
a

ADSP-TS101 TigerSHARC® Processor
Programming Reference

 Revision 1.1, February 2005

Part Number
82-001997-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2005 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-ICE, EZ-KIT Lite, SHARC,
TigerSHARC, the TigerSHARC logo, and VisualDSP++ are registered
trademarks of Analog Devices, Inc.

SuperScalar is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-TS101 TigerSHARC Processor Programming Reference iii

CONTENTS

PREFACE

Purpose of This Manual .. xvii

Intended Audience .. xvii

Manual Contents ... xviii

What’s New in This Manual ... xix

Technical or Customer Support ... xx

Supported Processors ... xx

Product Information .. xxi

MyAnalog.com .. xxii

Processor Product Information ... xxii

Related Documents ... xxiii

Online Technical Documentation ... xxiv

Accessing Documentation From VisualDSP++ xxv

Accessing Documentation From Windows xxv

Accessing Documentation From the Web xxvi

Printed Manuals ... xxvi

VisualDSP++ Documentation Set xxvi

Hardware Tools Manuals .. xxvi

CONTENTS

iv ADSP-TS101 TigerSHARC Processor Programming Reference

Processor Manuals ... xxvi

Data Sheets .. xxvii

Conventions .. xxviii

INTRODUCTION

DSP Architecture ... 1-6

Compute Blocks ... 1-8

Arithmetic Logic Unit (ALU) .. 1-9

Multiply Accumulator (Multiplier) 1-11

Bit Wise Barrel Shifter (Shifter) .. 1-11

Integer Arithmetic Logic Unit (IALU) 1-12

Program Sequencer ... 1-13

Quad Instruction Execution .. 1-15

Relative Addresses for Relocation 1-16

Nested Call and Interrupt ... 1-16

Context Switching .. 1-16

Internal Memory and Other Internal Peripherals 1-16

Internal Buses ... 1-17

Internal Transfer ... 1-18

Data Accesses ... 1-18

Quad Data Access ... 1-18

Booting .. 1-19

Scalability and Multiprocessing ... 1-19

Emulation and Test Support .. 1-20

ADSP-TS101 TigerSHARC Processor Programming Reference v

CONTENTS

Instruction Line Syntax and Structure .. 1-20

Instruction Notation Conventions ... 1-22

Unconditional Execution Support .. 1-23

Conditional Execution Support .. 1-24

Instruction Parallelism Rules ... 1-24

General Restriction .. 1-36

Compute Block Instruction Restrictions 1-37

IALU Instruction Restrictions .. 1-39

Sequencer Instruction Restrictions ... 1-45

COMPUTE BLOCK REGISTERS

Register File Registers .. 2-5

Compute Block Selection ... 2-7

Register Width Selection ... 2-8

Operand Size and Format Selection .. 2-10

Registers File Syntax Summary ... 2-13

Numeric Formats .. 2-16

IEEE Single-Precision Floating-Point Data Format 2-16

Extended Precision Floating-Point Format 2-19

Fixed-Point Formats .. 2-19

CONTENTS

vi ADSP-TS101 TigerSHARC Processor Programming Reference

ALU

ALU Operations ... 3-5

ALU Instruction Options .. 3-7

Signed/Unsigned Option .. 3-8

Saturation Option .. 3-8

Extension (ABS) Option ... 3-9

Truncation Option ... 3-9

Return Zero (MAX/MIN) Option 3-10

Fractional/Integer Option ... 3-11

ALU Execution Status ... 3-11

AN — ALU Negative ... 3-13

AV — ALU Overflow ... 3-13

AI — ALU Invalid .. 3-14

AC — ALU Carry .. 3-14

ALU Execution Conditions ... 3-14

ALU Static Flags ... 3-15

ALU Examples ... 3-16

Example Parallel Addition of Byte Data 3-18

Example Sideways Addition of Byte Data 3-19

Example Parallel Result (PR) Register Usage 3-19

CLU Examples ... 3-21

CLU Data Types and Sizes .. 3-22

TMAX Function ... 3-23

Trellis Function ... 3-24

ADSP-TS101 TigerSHARC Processor Programming Reference vii

CONTENTS

Despread Function .. 3-26

CLU Execution Status ... 3-27

