CESR BPM/BSM/FLM SYSTEM DIGITAL PROCESSOR BOARD

(For XILINX V5.4)
z:\crs\Cesr_BPM_BSM\Docs\DSP_Board_Programming_ \doe
12/12/2006 10:04 AM

New in 5.4:

1. Address autoincrement for ColdFire readouttee fixed.

2. The ERL_BPM module type has been created. § asgb MHz input clock (instead of 24 MHz in CESRY
it doubles that to 50 MHz for data acquisition {@d of tripling it to 72 MHz in CESR). The ERL_BRily
support 122 bunches (instead of 183 in CESR).

MODULE_TYPE

=4 FLMA

=5 ERL_BPM
MAJOR_REV =5
MINOR_REV =4

3. Timing of all DSP operations have been verifigfier it boots, the DSP can no longer access th&SH
memory. It requires too many wait states.

New in 5.3:

MODULE_TYPE
=1 BSM
=2 BPM
=3 FLM
=4 FLMA

MAJOR_REV =5

MINOR_REV =3

1. The BSM current monitor board is supported.

Newin 5.2:
1. “Force Hi Hit Register” added to the accumuldioard for testing.

2. Added detail about accumulator Geo Bunch RatgdRe.

3. Scrambled accumulator board mapping to use AREDieels 1 thru 6 to generate the lookup table addre

New in 5.1:

1. Support for Ethernet access thru a ColdFire DIkard from Arcturus.
2. Reset for the DIMM module is provided thru tremregister “DIMM_RESET”.

3. The “MODULE_TYPE" register has been modifiedesh project has its own identifier.

MODULE_TYPE
=1BSM
=2 BPM
=3 FLM
=4 FLMA

MAJOR_REV =5

MINOR_REV =1

4. The FLMA accumulator board is supported.

To Do:
Implement ‘ACQ_SKIP_CNT’ register.
Implement shadow readback for timing board
Make sign extension be programmable for unipolpolair
Speed up ‘loc_dat_tri_drive’ with combinatorial $etiing

DATA FORMAT
When reading any memory that is less than 32-hie wthe data will be considered to be signed Bisqygiement
and will be sign extended. When writing any mentbiat is less than 32-bits wide, the high bits wélignored.
When reading any register that is less than 32wWids, the data will be considered to be unsignetivaill
contain zeroes in the high bits. If a register 3egidned data, it will be designed as a 32 bitstegi When writing
any register that is less than 32 bits wide, tigh hits will be ignored.

ADDRESS MAPS

The local (on-board) address bus, LOC_ADR[31..08rasses longword (4-byte) entities. The addregsforaall
peripherals is driven by the addressing capatslitiethe DSP. The DSP breaks down the 32-bit addeege as

follows:
DSP INTERNAL SPACE 0X00000000 — 0X003FFFFF
DSP UNUSED 0X00400000 — 0XO7FFFFFF
DSP BANK 0 (/MS0) 0X08000000 — 0XOBFFFFFF
DSP BANK 1 (/MS1) 0X0C000000 — OXOFFFFFFF
DSP HOST (/MSH) 0X10000000 — OXFFFFFFFF

The region labeled “unused” is specific to thisjpch. The DSP actually defines features in thisaegsuch as
multiprocessor memory space and SDRAM memory sgadehis project does not use any of the features.

DSP (fromthe XBUS or Ethernet perspective)

One has to use 'multiprocessor space' to accegsstiniside the DSP from the outside. For the ADSROLS
TigerSHARCprocessor with ID=0 (which is the ID for this projg the address range is from 0x02000000 to
0x023fffff. When you want to access a locationdiesof the DSP, you will need to add 0x0200000h&oactual
internal DSP addresses so that the XBUS or Etheisext the correct address. The internal DSP addilt e
calculated by masking off the high byte (0x02).

DSP (from the DSP per spective)

The DSP memory map is unique to the ADSP-TS1018rBigARC chip. Other DSPs may use different
mapping.

DSP INTERNAL SPACE 0X00000000 — OXO3FFFFFF
MEMORY BLOCK 0 0X00000000 — OXO000FFFF 64 kW
MEMORY BLOCK 1 0X00080000 — 0XO008FFFF 64 kW
MEMORY BLOCK 2 0X00100000 — 0OX0010FFFF 64 kW
INT REGISTERS (UREGS) 0X00180000 — 0X001807FF 2 kw

The LDF file defines how the memory is allocatedvarious functions. The current version of the fil
“BPM_ADSP-TS101_C.LDF” makes the following alloaats:

/I Start with full MO block for code. We may usghiaddresses for some data structures.
/I This gives 64k of code space.
MOCode { TYPE(RAM) START(0x00000000) END(OxOCGRIFF) WIDTH(32) }

/I M1 block will support data, heap, and stack. &¥pect no heap usage and very

/I little stack usage. Start with 56k data, 2k heaql 6k stack.
M1Data { TYPE(RAM) START(0x00080000) END(OxOUDBFF) WIDTH(32) }
M1Heap { TYPE(RAM) START(0x0008E000) END(0x0@BFF) WIDTH(32) }
M1Stack { TYPE(RAM) START(0x0008E800) END(OXOBBFFF) WIDTH(32) }

/I M2 block will support raw data from the ADCsa8twith one buffer using

/I 56k. An "M2Stack" is required by the C/C++ runé. Make it be 8k.
M2Data { TYPE(RAM) START(0x00100000) END(0OxORBFF) WIDTH(32) }
M2Stack { TYPE(RAM) START(0x0010E000) END(OXOUAFFF) WIDTH(32) }

/I This project does not use the SDRAM addresseang
SDRAM { TYPE(RAM) START(0x04000000) END(0x07FFFF) WIDTH(32) }

/ MSO bank will address the ADC boards.
/I MSOmem will address memory on all 4 cards camdigsly

MSOmem { TYPE(RAM) START(0x08000000) END(OXO8HH-F) WIDTH(32) }
/I MSOreg will address register space on all 4 gsaghtiguously

MSOreg { TYPE(RAM) START(0x09000000) END(OX09HF-F) WIDTH(32) }
/I MSOunused is the remaining part of the MSO bank

MSOunused { TYPE(RAM) START(0x0OA000000) END@BFFFFFF) WIDTH(32) }

/I MS1 bank will address the FLASH and SRAM.
MS1 { TYPE(RAM) START(0x0C000000) END(0OXxOFFFFF) WIDTH(32) }

/l The HOST region will address the XILINX chip ati timing board

/I Memory blocks need to be less than 2 Gig, arddtal HOST space is almost 4 Gig.
/I Arbitrarily, we create 7 segments of 1/4 Gig dnsegment of 1/8 Gig.

/I For this project, all of the hardware is in fivat segment.

HOST { TYPE(RAM) START(0x10000000) END(Ox2FFAFF) WIDTH(32) }
HOST1 { TYPE(RAM) START(0x30000000) END(0x4FFAFFF) WIDTH(32) }
HOST2 { TYPE(RAM) START(0x50000000) END(0x6FAFFF) WIDTH(32) }
HOST3 { TYPE(RAM) START(0x70000000) END(0X8FFFFF) WIDTH(32) }
HOST4 { TYPE(RAM) START(0x90000000) END(OXAFFFFF) WIDTH(32) }
HOST5 { TYPE(RAM) START(0xB0000000) END(OXCFFFFF) WIDTH(32) }
HOST6 { TYPE(RAM) START(0xD0000000) END(OXEFFFFF) WIDTH(32) }

HOST7 { TYPE(RAM) START(0xF0000000) END(OXFFAFAFF) WIDTH(32) }

Hardware can be accessed by using pointers, dslibing code snippet that accesses the timindg shows. An
‘include’ file should be created that symbolicadlgfines all of the various addresses.

main() {
int *tim_ptr = (int *)0x10020000;
int i
for(;;) {
for (i=0; i<1024; i++) {
*tim_ptr = i;
}
}
}
Analog Cards

For the BSM, FLM, and FLMA systems, each analogl ¢ers eight channels. Each channel has 512kW of
memory space. There are no registers on the BSM/&hdog cards. The FLMA cards have an accumulator
module. Address line A[24] selects either memormgcgpor accumulator space. Address lines A[23..@2csone
of the four analog boards. Address lines A[21.598¢ct one of eight channels on a board. Addmess A[18..0]
select a memory address.

