_8 Bunch Pattern 8 21 BUNCH_PATTERN_38 Bunch Pattern 38 51

BUNCH_PATTERN_9 Bunch Pattern 9 22 BUNCH_PATTERN_39 Bunch Pattern 39 52

BUNCH_PATTERN_10 Bunch Pattern 10 23 BUNCH_PATTERN_40 Bunch Pattern 40 53

BUNCH_PATTERN_11 Bunch Pattern 11 24 EEADDR_CNTL EEPROM Address/Control 54

BUNCH_PATTERN_12 Bunch Pattern 12 25 EEREADDAT EEPROM Read Data 55

BUNCH_PATTERN_13 Bunch Pattern 13 26 EEWRITEDAT EEPROM Write Data 56

BUNCH_PATTERN_14 Bunch Pattern 14 27 SKIP_TURNS Number Of Turns To Skip 57

BUNCH_PATTERN_15 Bunch Pattern 15 28 SRAM_DATA SRAM data to be written 4096

BUNCH_PATTERN_16 Bunch Pattern 16 29 SRAM_CNTL SRAM Control 59

FPGA_FLASH_CNTL FPGA Flash Control 60

DEBUG_OUT Debug Data To FPGA 61

DEBUG_IN Debug Data From FPGA 62

Table 3: Register Offsets

Registers:
	Register:
	CONTROL

	Offset:
	0

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	ACQ_ENA
	ACQ_DONE
	ACQ_CONT
	SKIP_TURN

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-4:
Not used

3:
ACQ_ENA

Setting this bit to a ‘1’ starts the acquisition process. Resetting it to ‘0’ causes any pending acquisitions to complete but no new acquisitions are initiated.

2:
ACQ_DONE

This bit is ‘0’ when an acquisition has been enabled but is not complete. It is set to a ‘1’ when an acquisition is enabled and is complete. It is reset to ‘0’ when a new acquisition is enabled.

1:
ACQ_CONT

Bit 5 controls single shot versus continuous mode data acquisition. Setting this bit to a ‘1’ selects continuous mode and ‘0’ selects single shot mode. In single shot mode, the number of samples to be acquired is set by the number of turns in the ACQ_TURNS_REQ1 and ACQ_TURNS_REQ2 registers. In continuous mode, the turns counter will be reset after it has counted down all the way and a new countdown cycle will be initiated.

If the ACQ_CONT bit is reset to ‘0’ in the middle of an acquisition, the present countdown cycle will be completed and then acquisition will be halted.

0:
SKIP_TURN

Setting this bit to a ‘1’ causes the front end to skip a single turn between samples. Setting this bit to a ‘0’ causes the front end to skip a number of turns between subsequent turns. The number of turns to skip is defined in the SKIP_TURN register
	Register:
	DCS_CONTROL

	Offset:
	1

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Ch 1 DCS
	Ch 0 DCS

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-2:
Not Used

1,0:
CH0 DCS and CH1 DCS

Bits 1 and 0 select the mode of operation for the internal duty cycle stabilizers (DCS) of the analog to digital converters. A ‘1’ in these bits enables, and a ‘0’ disables, the DCS for the corresponding channel’s converter.

	Register:
	FPGA_ID

	Offset:
	2

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	ID3
	ID2
	ID1
	ID0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-4:
Not Used

3-0:
ID

These bits are used to identify the fpga version.

	Register:
	CH0_GAIN

	Offset:
	3

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	CH0 VG_ENA

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	CH0 GAIN

7
	CH0 GAIN

6
	CH0 GAIN

5
	CH0 GAIN

4
	CH0 GAIN

3
	CH0 GAIN

2
	CH0 GAIN

1
	CH0 GAIN

0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-9:
Not Used

8:
CH0 VG_ENA

Setting this bit to a ‘1’ selects the variable gain path. Setting this bit to a ‘0’ selects the low noise fixed gain path.

7-0:
CH0 GAIN

Bits 0-7 are used to set the gain of the adjustable amplifier (AD8370) in channel 0.

The following is an excerpt from the AD8370 datasheet, describing the formula for determining the resulting gain:

[image: image11.emf]
	Register:
	CH1_GAIN

	Offset:
	4

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	CH1 VG_ENA

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	CH1 GAIN

7
	CH1 GAIN

6
	CH1 GAIN

5
	CH1 GAIN

4
	CH1 GAIN

3
	CH1 GAIN

2
	CH1 GAIN

1
	CH1 GAIN

0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-9:
Not Used

8:
CH1 VG_ENA

Setting this bit to a ‘1’ selects the variable gain path. Setting this bit to a ‘0’ selects the low noise fixed gain path.

7-0:
CH1 GAIN

Bits 0-7 are used to set the gain of the adjustable amplifier (AD8370) in channel 1.