ALU Instruction Summary .. 3-28

MULTIPLIER

Multiplier Operations ... 4-4

Multiplier Instruction Options .. 4-8

Signed/Unsigned Option ... 4-10

Fractional/Integer Option ... 4-10

Saturation Option ... 4-11

Truncation Option .. 4-12

Clear/Round Option ... 4-14

Complex Conjugate Option .. 4-16

Multiplier Result Overflow (MR4) Register 4-17

Multiplier Execution Status ... 4-18

Multiplier Execution Conditions .. 4-20

Multiplier Static Flags .. 4-21

Multiplier Examples .. 4-21

Multiplier Instruction Summary .. 4-23

SHIFTER

Shifter Operations ... 5-3

Logical Shift Operation ... 5-5

Arithmetic Shift Operation .. 5-6

Bit Manipulation Operations ... 5-7

CONTENTS

viii ADSP-TS101 TigerSHARC Processor Programming Reference

Bit Field Manipulation Operations .. 5-8

Bit Field Conversion Operations ... 5-11

Bit Stream Manipulation Operations 5-11

Shifter Instruction Options ... 5-14

Sign Extended Option .. 5-15

Zero Filled Option ... 5-15

Shifter Execution Status .. 5-15

Shifter Execution Conditions .. 5-16

Shifter Static Flags .. 5-17

Shifter Examples ... 5-17

Shifter Instruction Summary ... 5-19

IALU

IALU Operations .. 6-5

IALU Arithmetic, Logical, and Function Operations 6-5

IALU Instruction Options .. 6-6

Integer Data ... 6-7

Signed/Unsigned Option .. 6-8

Circular Buffer Option ... 6-8

Bit Reverse Option ... 6-9

Computed Jump Option ... 6-9

IALU Execution Status ... 6-10

JN/KN–IALU Negative .. 6-11

JV/KV–IALU Overflow .. 6-11

JC/KC–IALU Carry .. 6-11

ADSP-TS101 TigerSHARC Processor Programming Reference ix

CONTENTS

IALU Execution Conditions .. 6-12

IALU Static Flags .. 6-13

IALU Data Addressing and Transfer Operations 6-13

Direct and Indirect Addressing .. 6-14

Normal, Merged, and Broadcast Memory Accesses 6-16

Data Alignment Buffer (DAB) Accesses 6-23

Circular Buffer Addressing .. 6-27

Bit Reverse Addressing .. 6-31

Universal Register Transfer Operations 6-35

Immediate Extension Operations 6-36

IALU Examples ... 6-37

IALU Instruction Summary ... 6-39

PROGRAM SEQUENCER

Sequencer Operations ... 7-7

Conditional Execution ... 7-12

Branching Execution ... 7-16

Looping Execution .. 7-19

Interrupting Execution .. 7-20

Instruction Pipeline Operations ... 7-26

Instruction Alignment Buffer (IAB) 7-31

Branch Target Buffer (BTB) ... 7-34

Conditional Branch Effects on Pipeline 7-44

CONTENTS

x ADSP-TS101 TigerSHARC Processor Programming Reference

Dependency and Resource Effects on Pipeline 7-55

Stall From Compute Block Dependency 7-56

Stall from Bus Conflict ... 7-59

Stall From Compute Block Load Dependency 7-62

Stall From IALU Load Dependency 7-63

Stall From Load (From External Memory) Dependency 7-64

Stall From Conditional IALU Load Dependency 7-64

Interrupt Effects on Pipeline ... 7-66

Interrupt During Conditional Instruction 7-68

Interrupt During Interrupt Disable Instruction 7-70

Exception Effects on Pipeline .. 7-72

Sequencer Examples .. 7-72

Sequencer Instruction Summary .. 7-76

INSTRUCTION SET

ALU Instructions .. 8-2

Add/Subtract .. 8-3

Add/Subtract With Carry/Borrow .. 8-6

Average ... 8-8

Absolute Value/Absolute Value of Sum or Difference 8-10

Negate .. 8-13

Maximum/Minimum .. 8-14

Viterbi Maximum/Minimum ... 8-17

Increment/Decrement ... 8-20

Compare ... 8-22

ADSP-TS101 TigerSHARC Processor Programming Reference xi

CONTENTS

Clip .. 8-24

Sum .. 8-26

Ones Counting .. 8-28

Parallel Result Register ... 8-29

Bit FIFO Increment .. 8-30

Parallel Absolute Value of Difference 8-32

Sideways Sum .. 8-34