ANALOG CARD 0 CHAN O 0X08000000 - 0X0807FFFF (daBd4217728)
ANALOG CARD 0 CHAN 1 0X08080000 - 0X080FFFFF (dad4742016)
ANALOG CARD 0 CHAN 2 0X08100000 - 0X0817FFFF (d685266304)
ANALOG CARD 0 CHAN 3 0X08180000 - OX081FFFFF (da85790592)
ANALOG CARD 0 CHAN 4 0X08200000 - 0X0827FFFF (d686314880)
ANALOG CARD 0 CHAN 5 0X08280000 - OX082FFFFF (0686839168)
ANALOG CARD 0 CHAN 6 0X08300000 - 0X0837FFFF (da87363456)
ANALOG CARD 0 CHAN 7 0X08380000 - 0X083FFFFF (0a87887744)
ANALOG CARD 1 CHANO 0X08400000 - 0X0847FFFF (d438412032)
ANALOG CARD 1 CHAN 1 0X08480000 - 0X084FFFFF (d438936320)
ANALOG CARD 1 CHAN 2 0X08500000 - 0X0857FFFF (d489460608)
ANALOG CARD 1 CHAN 3 0X08580000 - 0X085FFFFF (d439984896)
ANALOG CARD 1 CHAN 4 0X08600000 - 0X0867FFFF (d4e9509184)
ANALOG CARD 1 CHAN 5 0X08680000 - 0X086FFFFF (déeH033472)
ANALOG CARD 1 CHAN 6 0X08700000 - 0X0877FFFF (déer557760)
ANALOG CARD 1 CHAN 7 0X08780000 - OX087FFFFF (dée2082048)
ANALOG CARD 2 CHAN O 0X08800000 - 0X0887FFFF (d4e2606336)
ANALOG CARD 2 CHAN 1 0X08880000 - 0X088FFFFF (d4e:3130624)
ANALOG CARD 2 CHAN 2 0X08900000 - 0X0897FFFF (dée8654912)
ANALOG CARD 2 CHAN 3 0X08980000 - OX089FFFFF (déae4179200)
ANALOG CARD 2 CHAN 4 0X08A00000 - OXO08A7FFFF (deb44703488)
ANALOG CARD 2 CHAN 5 0X08A80000 - OXO8AFFFFF (deb4b227776)
ANALOG CARD 2 CHAN 6 0X08B00000 - 0X08B7FFFF (delet5752064)
ANALOG CARD 2 CHAN 7 0X08B80000 - OXO8BFFFFF (dect8276352)
ANALOG CARD 3 CHAN O 0X08C00000 - 0X08C7FFFF (dée6800640)
ANALOG CARD 3 CHAN 1 0X08C80000 - 0X08CFFFFF (dée¥324928)
ANALOG CARD 3 CHAN 2 0X08D00000 - 0X08D7FFFF (dedt7849216)
ANALOG CARD 3 CHAN 3 0X08D80000 - 0XO8DFFFFF (deie#8373504)
ANALOG CARD 3 CHAN 4 0X08E00000 - 0XO08E7FFFF (d4er8897792)

ANALOG CARD 3 CHAN 5

0X08E80000 - 0XO8EFFFFF

(d4€t9422080)

ANALOG CARD 3 CHAN 6
ANALOG CARD 3 CHAN 7

ACCUMULATOR

ANALOG CARD 0
ANALOG CARD 1
ANALOG CARD 2
ANALOG CARD 3

0X08F00000 - 0X08F7FFFF
0X08F80000 - 0X08FFFFFF

0xO0A000000
0x0A400000
0x0A800000
O0xOACO00000

Refer to the section on ACCUMULATOR PROGRAMMING fdetails.

(d4€19946368)
(d459470656)

(dec=167772160)
(dec=171966464)
(dec=176160768)
(dec=180355072)

For the BPM system, each analog card has two chartfgch channel has 512kW of memory and 1 gaiistexg
Address line A[24] selects either memory spaceegrster space. Address lines A[21..20] select dribeofour
analog boards. Address line A[19] selects onavofc¢hannels on a board. Address lines A[18..0]csaher a
memory address or a register address.

MEMORY

ANALOG CARD 0 CHAN O 0X08000000 - 0X0807FFFF (daBd4217728)
ANALOG CARD 0 CHAN 1 0X08080000 - 0X080FFFFF (déd4742016)
ANALOG CARD 1 CHANO 0X08100000 - 0X0817FFFF (d485266304)
ANALOG CARD 1 CHAN 1 0X08180000 - 0X081FFFFF (dé85790592)
ANALOG CARD 2 CHAN O 0X08200000 - 0X0827FFFF (d4836314880)
ANALOG CARD 2 CHAN 1 0X08280000 - OX082FFFFF (0686839168)
ANALOG CARD 3 CHAN O 0X08300000 - 0X0837FFFF (da87363456)
ANALOG CARD 3 CHAN 1 0X08380000 - 0X083FFFFF (0a87887744)

GAIN REGISTERS

ANALOG CARD 0 GAIN O 0X09000000 (dec=150994944)
ANALOG CARD 0 GAIN 1 0X09080000 (dec=151519232)
ANALOG CARD 1 GAINO 0X09100000 (dec=152043520)
ANALOG CARD 1 GAIN 1 0X09180000 (dec=152567808)
ANALOG CARD 2 GAINO 0X09200000 (dec=153092096)
ANALOG CARD 2 GAIN 1 0X09280000 (dec=153616384)
ANALOG CARD 3 GAINO 0X09300000 (dec=154140672)
ANALOG CARD 3 GAIN 1 0X09380000 (dec=154664960)

FLASH Memory

FLASH

0X0C000000 - OXOCO7FFFF

(dec=201326592)

The FLASH memory is 512k by 8-bits, using an AtrA@KU9LV040 chip. Its primary use is to store the
DSP code.

Unlike the FLASH in other BPM projects, this chipes not have multiple sectors that can be
individually erased. If the FLASH is to be used fimm-volatile storage of anything other than the?DS
code, the user’s program will need to read and #av@ermanent information before reprogramming the
memory. The saved information will then need tanbigten back to the FLASH after it has been erased
and is ready for new DSP code.

Satic RAM

STATIC RAM 0X0C080000 - 0XOCOFFFFF (dec=20185088

The static RAM is 512k by 32-hits.

Vector and Packet Support

VECTOR ADDRESS TABLE 0x10000000 - 0x100001FF (d288435456)

The vector address table holds 512 addresses3@agits wide. Xbus vector commands (‘vxgetn’ and
‘vxputn’) specify the first vector and the numbévectors to access. The vector address table maps
Xbus vectors to hardware addresses.

The following vectors are currently defined:

0x078: FLASH (0x0C005555)

0x079: FLASH (0xOC002AAA)

0x07A: FLASH (0x0C005555)

0x07B: FLASH (0x0C005555)

0x07C: FLASH (0xOC002AAA)

0x07D: FLASH (0x0C005555)

Ox07E: direct address register (0x10040000)

O0x07F: This is a special vector number. The aciddress comes from
the 'direct_adr' register.

The standard MPM database address nodes (like “CBBPR TST") are initialized with vector number
Ox7E. They access the ‘DIRECT_ADR'’ register.

The standard MPM database data nodes (like “CBPM D&T") are initialized with vector number
0x7F. Operations to these data nodes use the adtistsvas programmed thru the address node.

As an example, to write ‘'some_data” to “some_adiresthe module associated with element 2 of the
nodes “CBPM ADR TST” and “CBPM DAT TST", the contsystem program makes the following
calls:

call vxputn(‘CBPM ADR TST’, 2, 2, some_address)
call vxputn(‘CBPM DAT TST/, 2, 2, some_data)

Vector 0X078 thru 0x07D (120 thru 125) are usedftelsh programming. To erase the FLASH chip,
write the following data to the corresponding vecto

0x078=aa 0x079=55 0x07a=80 0x07b=aa 0x07c=85/d=10

To program the FLASH chip with a vector operatiamte the following data to the corresponding vecto
(PA is the address to program, PD is the datadgrpm):

0x07b=aa 0x07c=55 0x07d=a0 0x07e=PA 0x07f=PD

PACKET START ADDRESS TABLE 0x10001000 - 0x100011FF (dec=268439552)
PACKET MORE ADDRESS TABLE 0x10001800 - 0x100019FF de¢=268441600)
PACKET SIZE TABLE 0x10010000 - 0x100101FF (de68200992)

The ‘packet start address table’ and ‘packet mddress table’ each hold 512 addresses, each 32-bits
wide. The packet size table holds 512 values, &2dhits wide.

The ‘packet start address table’ holds the firsiragls of each data structure or block that is aecefor a
given packet tag. The address is loaded into ateouftfter each access, the counter is incremesuted

the result is written into the ‘packet more additesse’. After the amount of data specified in thacket
size table’ has been transferred, the addresdisitotbe ‘packet more address table’ will be thdrads

of the next piece of data in the data structurantither packet operation is performed and théstag
offset by 2048, the first address will be retrieen the ‘packet more address table’. This scheme
allows for access to blocks of memory that aredathan the maximum size of a single packet by kimp
using the regular tag for the first block and tifiset tag for all of the remaining blocks.

A constraint imposed by this scheme is that the sfzany data structure must be a multiple of the s
written in the ‘packet size table’. If a 260 watlucture needs to be transferred, one can eideea 256
word packet size and pad the structure out to 5dr2lsy or use a 130 word packet size. Additionalig,
‘packet more address table’ is read-only.

Xbus packet commands (‘vugetn’ and ‘vuputn’) spetlife packet tag to use for a data transfer. The
packet address tables map Xbus packet numbers foshhardware address involved in the transfer.
Packet tags from 1 thru 2047 will find the firsdaess in the ‘packet start address table’. Packst t
from 2049 thru 4095 will find the first addresstire ‘packet more address table. The packet size tab
specifies how many 32-bit words to transfer foread’ (vugetn) operation. For ‘write’ (vuputn)
operations, the number of words written determthedransfer size.

Generally, the DSP will initialize the address aimk tables with the addresses and sizes of intdata
structures that the control system needs to acéassxception is for packet Ox1ff (511).