	Register:
	ADC_MEM_FIRST_1

	Offset:
	5

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	addr15
	addr14
	addr13
	addr12
	addr11
	addr10
	addr9
	addr8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	addr7
	addr6
	addr5
	addr4
	addr3
	addr2
	addr1
	addr0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
ADDR

This register contains the lower 16 bits of the initial address used to store the acquisition results

	Register:
	ADC_MEM_FIRST_2

	Offset:
	6

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	addr19
	addr18
	addr17
	addr16

	Default
	0
	0
	0
	0
	0
	0
	0
	0

3-0:
 ADDR

This register contains bits 19 through 16 of the initial address used to store the acquisition results.

	Register:
	ACQ_TURNS_REQ_1

	Offset:
	7

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
NUM_TURNS

This register contains the lower 16 bits of the number of turns of data to be collected.

	Register:
	ACQ_TURNS_REQ_2

	Offset:
	8

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit30
	bit29
	bit28
	bit27
	bit26
	bit25
	bit24
	bit23

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit22
	bit21
	bit21
	bit20
	bit19
	bit18
	bit17
	bit16

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
NUM_TURNS (cont)

This register contains the upper 16 bits of the number of turns to be collected.

	Register:
	TURNS_COUNT_1

	Offset:
	9

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
NUM_TURNS

This register contains the lower 16 bits of a counter which represents the number of turns which have been completed during the present acquisition.
	Register:
	TURNS_COUNT_2

	Offset:
	10

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit30
	bit29
	bit28
	bit27
	bit26
	bit25
	bit24
	bit23

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit22
	bit21
	bit21
	bit20
	bit19
	bit18
	bit17
	bit16

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
NUM_TURNS

This register contains the upper 16 bits of a counter which represents the number of turns which have been completed during the present acquisition.

	Register:
	NEXT_MEM_ADR_1 (Not Presently Supported)

	Offset:
	11

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	addr15
	addr14
	addr13
	addr12
	addr11
	addr10
	addr9
	addr8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	addr7
	addr6
	addr5
	addr4
	addr3
	addr2
	addr1
	addr0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
ADDR

This register contains the lower 16 bits of the next address in memory where a sample will be stored.

	Register:
	NEXT_MEM_ADR_2 (Not Presently Supported)

	Offset:
	12

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	addr19
	addr18
	addr17
	addr16

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
ADDR

This register contains the upper 16 bits of the next address in memory where a sample will be stored.

	Register:
	TEMPERATURE

	Offset:
	13

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
TEMPERATURE

This register contains the results of the temperature conversion of the on board temperature sensor.
Note: In order to initiate a new temperature measurement this register must be written to. Approximately 1 mS later the results of the new measurement will appear in this register. In the future a feedback bit will be provided to indicate when the measurement is completed.

	Register:
	BUNCH_PATTERN_1

	Offset:
	14

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Bunch 16
	Bunch 15
	Bunch 14
	Bunch 13
	Bunch 12
	Bunch 11
	Bunch 10
	Bunch 9

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Bunch 8
	Bunch 7
	Bunch 6
	Bunch 5
	Bunch 4
	Bunch 3
	Bunch 2
	Bunch 1

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	Register:
	BUNCH_PATTERN_40

	Offset:
	53

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Bunch 640
	Bunch 639
	Bunch 638
	Bunch 637
	Bunch 636
	Bunch 635
	Bunch 634
	Bunch 633

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Bunch 632
	Bunch 631
	Bunch 630
	Bunch 629
	Bunch 628
	Bunch 627
	Bunch 626
	Bunch 625

	Default
	0
	0
	0
	0
	0
	0
	0
	0

The AFE4 has the ability to store the data from any one of 640 (2.56 uS divided by 4 nS) possible bunch locations in the CESRTA machine. In order to select which bunch location to sample, a set of registers are provided. These registers are in essence a bitmask, with the first bunch (Bunch 1) located at Bunch Pattern Register 0,bit 0 and the last possible bunch (Bunch 640) located at Bunch Pattern Register 40, bit 15. A ‘1’ in any location will cause the AFE4 to sample, digitize and store the beam button signal during that particular bunch’s location in time. A ‘0’ in any location will cause the AFE4 to NOT store any data corresponding to that bunch’s location in time. The preceding show the structure of the first and the last bunch pattern registers. Note that there are 38 other registers evenly space between these two with their bits lined up serially representing all possible bunch locations.

	Register:
	EEPROM_ADDR_CTL

	Offset:
	54

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	EEPROM
STROBE
	EEPROM
DONE
	EEPROM
RW
	EEPROM ADDR

 8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	EEPROM ADDR

 7
	EEPROM ADDR

 6
	EEPROM ADDR

 5
	EEPROM ADDR

 4
	EEPROM ADDR

 3
	EEPROM ADDR

 2
	EEPROM ADDR

 1
	EEPROM ADDR

 0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-12:
NOT USED

Not used.