Add/Subtract (Dual Operation) ... 8-36

Pass ... 8-37

Logical AND/AND NOT/OR/XOR/NOT 8-38

Expand ... 8-40

Compact ... 8-45

Merge ... 8-49

Add/Subtract (Floating-Point) .. 8-51

Average (Floating-Point) .. 8-53

Maximum/Minimum (Floating-Point) 8-55

Absolute Value (Floating-Point) ... 8-57

Negate (Floating-Point) ... 8-60

Compare (Floating-Point) .. 8-62

Floating- to Fixed-Point Conversion 8-64

Fixed- to Floating-Point Conversion 8-66

Floating-Point Normal to Extended Word Conversion 8-68

Floating-Point Extended to Normal Word Conversion 8-70

Clip (Floating-Point) ... 8-72

CONTENTS

xii ADSP-TS101 TigerSHARC Processor Programming Reference

Copysign (Floating-Point) ... 8-74

Scale (Floating-Point) .. 8-76

Pass (Floating-Point) ... 8-78

Reciprocal (Floating-Point) ... 8-80

Reciprocal Square Root (Floating-Point) 8-82

Mantissa (Floating-Point) .. 8-85

Logarithm (Floating-Point) ... 8-87

Add/Subtract (Dual Operation, Floating-Point) 8-89

CLU Instructions ... 8-91

Trellis Maximum (CLU) .. 8-92

Maximum (CLU) .. 8-99

Trellis Registers (CLU) .. 8-104

Despread (CLU) ... 8-106

Add/Compare/Select (CLU) .. 8-113

Permute (Byte Word, CLU) ... 8-117

Permute (Short Word, CLU) ... 8-119

Multiplier Instructions .. 8-121

Multiply (Normal Word) ... 8-122

Multiply-Accumulate (Normal Word) 8-125

Multiply-Accumulate/Move (Dual Operation,
Normal Word) ... 8-130

Multiply (Quad-Short Word) .. 8-138

Multiply-Accumulate (Quad-Short Word) 8-141

Multiply-Accumulate (Dual Operation,
Quad-Short Word) ... 8-146

ADSP-TS101 TigerSHARC Processor Programming Reference xiii

CONTENTS

Complex Multiply-Accumulate (Short Word) 8-152

Complex Multiply-Accumulate/Move (Dual Operation,
Short Word) ... 8-156

Multiply (Floating-Point, Normal/Extended Word) 8-163

Multiplier Result Register .. 8-165

Compact Multiplier Result .. 8-171

Shifter Instructions ... 8-175

Arithmetic/Logical Shift .. 8-176

Rotate ... 8-179

Field Extract .. 8-181

Field Deposit ... 8-183

Field/Bit Mask .. 8-185

Get Bits ... 8-187

Put Bits ... 8-189

Bit Test ... 8-191

Bit Clear/Set/Toggle .. 8-192

Extract Leading Zeros .. 8-194

Extract Exponent ... 8-195

XSTAT/YSTAT Register .. 8-196

Block Floating-Point .. 8-197

BFOTMP Register .. 8-199

IALU (Integer) Instructions ... 8-200

Add/Subtract (Integer) ... 8-202

Add/Subtract With Carry/Borrow (Integer) 8-204

Average (Integer) ... 8-206

CONTENTS

xiv ADSP-TS101 TigerSHARC Processor Programming Reference

Compare (Integer) .. 8-208

Maximum/Minimum (Integer) .. 8-210

Absolute Value (Integer) .. 8-212

Logical AND/AND NOT/OR/XOR/NOT (Integer) 8-213

Arithmetic Shift/Logical Shift (Integer) 8-215

Left Rotate/Right Rotate (Integer) 8-217

IALU (Load/Store/Transfer) Instructions 8-218

Universal Register Load (Data Addressing) 8-220

Universal Register Store (Data Addressing) 8-221

Data Register Load and DAB Operation
(Data Addressing) .. 8-222

Data Register Store (Data Addressing) 8-224

Universal Register Transfer .. 8-226

Sequencer Instructions .. 8-228

Jump/Call ... 8-230

Computed Jump/Call .. 8-232

Return (from Interrupt) .. 8-234

Reduce (Interrupt to Subroutine) .. 8-236

If – Do (Conditional Execution) ... 8-237

If – Else (Conditional Sequencing and Execution) 8-238

Static Flag Registers .. 8-239

Idle ... 8-240

BTB Invalid .. 8-241

ADSP-TS101 TigerSHARC Processor Programming Reference xv

CONTENTS

Trap .. 8-242

Emulator Trap ... 8-243

No Operation .. 8-244

QUICK REFERENCE

ALU Quick Reference .. A-2

Multiplier Quick Reference .. A-6