Packet Ox1FF (511) is reserved for FLASH prograngnémy data written to this packet will cause the
FLASH programming sequence in the XILINX chip toibeoked. The procedure to program FLASH
with packet operations is:

I write the address of PACKET ADDRESS TABLE ent&yl# to the address node
call vxputn(‘CBPM ADR TST, 2, 2, ‘100011ff'x)

lwrite the next FLASH address to program to thexdaide
call vxputn(‘CBPM DAT TST, 2, 2, flash_adr)

I write the address of PACKET SIZE TABLE entry #5tblthe address node
call vxputn(‘CBPM ADR TST, 2, 2, ‘100101ff'x)

lwrite the size of the packet to the data node
call vxputn(‘CBPM DAT TST, 2, 2, size)

Isend the packet of data with packet tag #511
call vuputn(‘CBPM PKT TST’, 2, 2, data_array, 5%ize)
Inote: the ‘data_array’ is a longword (32-bit) greith one byte per longword

Timing Board
TIMING BOARD 0X10020000 - 0X100200FF (dec=26858@8)

These registers control delay settings on the tirbimard. All registers are 10-bits, and are writéyo

The timing board has two timing blocks: A and BcE&lock has four clock outputs, one for each analo
card. The four clock outputs of a block consisa@flobal delay that is the sum of two global delays
settings (common to all four outputs), plus a siiedelay setting for each channel. The global gela
setting can span the 14 nsec bunch spacing. Thmehdelays are intended to compensate for cable
length variations and should generally be withinktb nsec of each other. The delay for each chip ¢
vary from 3.2ns to 14.8ns in 10ps increments.

BSM/FLM (Block A Only; Block B not used for BSM/FLM

Offset Contents

Block A, Global Delay 1

Block A, Global Delay 0

Block A, Card 3 Delay (chan 24 - 31)
Block A, Card 2 Delay (chan 16 - 23)
Block A, Card 1 Delay (chan 8 - 15)
Block A, Card 0 Delay (chan 0—7)

ar~rwWNEFLO

BPM (Block A for one species; Block B for the other

Offset Contents

Block A, Global Delay 1
Block A, Global Delay 0
Block A, Card 3 Delay
Block A, Card 2 Delay
Block A, Card 1 Delay
Block A, Card 0 Delay

O~ wWNEFO

Block B, Global Delay 1
Block B, Global Delay 0
Block B, Card 3 Delay
Block B, Card 2 Delay
Block B, Card 1 Delay
Block B, Card 0 Delay

OO Wm>»©om

A typical calibration scheme is to set the chamigdhys to mid-scale and adjust the global delay for
optimal results looking at the sum of all four chals. Then increment or decrement the individual
channel delays to optimize the results for eacimobh

Auxiliary Board

The auxiliary board is not accessible from the m®Brd. Instead, it contains a ColdFire ‘dimm’ CPddule that
can access all of the registers and memory desktiibiiis document. Refer to the section on COLOFIR
PROGRAMMING for details.

Registers

DIRECT_ADR 0X10040000 (dec=268697600)
This register holds the 32-bit address used for ®BMdctor operations when the vector equals #12i8. Th
register is programmed from the XBUS by specifyiegtor #126. Refer to the discussion of VECTOR
ADDRESS TABLE. It is not generally accessed by@Hi&P.

DSP_RESET 0X10040001 (dec=268697601)
This register controls the /DSP_RESET pin on th&® DSHIP. If data bit DO is zero, the reset signal is
asserted. This stops the DSP. When data bit DOgelsatio a one, the DSP booting and configuration

process begins.

When the board is initialized (power-up or fronhphpushbutton), data bit DO will be set to zerbisT
differs from the DIMM_RESET, which is set to one.

DATA_ACQ 0X10040002 (dec=268697602)
This register controls acquisition of data by thalag cards.
bit 0: ACQ_MODE (READ/WRITE)

Once the acquisition parameters have been in#dlizetting the ACQ_MODE bit to 1" will
switch control of the analog card signals to thguésition controller and start the collection of
data. This bit must be cleared to ‘0’ before progmeed readout of the analog boards can occur.
It can be cleared at any time. If acquisition ipiogress, it will be halted.

bit 1: ACQ_ACTIVE (READ ONLY)

This bit shows the status of data collection. Adfter setting ACQ_MODE indicates that a turn
marker has been received and data is being calle€tés bit will revert back to ‘0’ when
acquisition is complete or when ACQ_MODE is cleai@d’.

bit 2: ACQ_DONE (READ ONLY)

This bit shows the status of data collection. Adfter setting ACQ_MODE indicates that data
collection is finished. This bit will revert bact 10’ when ACQ_MODE is cleared to ‘0.

bit 3: ACQ_CONT (READ/WRITE)

This bit control single-shot vs. continuous mod&adecquisition. Once the acquisition
parameters have been initialized, setting the ACQNT bit to ‘1’ at the same time that the
ACQ_MODE bit is set to ‘1’ will cause the systematequire data continuously. If the
ACQ_CONT bit is later set to ‘0’ while ACQ_MODE Ieft at ‘1’, acquisition will continue
until ACQ_TURN_REQ additional turns have been agephipost-trigger mode).

If the ACQ_CONT bitis ‘0’ when the ACQ_MODE bit &t to ‘1’, then the system will acquire
a single shot of data as controlled by the contehf&sCQ_TURN_REQ.

For single-shot mode, write 0x01 to the DATA_ACQ@ister and monitor bit 2 for completion. For
continuous data acquisition, write 0x09 to the DAPAQ register. Then if you want acquisition to stop
immediately, write 0x00 to the DATA_ACQ registeirybu want is to continue for ACQ_TURN_REQ
additional turns, write 0x01 to the DATA_ACQ regist

bit 4: DCM_LOCKED (READ ONLY)

The LOCKED signal activates after the DCM has aadielock. To achieve lock, the DCM may
need to sample several thousand clock cycles.r &feeDCM achieves lock, the LOCKED
signal goes high. To guarantee that the systeok é¢éoestablished prior to the device waking
up, the DCM can delay the completion of the deeimefiguration process until after the DCM
locks. Until the LOCKED signal activates, the DCMtput clocks are not valid and can exhibit
glitches, spikes, or other spurious movement.

bit 7:5: DCM_STATUS (READ ONLY)

The 3 signals connect to the status register ibt®l. Bit 5 (STATUSJ0]) indicates the
overflow of the phase shift numerator and thatahsolute delay range of the phase shift delay
line is exceeded. Bit 6 (STATUS[1]) indicates tbss of the input clock, CLKIN, to the DCM.
Bit 7 (STATUS|2]) indicates that CLKFX has stopped.

Under normal operating conditions, the data reanhfbits [7:4] should be Ox1.

RECV_ERR 0X10040003 (dec=268697603)

This register holds error information from the akKbus receiver. Its usefulness is questionalieges
we would need to use the serial Xbus to read it.

GLOBAL_TURN_CNT 0X10040004 (dec=268697604)
This read-only register holds a 20-bit turn countdre counter can be reset globally by a commamm fr
the control system. This allows the counters imgweodule to be synchronized. With 20 bits, the
counter wraps around every 2.5 seconds. The siteeafounter could be extended, but then it woold n
be compatible with the counter in the first gerieraDSP modules.

GLOBAL_TURN_DAT 0X10040005 (dec=268697605)

This read-only register holds the 27-bit data stréfaat is sent with the 24 MHz (25 MHz for ERL)
system clock on every turn. The packing of data is:

bit 0: hardware trigger O

bit 1: hardware trigger 1

bit 9..2: command (bit 9=MSB, bit 2=LSB)

bit 18..10: vertical phase data (bit 18=MSB, tLSB)
bit 27..19: horizontal phase data (bit 27=MSB 11§l SB)

A signal will be provided to the DSP every time GBAL_TURN_DAT is updated. The DSP may need
to examine trigger bits or the command word, amday need to store the phase data.

TOD_SECONDS 0X10040006 (dec=268697606)

This register holds a 17-bit counter that is inceated once per second. It can provide a time-of-day
timestamp. The current time can be written to tagister, and should be written at least once pgr as
well as whenever power is cycled.

This register is currently decoupled from the GLABAURN_CNT register and does not change when
the GLOBAL_TURN_CNT in all modules is synchronized.

SEMAPHORE 0X10040007 (dec=268697607)

This register is used to provide a semaphore todguasdtical sections' for xbus vs. dsp access. Whe
read, it will return its current state. The act@dding it will change its state to '1'. The actwiting to it
will change its state to '0". If a '0' is read ttimaicates that the semaphore was free, anchiivs owned
by the reader. If a '1' is read, that indicates tthe semaphore was already owned, and the rehdeids
try again.

DIMM_RESET 0X10040008 (dec=268697608)
This register controls the /DIMM_RESET pin to theMM module on the auxiliary 1/0 board. If data bit
DO is zero, the reset signal is asserted. Thisdtop DIMM. When data bit DO changes to a one, the

DIMM booting and configuration process begins.

When the board is initialized (power-up or fronhphpushbutton), data bit DO will be set to oneisTh
differs from the DSP_RESET, which is set to zero.

UNUSED 0X10040009 (dec=268697609)
UNUSED 0X1004000A (dec=268697610)

UNUSED 0X1004000B (dec=268697611)
UNUSED 0X1004000C (dec=268697612)
UNUSED 0X1004000D (dec=268697613)
UNUSED 0X1004000E (dec=268697614)
UNUSED 0X1004000F (dec=268697615)

These registers may be defined in the future.

BUNCH_PATTERN_A 0X10040010 (dec=268697616)
BUNCH_PATTERN_B 0X10040011 (dec=268697617)
BUNCH_PATTERN_C 0X10040012 (dec=268697618)
BUNCH_PATTERN_D 0X10040013 (dec=268697619)
BUNCH_PATTERN_E 0X10040014 (dec=268697620)
BUNCH_PATTERN_F 0X10040015 (dec=268697621)

These 6 registers hold the bunch pattern.