11:
EEPROM Strobe

Transitioning this bit from a ‘0’ to a ‘1’ caused a EEPROM transaction which is defined by the EEPROM READ/WRITE bit.

10:
EEPROM Done:

This is a status bit from the FPGA. If this bit is ‘1’, the pending EEPROM transaction has completed. If this bit is a ‘0’ the pending EEPROM transaction is in progress.

9:
EEPROM Read/Write

Setting this bit to a ‘0’ selects a Read operation and setting this bit to a ‘1’ selects a Write operation.

8:0:
EEPROM Address

These bits hold the address used for the EEPROM transaction.

The AFE4 contains a 512x8 bit EEPROM. The contents of the EEPROM is available via three registers.

In order to write data to the EEPROM on the AFE4 the user must first write the data to be written to the EEWRITEDAT register. Then the address (EEPROM referenced) must be written to the EEPROM_ADDR_CTL register along with setting the EEPROM Read/Write bit to a ‘1’ and then setting the EEPROM Strobe to initiate the transaction. The EEPROM Done bit may now be monitored for completion of the transaction.

In order to read from the EEPROM on the AFE4 the user must first write the address (EEPROM referenced) to be read from into the EEPROM_ADDR_CTL register along with setting the EEPROM Read/Write bit to a ‘0’ and then setting the EEPROM Strobe bit to initiate the transaction. The EEPROM Done bit may now be monitored for completion of the transaction. When the EEPROM Done bit is asserted, the requested data may be read from the EEREADDAT register.

	Register:
	EEREADDAT

	Offset:
	55

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	EEPROM DATA
 7
	EEPROM DATA
 6
	EEPROM DATA
 5
	EEPROM DATA
 4
	EEPROM DATA
 3
	EEPROM DATA
 2
	EEPROM DATA
 1
	EEPROM DATA
 0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15:8:
Not used

7:0:
EEPROM Read Data

These bits hold the data used during an EEPROM read transaction

	Register:
	EEWRITEDAT

	Offset:
	56

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used
	Not Used

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	EEPROM DATA

 7
	EEPROM DATA

 6
	EEPROM DATA

 5
	EEPROM DATA

 4
	EEPROM DATA

 3
	EEPROM DATA

 2
	EEPROM DATA

 1
	EEPROM DATA

 0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15:8:
Not used

7:0:
EEPROM Write Data

These bits hold the data used during an EEPROM write transaction

	Register:
	SKIP_TURNS

	Offset:
	57

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
SKIP_TURN

Number of turns to skip between subsequent acquisitions. This number is only valid if the SKIP_TURN bit is set in the CONTROL register.

	Register:
	SRAM_DATA

	Offset:
	4096

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
SRAM Data

16 bit value which will be written to the fpga SRAM.
The mechanism for writing data to the SRAM’s on the AFE4 uses an auto incrementing address counter. In order to write data to an SRAM, the appropriate SRAM control bit must be set in the SRAM_CNTL register. When this bit is set, it automatically resets the address counter for that SRAM to 0. When a piece of data is written to the SRAM_DATA register it is passed directly to the SRAM and the address counter is then incremented by 1. Thus sequential bursts of data can be written to continuous addresses in the SRAM by making repetitive writes to the SRAM_DATA register. When all data has been written, the control bit is de asserted and the SRAM control lines are released.
	Register:
	SRAM_CNTL

	Offset:
	59

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	SRAM1 CNTL
	SRAM0 CNTL

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-2:
Not Used

1:
SRAM1 Control

If this bit is a ‘1’, any SRAM write operations are directed to SRAM 0.

0:
SRAM0 Control

If this bit is a ‘1’, any SRAM write operations are directed to SRAM 1.
Transitioning either of these bits from a ‘0’ to a ‘1’ will cause the address counter for that SRAM to be reset to 0x00000.

	Register:
	FPGA_FLASH_CNTL

	Offset:
	60

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	Not Used
	STAT 6
	STAT 5
	STAT 4
	STAT 3
	STAT 2
	STAT 1
	STAT 0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	Not Used
	Not Used
	Not Used
	FLASH RDY
	FLASH EOF
	FLASH ERROR
	FLASH

RESET
	FLASH

CONTROL

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15:
Not Used
14-8:
STAT[6:0]

These bits hold the program counter/status information for the FLASH programming module

7-5:
Not Used

4:
FLASH RDY
This bit is a ‘1’ when the FLASH programming module is ready to accept commands. This bit is a ‘0’ while the PROM is being reprogrammed.

3:
FLASH EOF

This bit indicates when the FLASH programming module has read in a complete image file. This bit is a ‘1’ when a complete file has been read and a ‘0’ at all other times.

2:
FLASH ERROR

This bit indicates the error status of the FLASH programming module. A ‘1’ indicates that an error has occurred and a ‘0’ indicates no error condition.