Shifter Quick Reference ... A-8

IALU Quick Reference ... A-10

Sequencer Quick Reference .. A-13

REGISTER/BIT DEFINITIONS

INSTRUCTION DECODE

Instruction Structure .. C-1

Compute Block Instruction Format .. C-3

ALU Instructions .. C-4

ALU Fixed-Point, Arithmetic and Logical
Instructions (CU=00) .. C-5

ALU Fixed-Point, Data Conversion
Instructions (CU=01) .. C-7

ALU Floating-Point, Arithmetic and Logical
Instructions (CU=01) .. C-10

CLU Instructions ... C-12

Multiplier Instructions ... C-14

CONTENTS

xvi ADSP-TS101 TigerSHARC Processor Programming Reference

Shifter Instructions ... C-18

Shifter Instructions Using Single Normal-Word
Operands and Single Register ... C-18

Shifter Instructions Using Single Long-Word
or Dual Normal-Word Operands and Dual Register C-19

Shifter Instructions Using Short or Byte Operands
and Single or Dual Registers ... C-20

Shifter Instructions Using Single Operand C-22

IALU (Integer) Instruction Format .. C-24

IALU Move Instruction Format .. C-25

IALU Load Data Instruction Format ... C-27

IALU Load/Store Instruction Format .. C-28

IALU Immediate Extension Format ... C-32

Sequencer Instruction Format ... C-33

Sequencer Flow Control Instructions C-33

Sequencer Direct Jump/Call Instruction Format C-34

Sequencer Indirect Jump Instruction Format C-36

Condition Codes .. C-39

Compute Block Conditions .. C-39

IALU Conditions ... C-40

Sequencer and External Conditions C-40

Sequencer Immediate Extension Format C-41

Miscellaneous Instruction Format ... C-42

INDEX

ADSP-TS101 TigerSHARC Processor Programming Reference xvii

PREFACE

Thank you for purchasing and developing systems using TigerSHARC®
processors from Analog Devices.

Purpose of This Manual
The ADSP-TS101 TigerSHARC Processor Programming Reference contains
information about the DSP architecture and DSP assembly language for
TigerSHARC processors. These are 32-bit, fixed- and floating-point digi-
tal signal processors from Analog Devices for use in computing,
communications, and consumer applications.

The manual provides information on how assembly instructions execute
on the TigerSHARC processor’s architecture along with reference infor-
mation about DSP operations.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference manuals and data sheets) that
describe your target architecture.

Manual Contents

xviii ADSP-TS101 TigerSHARC Processor Programming Reference

Manual Contents
The manual consists of:

• Chapter 1, “Introduction”
Provides a general description of the DSP architecture, instruction
slot/line syntax, and instruction parallelism rules.

• Chapter 2, “Compute Block Registers”
Provides a description of the compute block register file, register
naming syntax, and numeric formats.

• Chapter 3, “ALU”
Provides a description of the arithmetic logic unit (ALU) and com-
munications logic unit (CLU) operation, includes ALU/CLU
instruction examples, and provides the ALU instruction summary.

• Chapter 4, “Multiplier”
Provides a description of the multiply-accumulator (multiplier)
operation, includes multiplier instruction examples, and provides
the multiplier instruction summary.

• Chapter 5, “Shifter”
Provides a description of the bit wise, barrel shifter (shifter) opera-
tion, includes shifter instruction examples, and provides the shifter
instruction summary.

• Chapter 6, “IALU”
Provides a description of the integer arithmetic logic unit (IALU)
and data alignment buffer (DAB) operation, includes IALU
instruction examples, and provides the IALU instruction summary.