CESR: The revolution time of CESR is divided inB81slots that are spaced 14 nsec apart. To stere th
data for a particular slot, a ‘1" is programmeditie BUNCH_PATTERN register. No data is stored
when the register value is ‘0. The first 5 registare 32-bit and the 6th is 23 bits.

ERL: The “revolution” time of the ERL is dividedtm 122 slots that are spaced 20 nsec apart. Te stor
the data for a particular slot, a ‘1’ is programnieid the BUNCH_PATTERN register. No data is stored
when the register value is ‘0". The first 3 registare 32-bit and the 4th is 26 bits.

These registers must be loaded prior to collealag. Their contents will be used to initializeaege
shift register.

The LSB of BUNCH_PATTERN_A will control storage tife first slot after the turn marker. Higher bits
control slots that occur later in time. Notice tttet LSB of BUNCH_PATTERN_ Aloes not correspond
to “train 1, bunch 1”. The user must start withadt@rn that has “train 1 bunch 1” in the first lboa,

then rotate that pattern until the ‘train 1 bunébit matches the arrival time of “train 1 bunchat’'a

given detector, relative to the time that the tonarker arrives at the same detector. A timing catibn
routine should be provided which can determineaiygropriate shift at a given detector.

ADC_MEM_FIRST 0X10040016 (dec=268697622)

This register holds the initial memory addressaioracquisition sequence. This address will be ldade
into the address counter at the start of everyiaitmun sequence.

The address counter is a 19-bit counter that gessraemory addresses. This register also hold$t4.9 b

ACQ_TURN_REQ 0X10040017 (dec=268697623)

This register holds the requested number of twietacquired. This count will be loaded into the
acquisition turn counter at the start of every asitjan block.

The acquisition turn counter is a 20-bit counteat tontrols how many turns of data are stored in
memory. The counter will initially be loaded fronC®_ TURN_REQ. It will decrement every time a

turn marker arrives (unless ACQ_SKIP_CNT is nobzeWhen the counter has decremented to zero, the
acquisition sequence is finished.

Remember that more than one data point can beradgoér turn (up to 183 for CESR and 122 for ERL).
To avoid memory address wrap-around, be sure liegttoduct of ACQ_TURN_REQ time the number
of ‘1's in the BUNCH_PATTERN is less than 512k.

ACQ_SKIP_CNT 0X10040018 (dec=268697624)
This function has not been implemented yet

This register controls how many turns are skippest between turns that are stored in memory.anis
8-bit register, allowing up to 255 turns to be gdg. It is initialized to zero, meaning that nontuare
skipped. A skip count value of 1 means that eveéhgioturn is stored. This is a different meaningntin
the ' generation of DSP-based BPMs.

TURN_MARK_DELAY 0X10040019 (dec=268697625)

This register controls the arrival time of the tanarker used by the acquisition logic. A ‘0’ spesf
‘normal’ arrival time, while a ‘1’ specifies ‘delag’ arrival.

The turn marker is synchronous to the 24 MHz CEBRBke(25 MHz ERL) extracted from the coax
timing cable. The turn marker is used in logic tisadynchronous to the ADC clock. However, the gela
setting of the ADC clock can be anywhere in a lekcngVindow (20 nsec ERL), resulting in a possible
situation where the setup and hold times of tihe toarker relative to the ADC clock are not metisTh
register provides a way to shift the time thatgb&ip and hold is not met by 7 nsec for CESR arsHe
for ERL. Some testing will need to be performedécide what range of the global delay can be safely
used with each setting of the TURN_MARK_DELAY.

ADC_CLOCK_CONTROL 0X1004001A (dec=268697626)

This register is present only on the BPM modulestber modules that use a 2-channel ADC card with
independent clocking. It does not exist on the BEMA modules, nor on other modules that use 8-
channel ADC cards with ganged clocking.

This register is used to select which ADC cloclkesithe Xilinx electronics, and to set the clockgh
for clocking the data from the ADCs into the ADQaleegisters and then writing the data to memory.

The timing card generates two ADC clocks, and thesp of each clock relative to the fixed incoming
CESR clock can be set independently on the timard.cThe data from each ADC is then clocked into a
register. Finally, the data from both registeraiigten to memory. The timing of clocking the datto

the registers and writing the data to memory caadyested in ¥ period intervals. The trick is tocbe

one of the ADC clocks and the appropriate settonghe register and memory timing so that all setup
and hold times are met.

This register is divided into the following bit fiks:
bits 1..0 = ADCO_REG_CLK:

Selects one of four delay settings relative todesen ADC clock for clocking data from ADC
#0 into the data register. With a 72 MHz CESR samate, each increment in the settings of
these bhits represents an additional delay of 36.14/ith a 50 MHz ERL sample rate, each
increment in the settings of these bits represemisdditional delay of 5.0 nsec.

bits 3..2 = ADC1_REG_CLK

Selects one of four delay settings relative todesen ADC clock for clocking data from ADC
#1 into the data register. With a 72 MHz CESR sa&mate, each increment in the settings of
these bits represents an additional delay of 326.n#/ith a 50 MHz ERL sample rate, each
increment in the settings of these bits represemisdditional delay of 5.0 nsec.

bits 5..4 = MEM_WR_CLK

Selects one of four delay settings relative todiesen ADC clock for writing data from both
ADC data registers into the memory. With a 72 MHZSR sample rate, each increment in the
settings of these bits represents an additionalyd®i 3.5 nsec. With a 50 MHz ERL sample rate,
each increment in the settings of these bits reptesan additional delay of 5.0 nsec.

bits 6 = ADC_CLK_SEL
Chooses which ADC clock is the master clock focking data into the ADC data registers and
writing it to memory. A value of ‘0’ corresponds ADC #0 and timing card block ‘A’. A value

of ‘1’ corresponds to ADC #1 and timing card bloBk

Refer to the section detting the ADC_CLOCK_CONTROL Register for examples of how to set up this

register.
RESERVED 0X1004001B (dec=268697627)
RESERVED 0X1004001C (dec=268697628)
RESERVED 0X1004001D (dec=268697629)
ACQ_TURN_CNT 0X1004001E (dec=268697630)

This is a read-only register that shows the cuvahie of the acquisition turn counter. Since tira t
counter counts backwards, the number of turns @&f ilamemory can be calculated by subtracting the
value of ACQ_TURN_CNT from the initial value speed in ACQ_TURN_REQ.

NEXT_MEM_ADR 0X1004001F (dec=268697631)

This is a read-only register that shows the mentmrgtion where the next sample will be stored.

TEMPERATURE_CSR 0X10040020 (dec=268697632)

This register controls the readout of the AD78Imgerature chips. Writing any data to this registiir

initiate reading of the serial data from all sixpsh Bit O of this register will be a ‘1’ while saf data is

being transferred from the temperature chips. @nedransfer is complete, bit O will change back to
‘0’. This will indicate that the data is stable arah be read from the individual temperature regsst

The readout time from the AD7814 chip is about @cusince the DSP can access data more quickly
than that, the DSP should check the status bitegsrs from the XBUS are slow enough so that the dat
will be ready by the time one tries to access it.

ANA_O_TEMPERATURE 0X10040021 (dec=268697633)
ANA_1_TEMPERATURE 0X10040022 (dec=268697634)
ANA_2_TEMPERATURE 0X10040023 (dec=268697635)
ANA_3_TEMPERATURE 0X10040024 (dec=268697636)
TIMING_TEMPERATURE 0X10040025 (dec=268697637)
DIGITAL_TEMPERATURE 0X10040026 (dec=268697638)

These read-only registers contain the data read fhe AD7814 temperature chips. The data is insunit
of 0.25 degrees centigrade. It is assumed thatthperature will never be below 32 degrees F, iso th
number will always be positive.

MODULE_TYPE 0X10040027 (dec=268697639)

MAJOR_REV
MINOR_REV

0X10040028
0X10040029

(dec=268697640)
(dec=268697641)

These are read-only registers that show the typéliof code that is running on a module, as weslitlae
major and minor revision numbers. For this document

MODULE_TYPE
=1BSM
=2 BPM
=3 FLM
=4 FLMA
=5 ERL_BPM

MAJOR_REV =5
MINOR_REV =4

These values are defined in a ‘Constants.txt'tfil is included by the main Verilog program foclea

product type. They should correspond to notesarfite “VersionChanges.txt”

RESERVED 0X1004002A (dec=268697642)
RESERVED 0X1004002B (dec=268697643)
RESERVED 0X1004002C (dec=268697644)
RESERVED 0X1004002D (dec=268697645)
RESERVED 0X1004002E (dec=268697646)
RESERVED 0X1004002F (dec=268697647)
CUR_MON_STAT 0X10040030 (dec=268697648)
CUR_MON_WR_DAT 0X10040031 (dec=268697649)
CUR_MON_WR_ADR 0X10040032 (dec=268697650)
CUR_MON_RD_ADR 0X10040033 (dec=268697651)
CUR_MON_RD_DAT 0X10040034 (dec=268697652)

The current monitor board interface uses indirddrassing to access data within the current monitor
chip. First, the program must read from the CUR_M@GNAT register to be sure that the serial link from
the DSP board to the current monitor board is idiel is not in a timeout error condition. A valifét)
(‘Ox00000000’) indicates that the interface is netmlreceive commands and/or data. A value of '1'
(‘Ox00000001") indicates that the interface is huswalue of -32768' (‘0xffff8000’) indicates that
timeout has occurred.

If the interface is busy, any data written to tHéRC MON_WR_DAT, CUR_MON_WR_ADR, or
CUR_MON_RD_ADR registers will be ignored. Data réamm the CUR_MON_RD_DAT register will
be undefined.