1:
FLASH RESET

Toggling this bit from a ‘0’ to a ‘1’ asserts a reset command to the FLASH programming module.

0:
FLASH CONTROL

Toggling this bit from a ‘0’ to ‘1’ initiates a FLASH programming cycle.

This register controls the programming of the FPGA FLASH PROM. This PROM contains the image which is automatically loaded into the FPGA upon power up. The FPGA image contains a module which controls the JTAG signals of the external PROM and allows the user to program a new image into the PROM. When the new image has been loaded, the FPGA issues a reload command and the newly loaded image is automatically loaded into the FPGA.

A FLASH programming cycle follows a clearly defined series of steps. Deviation from these steps will cause failure and could render the AFE4 unusable. Deviate at your own risk.

Step1: Write the entire .ACE file into the SRAM’s using the SRAM interface registers. Note that the image must start at address 0x00000 of SRAM0 and continue sequentially until the end of file. It is likely that the image will continue on into the SRAM2 address space.

Step2: Verify that the FLASH programming module is ready and does not indicate any errors. Assert the FLASH CONTROL bit. The register will read 0x3800 when it is ready.

Step3: Monitor the FPGA_FLASH_CNTL register until it has returned to the 0x3800 state

If an error occurs during the programming effort, do NOT remove power to the AFE4! This will render the AFE4 useless. To recover from an error toggle the FLASH RESET bit through two complete cycles. The FPGA_FLASH_CNTL register should return to it’s 0x3800 state. Try again.
	Register:
	DEBUG_OUT

	Offset:
	61

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
Debug
	Register:
	DEBUG_IN

	Offset:
	62

	Bit
	15
	14
	13
	12
	11
	10
	9
	8

	Description
	bit15
	bit14
	bit13
	bit12
	bit11
	bit10
	bit9
	bit8

	Default
	0
	0
	0
	0
	0
	0
	0
	0

	
	
	
	
	
	
	
	
	

	Bit
	7
	6
	5
	4
	3
	2
	1
	0

	Description
	bit7
	bit6
	bit5
	bit4
	bit3
	bit2
	bit1
	bit0

	Default
	0
	0
	0
	0
	0
	0
	0
	0

15-0:
Debug
Signal Usage:
	BPM Signal
	Proto2 Signal
	Usage

	addr[19:0]
	Addr[19:0]
	BPM address bus connection

	data[15:0]
	data[15:0]
	BPM data bus connection

	wr
	wr
	BPM write strobe

	oe0
	oe0
	SRAM0 output enable

	oe1
	oe1
	SRAM1 output enable

	oe2
	oe2
	register output enable

	oe[3:7]
	oe[3:7]
	unused

	mem_cs7
	mem_cs7
	synchronization signal

	mem_cs[6:0]
	mem_cs[6:0}
	unused

	card_select
	card_select
	card enable signal

	mem_oe
	mem_oe
	unused

	reg_oe
	reg_oe
	unused

	buffer_dir
	buffer_dir
	unused

	temp_clk
	temp_clk
	temp sensor clk

	temp_cs
	temp_cs
	temp sensor enable

	temp_dat
	temp_dat
	temp sensor data

Table 2: BPM Signal Connections

The BPM address and data bus connection is implemented just like any other parallel bus interface. It uses the wr signal as a write strobe and one of the oe signals as an output enable depending upon what type of data is being read.

In order to assure that all four Proto2 cards are storing data for the same turn in the same place a synchronization signal is connected to each card. This signal causes the value which is loaded into the ADC_MEM_FIRST_1 and ADC_MEM_FIRST_2 registers to be loaded into the address counters on all four cards simultaneously.

The temp_clk and temp_cs lines are used to control the on board temperature sensor. They are part of a serial bus originating from the digital board.

The temp_dat line will be used in the future for JTAG programming of the Proto2 fpga from the dsp.

NOTE: In the future several of the mem_cs lines will be used for JTAG programming of the Proto2 fpga.

FPGA Programming:

The FPGA can be programmed remotely by using the embedded ACE player functionality. In order to utilize this method, the proper files must be generated using Xilinx provided tools. The following tools are required, Xilinx Foundation ISE, Xilinx Impact, Xilinx SVF To ACE Conversion Utility. The following steps serve as a reminder of how to generate the required .ace file. Note that these are to serve as a reminder not a step by step manual. If time permits this section will be expanded.

1. Build the project using Xilinx Foundation ISE.
2. Generate a .bit file using Xilinx Foundation ISE.

3. Generate a .mcs prom file from the .bit file using Xilinx Impact.

4. Create a .svf file using Xilinx Impact and add the previously generated .mcs file. Initiate programming and be sure to check the “Load FPGA” option.

5. Use the Xilinx SVF To Ace Conversion Utility to create the .ace file.