• Chapter 7, “Program Sequencer”
Provides a description of the program sequencer operation, the
instruction alignment buffer (IAB), the branch target buffer
(BTB), and the instruction pipeline. This chapter also includes a
program sequencer instruction summary.

ADSP-TS101 TigerSHARC Processor Programming Reference xix

Preface

• Chapter 8, “Instruction Set”
Describes the ADSP-TS101 processor instruction set in detail,
starting with an overview of the instruction line and instruction
types.

• Appendix A, “Quick Reference”
Contains a concise description of the ADSP-TS101 processor
assembly language. It is intended to be used as an assembly pro-
gramming reference.

• Appendix B, “Register/Bit Definitions”
Provides register and bit name definitions to be used in
ADSP-TS101 processor programs.

• Appendix C, “Instruction Decode”
Identifies operation codes (opcodes) for instructions. Use this
chapter to learn how to construct opcodes.

This programming reference is a companion document to the
ADSP-TS101 TigerSHARC Processor Hardware Reference.

What’s New in This Manual
Revision 1.1 of the ADSP-TS101 TigerSHARC Processor Programming Ref-
erence corrects and closes all open Tool Anomaly Reports (TARs) against
this manual, adds figure titles that were missing, and updates Web site and
contact numbers. These changes affect the preface, various chapters,
appendices, and the index.

Technical or Customer Support

xx ADSP-TS101 TigerSHARC Processor Programming Reference

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in any of the fol-
lowing ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
dsptools.support@analog.com

• E-mail processor questions to
embedded.support@analog.com

dsp.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:

Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The following is the list of Analog Devices, Inc. processors supported in
VisualDSP++®.

http://www.analog.com/processors/technicalSupport
mailto:dsptools.support@analog.com
mailto:embedded.support@analog.com
mailto:dsp.support@analog.com

ADSP-TS101 TigerSHARC Processor Programming Reference xxi

Preface

TigerSHARC (ADSP-TSxxx) Processors

The name “TigerSHARC” refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

ADSP-TS101, ADSP-TS201, ADSP-TS202, and ADSP-TS203

SHARC® (ADSP-21xxx) Processors

The name “SHARC” refers to a family of high-performance, 32-bit,
floating-point processors that can be used in speech, sound, graphics, and
imaging applications. VisualDSP++ currently supports the following
SHARC processors:

ADSP-21020, ADSP-21060, ADSP-21061, ADSP-21062,
ADSP-21065L, ADSP-21160, ADSP-21161, ADSP-21261,
ADSP-21262, ADSP-21266, ADSP-21267, ADSP-21363, ADSP-21364,
and ADSP-21365

Blackfin® (ADSP-BFxxx) Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

ADSP-BF531, ADSP-BF532 (formerly ADSP-21532), ADSP-BF533,
ADSP-BF535 (formerly ADSP-21535), ADSP-BF561, AD6532, and
AD90747

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

http://www.analog.com

Product Information

xxii ADSP-TS101 TigerSHARC Processor Programming Reference

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means to select the
information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.

Processor Product Information
For information on embedded processors and DSPs, visit the Analog
Devices Web site at www.analog.com/processors, which provides access
to technical publications, data sheets, application notes, product over-
views, and product announcements.

http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.myanalog.com
http://www.analog.com/processors

ADSP-TS101 TigerSHARC Processor Programming Reference xxiii

Preface

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
embedded.support@analog.com

dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

• Access the FTP Web site at
ftp ftp.analog.com (or ftp 137.71.25.69)
ftp://ftp.analog.com

Related Documents
The following publications that describe the ADSP-TS101 TigerSHARC
processor (and related processors) can be ordered from any Analog Devices
sales office:

• ADSP-TS101S TigerSHARC Embedded Processor Data Sheet

• ADSP-TS101 TigerSHARC Processor Hardware Reference

• ADSP-TS101 TigerSHARC Processor Programming Reference

For information on product related development software and Analog
Devices processors, see these publications:

• VisualDSP++ User's Guide for TigerSHARC Processors

• VisualDSP++ C/C++ Compiler and Library Manual for Tiger-
SHARC Processors

• VisualDSP++ Assembler and Preprocessor Manual for TigerSHARC
Processors

mailto:embedded.support@analog.com
mailto:dsp.support@analog.com
ftp://ftp.analog.com
ftp://137.71.25.69
ftp://ftp.analog.com

Product Information

xxiv ADSP-TS101 TigerSHARC Processor Programming Reference

• VisualDSP++ Linker and Utilities Manual for TigerSHARC
Processors

• VisualDSP++ Kernel (VDK) User's Guide

Visit the Technical Library Web site to access all processor and tools
manuals and data sheets:

http://www.analog.com/processors/technical_library

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .PDF files of most manuals are also provided.