If a timeout has occurred, the only way to clearélror code and re-enable the interface is teevarit
value of ‘-1’ (Oxffffffff) to the CUR_MON_STAT regiter. This will reset all of the logic on the DSP
board side of the current monitor board interfadee timeout time is about 2.5 usec. A timeout is a
serious condition that requires investigation.

Do not confuse the CUR_MON_STAT register with tHe&RCregister on the current monitor board. The
CUR_MON_STAT register is solely concerned with teenmunications link to the current monitor
board.

To write data, the data is written to the CUR_MONRWDAT register. The destination address is then
written to the CUR_MON_WR_ADR register. The setiahsfer will then start and the BUSY bit in the
CUR_MON_STAT register will be set. When the transecomplete, the BUSY bit will be cleared.

To read data, the destination address is writteheadCUR_MON_RD_ADR register. The serial transfer
will then start and the BUSY bit in the CUR_MON __ ST Register will be set. When the transfer is
complete, the BUSY bit will be cleared. The data tte&en be read from the CUR_MON_RD_DAT
register.

Any operations that write to the CUR_MON_WR_DAT, RUIMON_WR_ADR, and
CUR_MON_RD_ADR registers will be ignored if theantace is busy.

Addresses written to the CUR_MON_WR_ADR and CUR_M®®_ADR registers are 8-bit. All data
written to the CUR_MON_WR_DAT register will be treated at 16-bits. All data read from the
CUR_MON_RD_DAT register will be 16-bit data thatsign-extended to 32-bits.

Setting the ADC_CLOCK_CONTROL Register

There are a few correct settings for the ADC_CLOCRKNTROL register and the registers on the timingrdp
there are a great many incorrect settings. Thekeljues will help you to do things correctly. Thase divided
into single ADC vs. dual ADC cases.

For all casesset the 8 card delay registers on the timingdht@aa center value of 700. Then limit excursians t
the range of 600 to 800. This will allow for +/n%ec. adjustment for cable and card delay mismstd¢hgou go
beyond this range then you will end up clockingadato a register or writing data to memory when dlata is
changing, resulting in invalid data.

Single ADC

Set the ADC_CLK_SEL bit (bit 6) to ‘0’ if you arentrolling the conversion time with ‘Block A’ from
the timing card. Set the ADC_CLK_SEL bit to ‘1'yibu are using ‘Block B’ from the timing card.

Set the ADCO_REG_CLK bits (bits 1..0) and/or ADCE® CLK bits (bits 3..2) to binary ‘11". This
will cause the ADC data to be clocked into the sesgiabout 1.5 nsec before the ADC clock goes high.
With the +/- 1 nsec range for the individual cattig, setup and hold times of the data registerakiys
be met.

Set the MEM_WR_CLK bits (bits 5..4) to binary ‘00'.

The final result is to write the binary pattern0@.11’ for ‘Block A’ timing or ‘1001111’ for ‘BlockB’
timing.

Dual ADC

To be written

Interrupts

Various signals in the Xilinx chip are connectedrtierrupt lines on the DSP. The DSP can be condigitio
actually generate interrupts when these signalasserted, or it can simply examine the statee&ipnal. If
interrupts are being generated, the lowest priagnigrrupt is IRQO and the highest is IRQ3. Theestd the
interrupt signal can be observed in the DSP’s IlrAgister. If the interrupt is edge-sensitive, tigmal observed
in the ILAT register can be cleared by writing 4td the corresponding bit in the ILATCL registéevel
sensitive interrupts should be cleared by remotlieginterrupting condition. Edge vs. level sendiiis
determined by the DSP’s SQCTL register.

Enabling of interrupt generation is controlled hg DSP’s IMASK and PMASK registers. Bit 60 of tMASK
register needs to be set as well to enable anyaaedinterrupts.

IRQO
Not connected. Associated with bit 41 of the DIBAT/IMASK/PMASK registers.

IRQ1
This interrupt is connected to the ACQ_DONE bitlef DATA_ACQ register. It will be asserted when
data collection is finished. This interrupt is asated with bit 42 of the DSP’s ILAT/IMASK/PMASK
registers.

IRQ2
This interrupt is connected to the ‘turn_mark’ sifjim the Xilinx chip. It will be asserted for 43ec
when the turn marker arrives. A new value for GLOBAURN_DAT is then available. This interrupt is
associated with bit 43 of the DSP’s ILAT/IMASK/PMKSegisters.

IRQ3

Not connected. Associated with bit 44 of the DIPAT/IMASK/PMASK registers.

Auxiliary I/O Card LEDs and Connectors

There are nine LEDs on the front of the auxilidy tard. Starting near the power connector ankeaposition
closest to the circuit board, the LEDs indicate:

+4 Volt DC Power OK
+5 Volt DC Power OK
+12 Volt DC Power OK

Turn Marker Detected
-5 Volt DC Power OK
+2 Volt DC Power OK

DSP Activity Detected
Xbus Activity Detected
ColdFire (Ethernet) Activity Detected

Local Bus Masters

There are several devices which can be “bus mastetfie local address and data bus. Arbitratioitlagthin the
XILINX chip, along with the /HBR and /HBG signals éhe DSP, is used to determine which device has bu
ownership at any instant. The potential bus masters

DSP

XBUS Controller

Ethernet ColdFire controller
FLASH Programmer

ColdFire Programming
Base address = 0x80000000

The ColdFire 'dimm' is a 1-byte oriented machinkilevthe BPM/BSM/FLM modules are 4-byte (32-bit wapr
oriented machines. The two LSBs of the 'dimm_aals' Will specify the byte within a 4-byte word. Toeldfire is
"big-endian”, so when a 32-bit word is moved over 8-bit bus, the MSB goes with byte address 10@'the LSB
goes with byte address '11'. The address map sette IColdFire is:

Adr BinAdr Register

00 0000xx fix_adr32
04 0001xx fix_dat32
08 0010xx inc_adr32
oC 0011xx inc_dat32
10 0100xx fix_adrl6
14 0101xx fix_datl6
18 0110xx inc_adrl6
1C 0111xx inc_datl6
20-3C reserved

The programmer needs to write the address of thé/BBM/FLM location that he wants to access to ofithe 4
"adr" registers. He then reads from or writes ®dksociated "dat" register to transfer data. Tdeess to use is
that of the 4-byte entity (use the same addressubald be used by the XBUS or the DSP)

If the programmer is using a register with the "fiat" name, the BPM/BSM/FLM address will remairnhegt
value that he last programmed. If the programmaesisg a register with the "inc_dat" name, the BBSWI/FLM
address will be incremented by 1 at the end obfieration. So to read from a series of consecutive
BPM/BSM/FLM locations, the programmer would writetinitial address to the "inc_adr" register, then
repeatedly access the "inc_dat" register to getithe. To read over and over again from the sameas, like for
testing a status bit, the programmer would writedbsired address to the "fix_adr" register, tegeatedly
access the "fix_dat" register to get the data.

The registers that end with "32" are used to teméfbyte data to and from BPM/BSM/FLM locationgdisters
that end with "16" are used to transfer the 2 loldges of a BPM/BSM/FLM location. Remember that Atlata
in the BPM/BSM/FLM is 32-bit data, but if you anest reading raw ADC values, there is no need tdevas
bandwidth moving a bunch of zeros around.

The DIMM module needs to be configured for TCP/lecations. The TCP/IP parameters are initialingth
environment variables and then used by the 'rtesmanm function. The board must be configured bygsi
appropriate values in the following set of commands

setenv HOSTNAME klybpm08
setenv IPADDRO 192.168.7.118

setenv GATEWAY 192.168.7.1 luse 172.17.0.1 fot.ERbnet
setenv NETMASK 255.255.255.0 ! use 255.255.0.(Hf&tL. subnet
setenv SERVER 192.168.1.80 I BOOTP server?

setenv NAMESERVER 128.84.47.200 lor 128.84.46.26

setenv NTPSERVER 128.84.46.17 1 or 128.84.46.2628:84.46.181

setenv NFSMOUNT Inx180c:/mnt/instr:/mnt/instr !r@er:Path:MountPoint
And if you are supporting EPICS:

setenv CMDLINE /mnt/instr/epics/example/iocBoottiest/st.cmd
setenv BOOTFILE /mnt/instr/epics/example/bin/RTEMG5282/test.boot

To compile and download a program to the ColdReg the Twiki entry at:

https://wiki.lepp.cornell.edu/lepp/bin/view/CESRi&th/RTEMS

Accumulator Programming

ANALOG CARD 0

ADR 0x0A000000 (dec=167772160)
CSR 0x0A000001 (dec=167772161)
LO_DAT 0x0OA000002 (dec=167772162)
HI_DAT 0XOA000003 (dec=167772163)

ANALOG CARD 1
ADR 0x0A400000 (dec=171966464)
CSR 0x0A400001 (dec=171966465)
LO_DAT 0x0A400002 (dec=171966466)
HI_DAT 0x0A400003 (dec=171966467)

ANALOG CARD 2
ADR 0xOA800000 (dec=176160768)
CSR 0x0A800001 (dec=176160769)
LO_DAT 0x0A800002 (dec=176160770)
HI_DAT 0X0A800003 (dec=176160771)

ANALOG CARD 3
ADR 0xOAC00000 (dec=180355072)
CSR 0xOAC00001 (dec=180355073)
LO_DAT 0XOAC00002 (dec=180355074)
HI_DAT 0XOAC00003 (dec=180355075)

Each accumulator card has 4 registers. The regiatees and the offset from the base address fortezard are;

0= ADR
1=CSR
2 =LO_DAT
3 = HI_DAT

The accumulator boards use indirect addressingdesa data within the accumulator chip. The addrest be
written to the ADR register, after which data cawritten to the LO_DAT register or read from th@ LDAT

and HI_DAT registers. All data transfers are 16-Alt write operations are only 16 bits. Some repérations are
16 bit while others are 32 bits. For the 32 bitesashe high 16 bits will be latched when the |d@abits are read,
and can be accessed from the HI_DAT register.

NOTE: AUTO-INCREMENT HAS NOT BEEN IMPLEMENTED YETWhen using the auto-incrementing
mode, one first writes the initial address to tHgRAregister, then repeatedly reads or writes theDAT register.
The address *always* gets incremented after adoetbe low data register. If 32-bit data is beirgd, the
HI_DAT register should be read after the LO_DATistgy.

Up to 4 accumulator boards can be used in a sy§aoh board has a 2 pin ID header that is useettihe board
address. When writing to the ADR register, the evaperation happens all accumulator boards. All other
operations (read ADR, read/write CSR, LO_DAT, HI_DAnvolve only one board. The two MSBs writterthe
ADR register must match the ID header to selearsiqular board. The remaining 14 bits in the AQHgister are
use to access some resource on the selected Bbisdesults in a 16k address space per board.

The accumulator chip can be read from or writtewlile data is being collected in the ADC memorgaRout of
the ADC memory or the accumulator can be intergakers

CSR

offset=1

This register controls or monitors overall openatid the accumulator chip. It is a 16-bit regigteat can
be written or read.

bit 0 = Nreset: This bit will power up low (asset}elt must have a '1' written to it to take the
chip out of the ‘reset’ mode.

bit 1 = Nsetup: This bit will power up low (asseftelt must have a '1' written to it to take the
chip out of the ‘setup’ mode.

The intended use of these bits is that they willigltly both be zero. The programmer will set tinréset’
bit to one and then proceed to configure the cipragramming the lookup table and setting theorai
registers. When the programmer is ready to stdlgatng data, the ‘Nsetup’ bit will also be setdpe.
This causes all of the various state machines aundters to start together.

ACCUMULATOR ADDRESS MAP

1 sector of 4096 addresses
Decode ADR[13:12] Pass ADR[11:0]

Start End Size Function
0x0000 {dec=0} OxOfff {dec=4095) 4096 Hit Lookup bl (Read/Write)

Block 0 contains the 4k-by-2 bit Hit Lookup tableis implemented as a dual-port memory,
where one port provides read/write access foriliiing and verifying the data and the other
port is used to determine how many photons havenaitetector based on a combination of
high and low threshold signal comparisons. Whetingito it, data bits [1..0] contain the data
to be stored. Data bits [15..2] are discarded. Whading, data bits [1..0] will contain the stored
value. Data bits [15..2] will always read as zeroes

The address used for looking up the hit count isvdd from 6 ‘lo_hit’ channels (address bits
[11..6]) and 6 ‘hi_hit’ channels (address bits@.. If one wishes to only use the first 6 'hi_hit'
channels, then the lookup table only needs to Havéirst 64 locations programmed. The ‘Hit
Mask Register’ would be programmed as 0x007d. Reféne discussion about the Hit Mask
Register later in this document to see the deshitait the mapping between ADC channels and
lookup table address bits.

16 sectors of 256 addresses
Decode ADR[13:8] Pass ADR[7:0]

Start End Size Function
0x1000 {dec=4096} Ox1fff {dec=8191} 4096 16-bit R/@ontrol Registers

0x1000 {dec=4096} ADC 0 Pedestal
0x1001 {dec=4097} ADC 0 Low Threshold
0x1002 {dec=4098} ADC 0 High Threshold
0x1003 {dec=4099} Unused

0x1004 {dec=4100} ADC 1 Pedestal
0x1005 {dec=4101} ADC 1 Low Threshold
0x1006 {dec=4102} ADC 1 High Threshold
0x1007 {dec=4103} Unused

0x1008 {dec=4104}
0x1009 {dec=4105}
0x100A {dec=4106}
0x100B {dec=4107}
0x100C {dec=4108}
0x100D {dec=4109}
0x100E {dec=4110}
0x100F {dec=4111}
0x1010 {dec=4112}
0x1011 {dec=4113}
0x1012 {dec=4114}
0x1013 {dec=4115}
0x1014 {dec=4116}
0x1015 {dec=4117}
0x1016 {dec=4118}
0x1017 {dec=4119}
0x1018 {dec=4120}
0x1019 {dec=4121}
0x101A {dec=4122}
0x101B {dec=4123}
0x101C {dec=4124}
0x101D {dec=4125}
0x101E {dec=4126}
0x101F {dec=4127}

0x1100 {dec=4352}
0x1101 {dec=4353}
0x1102 {dec=4354}
0x1103 {dec=4355}
0x1104 {dec=4356}
0x1105 {dec=4357}
0x1106 {dec=4358}
0x1107 {dec=4359}
0x1108 {dec=4360}
0x1109 {dec=4361}
0x110A {dec=4362}
0x110B {dec=4363}

0x1200 {dec=4608}
0x1201 {dec=4609}

0x1300 {dec=4864}
0x1301 {dec=4865}

0x1400 {dec=5120}
0x1401 {dec=5121}

0x1500 {dec=5376}
0x1501 {dec=5377}

0x1600 {dec=5632}
0x1601 {dec=5633}

0x1700 {dec=5888}
0x1701 {dec=5889}

ADC 2 Pedestal

ADC 2 Low Threshold
ADC 2 High Threshold
Unused

ADC 3 Pedestal

ADC 3 Low Threshold
ADC 3 High Threshold
Unused

ADC 4 Pedestal

ADC 4 Low Threshold
ADC 4 High Threshold
Unused

ADC 5 Pedestal

ADC 5 Low Threshold
ADC 5 High Threshold
Unused

ADC 6 Pedestal

ADC 6 Low Threshold
ADC 6 High Threshold
Unused

ADC 7 Pedestal

ADC 7 Low Threshold
ADC 7 High Threshold
Unused

Bunch Pattern Register, (bunchi1a0])
Bunch Pattern Register, (bunci{3{al6])
Bunch Pattern Register, (bunci{4@a32])
Bunch Pattern Register, (bunci{63248])
Bunch Pattern Register, (bunci{78264])
Bunch Pattern Register, (bunci{95280])
Bunch Pattern Register, (buncl{14:96])
Bunch Pattern Register, (bunci{12a:112])
Bunch Pattern Register, (bunci{148:128])
Bunch Pattern Register, (bunci{158:144])
Bunch Pattern Register, (bunch[1¥®:160])
Bunch Pattern Register, (bunct{184.:176])

Hit Mask Register
Force Hi Hit Register

Bunch Rate Low Period Register
Bunch Rate High Period Register

Fast Global Rate Low Period Riggis
Fast Global Rate High Period Reyi

Slow Global Rate Low Period Régyis
Slow Global Rate High Period Rtei

Geo Global Rate Low Period Regist
Geo Global Rate High Period Reygis

Geo Bunch Rate Low Period Registe
Geo Bunch Rate High Period Regist

Block 1 contains 16-bit control registers. Eachstey can be read or written.

NOTE: The data from the ADCs is first inverted battall numbers are positive, a small
amplitude is near zero, and a large amplitude & 68000. The 12-bit ADC data is left-shifted
to occupy bits [15:4]. Pedestals and thresholdsraeged similarly.

ADC Pedestal registers contain a number that igacied from the ADC data. It is a 16-bit
unsigned number, but only the 12 MSBs are usdtielfesult would be less than zero, it is
clipped at zero. All bits are cleared to ‘0’ whéwe tNreset’ bit in the CSR is zero.

ADC Low Threshold and ADC High Threshold registeositain numbers that the pedestal
corrected ADC data is compared with. It is a 16dbisigned number, but only the 12 MSBs are
used. The comparison is “greater than or equalAth’bits are cleared to ‘0’ when the ‘Nreset’
bit in the CSR is zero.

Bunch Pattern Registers are used to enable orldipatcessing of every™RF bucket (14
nsec.). Itis a 16-bit number, but the last registdy uses the 7 LSBs. There are 183 possible
bunches specified in bunch_pat[182:0]. A ‘1’ iniagdwsition enables processing of that bunch
while a ‘0’ disables it. All bits are preset to When the ‘Nreset’ bit in the CSR is zero.

The Hit Mask Register is used to specify which AEs producing valid data to be used in
forming the address for the Hit Lookup Table anddounting geometric channel rates. Only
ADC channels 1 thru 6 are used to generate theeasldFhe other 2 channels (0 and 7) have
signals that are not part of the lookup processyTdre still part of the 'hit_mask'. Bits [7..0]
enable use of the High Threshold comparison whike[h5..8] enable use of the Low Threshold
comparison. All bits are preset to ‘1’ when theéNet’ bit in the CSR is zero. The logic for
creating the lookup table address is:

always @(posedge clk) begin
if (bunch_en) begin
hit_Ikup_adr[0] <= hi_hit[3] & hit_mask[3];
hit_lkup_adr[1] <= hi_hit[6] & hit_mask[6];
hit_lkup_adr[2] <= hi_hit[2] & hit_mask[2];
hit_lkup_adr[3] <= hi_hit[5] & hit_mask[5];
hit_lkup_adr[4] <= hi_hit[1] & hit_mask[1];
hit_lkup_adr[5] <= hi_hit[4] & hit_mask[4];

hit_Ikup_adr[6] <=lo_hit[3] & hit_mask[11];
hit_Ikup_adr[7] <=lo_hit[6] & hit_mask[14];
hit_Ikup_adr[8] <=lo_hit[2] & hit_mask[10];
hit_Ikup_adr[9] <=lo_hit[5] & hit_mask[13];
hit_Ikup_adr[10] <= lo_hit[1] & hit_mask[9];
hit_Ikup_adr[11] <= lo_hit[4] & hit_mask[12];

end

else
hit_Ikup_adr <= 12'h000;

end

The Force Hi Hit Register allows one to always éotiee result of the High Threshold
comparison to be true ONLY for Geo Global Rate daid Geo Channel Rate data. It is useful
for testing. Bits [7..0] force the correspondin@uhel. Bits [15..8] are unused. All bits are
cleared to ‘0’ when the ‘Nreset’ bit in the CSRz&o.

The various Rate Period Registers control the duratf the sample period for a rate
measurement. The period is specified in units eérfd¢urn time’ (2.56 usec). The underlying

counters are 22-bit counters, so the maximum ggii2**22 x 2.56 usec = 10.7 seconds. The
16 LSBs are specified in the various Low PeriodiRegs, while the 6 MSBs are specified in
the various High Period Registers. The number wfstwritten to the rate registers must be 1
less than the number of turns in the desired pefliodyet a period of 1 second (390320 turns)
program a value of ‘5’ in the High Period Registed a value of ‘62639’ in the Low Period
Register. [390320 — 1 = 390319 = 0x5f4af, therefbeeHigh Period Register = 0x05 =5 and
the Low Period Register = Oxf4af = 62639]

Block 2: 16 sectors of 256 addresses
Decode ADR[13:8] Pass ADR[7:0]

Start End Size Function
0x2000 {dec=8192} 0x2fff {dec=12287} 4096 32-bit RaRegisters (Read Only)

0x2000 {dec=8192} 183 Bunch Rate Data

0x2100 {dec=8448} 1 Fast Global Rate Data
0x2200 {dec=8704} 1 Slow Global Rate Data
0x2300 {dec=8960} 8 Geo Global Rate Data (8 ch#ihunches)

0x2800 {dec=10240} 183 Geo Channel 0 Rate Data
0x2900 {dec=10496} 183 Geo Channel 1 Rate Data
0x2A00 {dec=10752} 183 Geo Channel 2 Rate Data
0x2B00 {dec=11008} 183 Geo Channel 3 Rate Data
0x2C00 {dec=11264} 183 Geo Channel 4 Rate Data
0x2D00 {dec=11520} 183 Geo Channel 5 Rate Data
0x2E00 {dec=11776} 183 Geo Channel 6 Rate Data
0x2F00 {dec=12032} 183 Geo Channel 7 Rate Data

Block 2 contains 32-bit Rate Data registers. Eagfister is read-only. To read any given Rate
Data register, setup the ADR register with the adsliof the desired Rate Data register. Read
from the LO_DAT register to get the 16 LSBs. Thead from the HI_DAT register to get the
16 MSBs. The resulting 32-bit number contains thant in the lower 20 bits and a sample tag
in the upper 12 bits. Analysis code will need tpasate these two numbers.

The 12-bit sample tag is incremented at the erehoh sample period. The value will wrap
around to zero when it exceeds 4095. Each of fRatéd Period Registers drives its own sample
tag, so they do not necessarily all count in loggsirder. The sample tags will be reset to zero
when either ‘Nreset’ or ‘Nsetup’ in the CSR is axe

Block 3: 1 sector of 4096 addresses

Start End Size Function
0x3000 {12288} 0x3fff {16383} 4096 Reserved

Nothing is implemented in block 3.
SAMPLE COMMAND FILES TO ACCESS THE ACCUMULATOR BOAR

[cesr.cesrbpm.6048 113]accum_csr_wr.com

$! Write to the accumulator CSR and then read BAEKC card 0 only)
$! do accum_csr_wr accum_csr_dat

$! accum_csr_dat in decimal

$! crs 12/22/05

$!

$ wo = "write sys$output”

$! set up the address register

$ fff vxputn cbpm adr tst 1 1 167772160
$! write to the csr register

$ fff vxputn cbpm adr tst 1 1 167772161
$ fff vxputn chpm dat tst 1 1 'p1

$! read the CSR register

$ fff vxgetn cbpm dat tst 1 1

[cesr.cesrbpm.6048 113]Jaccum_wr.com

$! Write a 16-bit word to an accumulator locati®®D(C card O only)
$! do accum_wr accum_adr accum_dat
$! accum_adr and accum_dat in decimal
$! crs 12/22/05

$!

$ wo = "write sys$output"

$! set up the address register

$ fff vxputn cbpm adr tst 1 1 167772160
$ fff vxputn chpm dat tst 1 1 'p1

$! write to the lo_dat register

$ fff vxputn cbpm adr tst 1 1 167772162
$ fff vxputn cbpm dat tst 1 1 'p2

[cesr.cesrbpm.6048_113]Jaccum_rd.com

$! Read a 16-bit word from an accumulator locai@BC card 0 only)
$! do accum_rd accum_adr

$! accum_adr in decimal

$! crs 12/22/05

$!

$ wo = "write sys$output"

$! set up the address register

$ fff vxputn cbpm adr tst 1 1 167772160
$ fff vxputn cbpm dattst 1 1 'pl

$! read from the lo_dat register

$ fff vxputn cbpm adr tst 1 1 167772162
$ fff vxgetn chpm dattst 1 1

[cesr.cesrbpm.6048_113]Jaccum_rd2.com

$! Read two 16-bit words from an accumulator adsl{@9DC card O only)
$! do accum_rd2 accum_adr

$! accum_adr in decimal

$! crs 12/22/05

$!

$ wo = "write sys$output”

$! set up the address register

$ fff vxputn cbpm adr tst 1 1 167772160
$ fff vxputn cbpm dattst 1 1 'pl

$loop:

$! read from the lo_dat register

$ fff vxputn cbpm adr tst 1 1 167772162
$ fff vxgetn cbpm dat tst 1 1

$! read from the hi_dat register

$ fff vxputn cbpm adr tst 1 1 167772163
$ fff vxgetn chpm dattst1 1

$ goto loop

%0%%%% %% % %% % %% %% %% %% % %% %% % %% % %% % %% % %% %% %% % %0 %% % % % Y REEE/6 % % %
BSM Current Monitor Programming

The amplifiers on the BSM ADC boards have an ifpas current between 20 and 40 uA. This corresptméds
signal between 1 and 2 mV at the input of the Gurkéonitor Board ADC which has a range of +/- 50nTWis 1
to 2 mV is the DC offset (temperature drift ~ 0.p&# degree). The signal we want to measure islD t0A, or
0.05 to 0.5 mV at the input of the Current MoniBward ADC (a fraction of the pedestal value). Thisneo
specific hardware limit on the current signal, hues only a broken channel should saturate the AIDS.
unlikely that over/under range testing is required.

Full scale: +/- 50 mV = +/- 1 mA = 16 bits (1 LSB1-526 uV = 30.52 nA)
Pedestal: +/- 1to 2 mV = +/- 20 to 40 uA (ADC dai55 to 1311)
Signal: 0.05t0 0.5 mV =1 to 10 uA (ADC dat =182328)

Current Monitor Address Map

Current RAM 0x00-0x1f (dec=0-31)
Pedestal RAM 0x20-0x3f (dec=32-63)
Limit RAM 0x40-0x5f (dec=64-95)
Total Current Limit Setting 0x60 (dec=96)
DACO Setting 0x61 (dec=97)
DAC1 Setting 0x62 (dec=98)
HV Readback 0x63 (dec=99)
Shutter Time Setting/Readback 0x64 (dec=100)
CSR (Control and Status Register) 0x65 (dec=101)
Shutter OverCurrent Cycles 0x66 (dec=102)
High Voltage OverCurrent Cycles 0x67 (dec=103)
Total Current 0x68 (dec=104)
Supervisor State Machine 0x69 (dec=105)
Current RAM 0x00-0x1f (dec=0-31)

This is a 16-bit by 32 dual-port memory. If the PRRAM/RUN bit of the CSR is at the PROGRAM
value, it contains the raw ADC value of the curremteach of the 32 channels. If the PROGRAM/RUN
bit of the CSR is at the RUN value, it contains tberected (pedestal subtracted) value. The ddté-kst
2's-complement format. Data is written to this meynoy the hardware and is read-only from the DSP.
If a High Voltage trip occurs, the data in this nagnwill be frozen at the values that caused the tr
Pedestal RAM 0x20-0x3f (dec=32-63)
This is a 16-bit by 32 dual-port memory. It contaihe pedestal (or zero current) value to be scisitia
from the measured current for each of the 32 cHanfe data is 16-bit 2's-complement format. Data
written to this memory by the DSP. If the PROGRANMIR bit of the CSR is in the PROGRAM state,
then the DSP can read back the memory conteritse Kit is in the RUN state, then the hardware has
read access and the DSP cannot read the data.
Limit RAM

0x40-0x5f (dec=64-95)

This is a 16-bit by 32 dual-port memory. It contathe limit value to be compared with the measiaredi
corrected current for each of the 32 channels.dgtta is 16-bit 2’'s-complement format. Data is writto
this memory by the DSP. If the PROGRAM/RUN bit bétCSR is in the PROGRAM state, then the
DSP can read back the memory contents. If thesliit ihe RUN state, then the hardware has reagscce
and the DSP cannot read the data.

Total Current Limit Setting 0x60 (dec=96)

This is a 16-bit register. It contains the limifwato be compared with the total measured ancected
current for all of the 32 channels. The data i9t&'s-complement format. Data can be writtenead
at any time by the DSP.

DACO Setting 0x61 (dec=97)
DAC1 Setting 0x62 (dec=98)

These are 14-bit unsigned registers, using bitsQL3rhey drive a Linear Technologies LTC1658 DAC,
which provides a 0 to 4.5 volt output. DACO is usedet the amplitude of the high voltage supply.
DAC1 is currently unused. When read from, the Vadtie that was written to the DACs is returned.

If a High Voltage trip occurs, the DACO registetivaie set to zero and that value will repeatedly be
written to the DAC. Readback of the DACO Settingister will give a value of zero. The
PROGRAM/RUN bit of the CSR needs to be set bachéd®ROGRAM state before new data that is
written to the DACO register will take effect.

HV Readback 0x63 (dec=99)

This is a 16-bit register. It contains the valueamged by the HighVoltage ADC. There is no pedestal
correction. The data is 16-bit 2's-complement fornData can be read at any time by the DSP. Theeval
in the HV register is updated approximately 6.8etsnper second.

Shutter Time Register 0x64 (dec=100)

This register provides a timer for BSM shutter apgnWhen written to, the input is a 16-bit unsigne
number that specifies the number of 10-turn pertbdsthe shutter is open. A value of 1000 willsau

the shutter to be open for 10000 turns (actualiylfy132 with roundup error). The 10-turn counser i
running asynchronously to the loading of datat $® possible that the counter will decrement alimos
immediately after the data is loaded. This wouleg runt period of less than 10 turns. An inputdsf
would give between 70 and 80 turns. The maximune tinat the shutter can be open is 655k turns. When
read from, the remaining time in the counter wéldeturned.

The shutter can be closed immediately by writingaie of zero. The shutter will also be closed when
the overcurrent detector finds an overcurrent diodi

Since this register uses an unsigned 16-bit nunsbeegative number will be read back if the current
value is between 32,768 and 65,535. This is duilkee®ign bit extension that the hardware supplies.
Values of 32,767 or less will be read correctly.

CSR (Control and Status Register) 0x65 (dec=101)
This register is divided into the following bit fiks:
bit 0 = PROGRAM/RUN:

This read/write bit controls the mode of operatidthe bit is a ‘0’, the system is in the
PROGRAM mode. If the bit is a ‘1", the system iglie RUN mode.

bit 5:1 = RESERVED:
These read/write bits are reserved for future \Wdeatever is written to them will be read back.
bit 6 = SHUTTER_OPEN:

This read-only bit shows the state of the conir@ that opens the shutter. If the bit is '0’ then
the shutter is supposed to be closed. If the bit' ishen the shutter is supposed to be open.

bit 7 = SHUTTER_OVERCURRENT:

This read-only bit indicates if the overcurrentteiion circuit closed the shutter. If the bit@’
then no overcurrent situation has been detectede Ibit is ‘1’, then an overcurrent situation has
been detected and the shutter has been closed.

Once an overcurrent situation has occurred, the GREAM/RUN bit must be set back to the
PROGRAM state to clear the error, and then to tb&lRtate to enable the protection.

bit 8 = SHUTTER_OVERCURRENT_CAUSE:

This read-only bit what type of overcurrent sitaatclosed the shutter. If the bit is '0’, then the
shutter was closed due to an overcurrent situamane of the channels. If the bit is ‘1’, then
the shutter was closed due to an overcurrent gtuan the total sum of all the channels.

bit 9 = HIGH_VOLTAGE_OVERCURRENT:

This read-only bit indicates if the overcurrenttetion circuit turned off the High Voltage by
setting the DAC to zero. If the bit is '0’ then nwercurrent situation has been detected. If the bit
is ‘1, then an overcurrent situation has beenaetkand the High Voltage has been turned off.

Once an overcurrent situation has occurred, the ®RAM/RUN bit must be set back to the
PROGRAM state to clear the error and enable wrigéimgw value to the DACO register. The
PROGRAM/RUN bit must then be set to the RUN statertable the protection.

bit 10 = HIGH_VOLTAGE_OVERCURRENT_CAUSE:

This read-only bit what type of overcurrent sitoatkilled the High Voltage. If the bit is '0’,
then the voltage was turned off due to an overotisituation on one of the channels. If the bit
is ‘1’, then the voltage was turned off due to aerourrent situation on the total sum of all the
channels.

bits 15:11 = OVERCURRENT_CHANNEL_NUM:

These 5 read-only bits contain the channel numb#teoADC that caused a
SHUTTER_OVERCURRENT trip. The data is only validif 7 is a ‘1. If bit 8 is a ‘0’, then
this is the first channel that had too much currHidiit 8 is a ‘1’, then this is the channel that
caused the accumulated total current to exceedalue of the Total Current Limit Setting.

Shutter OverCurrent Cycles 0x66 (dec=102)
This read/write register is used to specify how yneonsecutive cycles of an overcurrent situatiorstmu
occur before a SHUTTER_OVERCURRENT trip occurs eadses the shutter to close. Each cycle takes

about 140 milliseconds. The maximum value is 258as/

High Voltage OverCurrent Cycles 0x67 (dec=103)

This read/write register is used to specify how yneansecutive cycles of an overcurrent situatiorstmu
occur before a HIGH_VOLTAGE_OVERCURRENT trip occarsd causes the High Voltage to be
turned off. Each cycle takes about 140 millisecofdie maximum value is 255 cycles.

Generally one would program the High Voltage Overént Cycles register with a value that is larger
than the value programmed in the Shutter OverCugules register. That will cause the shutter to
close first, and the high voltage would be turnfdater if the overcurrent situation persisted.

Total Current 0x68 (dec=104)

This read-only register contains the total curadrdll 32 channels. If the PROGRAM/RUN bit of the
CSR is at the PROGRAM value, it contains the suthefraw ADC value of the current for all of the 32
channels. If the PROGRAM/RUN bit of the CSR ist&t RUN value, it contains the sum of the corrected
(pedestal subtracted) values. The data is 16-sit@mplement format. If a High Voltage trip occutse
data in this register will be frozen at the valthest caused the trip.

This register is subject to rollover and incorréata in the event of very large current valuethéf
average channel has a current reading of more#ha®00 units, the data in this register would be
suspect.

Supervisor State Machine 0x69 (dec=105)

This read-only register provides access to thersigme state machine. It shows the level of eaatest
bit. The correlation between bits in this registed the state of the supervisor is:

supv_state[0] = (mon_sm == init);
supv_state[1] = (mon_sm == readl);
supv_state[2] = (mon_sm == read?2);
supv_state[3] = (mon_sm == waitl);
supv_state[4] = (mon_sm == wait2);
supv_state[5] = (mon_sm == checkl);
supv_state[6] = (mon_sm == check?2);
supv_state[7] = (mon_sm == check3);
supv_state[8] = (mon_sm == check4);
supv_state[9] = (mon_sm == check5);
supv_state[10] = run_mode;
supv_state[11] = kill_hv_ff;

DSP Wait State Programming

The DSP can address 3 regions of external memdgy @re called “MS0”, “MS1”, and “MSH”. The linker
“LDF” file defines the boundaries of each regiomch region can have a specific number of wait stieDSP
operations. Reading and writing must both use &neesnumber of wait states. A logic analyzer was tge
examine all valid operations. The peripherals thatDSP can access and the minimum number of vedgssare:

Region “/MSQ”
rd ANA_MEM min waitstates = 1
wr ANA_MEM min waitstates = 0
wr ANA_REG min waitstates = 0

Region “/MS1”
rd SRAM min waitstates = 1
wr SRAM min waitstates = 1
rd FLASH min waitstates = 4 Il TOO SLOW

wr FLASH min waitstates = 10 ! TOO SLOW

Region “/MSH”
rd XIL MEM min waitstates = 3
wr XIL_ MEM min waitstates = 0
rd XIL_REG min waitstates = 2
wr XIL_REG min waitstates = 1
wr TIM min waitstates = 1

The DSP initially uses 3 wait states for all opierag. Without an external circuit to negate the ¥&Gignal on
the DSP and add wait states, 3 wait states is themum. As a result, the DSP cannot access the FLA8mory
from a program. It can access the FLASH correctigmvbooting, because it uses special internal lingicinserts
16 wait states. The number of wait states can bagdd by writing to the SYSCON register. The adslodghe
SYSCON register is defined in “defts101.h". A sréppf code that changes the number of waitstate$vf80”
and “MS1” from 3 to 1 is:

#include <defts101.h>

/* Set up the SYSCON register */

/* Configure 1 wait state for MSO and MS1, 3 waittes for MSH */
/* Configure slow protocol with idle cycles for aegments. */

/* *OR’ of all the bits yields 0x000278E3 */

int *syscon_reg = (int)SYSCON_LOC;

*syscon_reg =

SYSCON_MSH_SLOW | SYSCON_MSH_PIPE1 | SYSCON_MSH_W3$ISCON_MSH_IDLE |
SYSCON_MS1 _SLOW | SYSCON_MS1 PIPE1 | SYSCON_MS1 \W\SYSCON_MS1 _IDLE |
SYSCON_MSO0_SLOW | SYSCON_MSO0_PIPE1 | SYSCON_MS0_\WSYSCON_MSO_IDLE;