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

File Description

.CHM Help system files and manuals in Help format

.HTM or

.HTML
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files requires a browser, such as
Internet Explorer 4.0 (or higher).

.PDF VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .PDF files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).

http://www.analog.com/processors/technical_library

ADSP-TS101 TigerSHARC Processor Programming Reference xxv

Preface

Accessing Documentation From VisualDSP++

From the VisualDSP++ environment:

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM) are located in the Help folder, and .PDF files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Using Windows Explorer

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++, and
VisualDSP++ Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, Analog Devices, VisualDSP++, Documentation for
Printing, and the name of the book.

Product Information

xxvi ADSP-TS101 TigerSHARC Processor Programming Reference

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technical_library

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.

If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and In-Circuit Emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

http://www.analog.com/processors/technical_library
http://www.analog.com/salesdir

ADSP-TS101 TigerSHARC Processor Programming Reference xxvii

Preface

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.

Conventions

xxviii ADSP-TS101 TigerSHARC Processor Programming Reference

Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative items in syntax descriptions appear within curly brackets
and separated by vertical bars; read the example as this or that. One
or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note: provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution: identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning: identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-TS101 TigerSHARC Processor Programming Reference xxix

Preface

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Conventions

xxx ADSP-TS101 TigerSHARC Processor Programming Reference

ADSP-TS101 TigerSHARC Processor Programming Reference 1-1

1 INTRODUCTION

The ADSP-TS101 TigerSHARC Processor Programming Reference
describes the Digital Signal Processor (DSP) architecture and instruction
set. These descriptions provide the information required for programming
TigerSHARC processor systems. This chapter introduces programming
concepts for the DSP with the following information:

• “DSP Architecture” on page 1-6

• “Instruction Line Syntax and Structure” on page 1-20

• “Instruction Parallelism Rules” on page 1-24

The TigerSHARC processor is a 128-bit, high performance, next genera-
tion version of the ADSP-2106x SHARC DSP. The TigerSHARC
processor sets a new standard of performance for digital signal processors,
combining multiple computation units for floating-point and fixed-point
processing as well as very wide word widths. The TigerSHARC processor
maintains a ‘system-on-a-chip’ scalable computing design philosophy,
including 6M bit of on-chip SRAM, integrated I/O peripherals, a host
processor interface, DMA controllers, link ports, and shared bus connec-
tivity for glueless MDSP (Multi Digital Signal Processing).

In addition to providing unprecedented performance in DSP applications
in raw MFLOPS and MIPS, the TigerSHARC processor boosts perfor-
mance measures such as MFLOPS/Watt and MFLOPS/square inch in
multiprocessing applications.

1-2 ADSP-TS101 TigerSHARC Processor Programming Reference

As shown in Figure 1-1 and Figure 1-2, the processor has the following
architectural features:

• Dual computation blocks—X and Y—each consisting of a multi-
plier, ALU, shifter, and a 32-word register file

• Dual integer ALUs—J and K—each containing a 32-bit IALU and
32-word register file

Figure 1-1. ADSP-TS101 TigerSHARC Processor Core Diagram

IAB

PC BTB IRQ

ADDR
FETCH

PROGRAM SEQUENCER

Y
REGISTER

FILE
32x32

MULTIPLIER

ALU

SHIFTER

DAB

128 128

X
REGISTER

FILE
32x32

MULTIPLIER

ALU

SHIFTER

DAB

128 128

COMPUTATIONAL BLOCKS

32

128

32

128

32

128

INTEGER
K-IALU

INTEGER
J-IALU

32

DATA ADDRESS GENERATION

32

32X32 32X32

ADSP-TS101 TigerSHARC Processor Programming Reference 1-3

Introduction

• Program sequencer—Controls the program flow and contains an
instruction alignment buffer (IAB) and a branch target buffer
(BTB)

• Three 128-bit buses providing high bandwidth connectivity
between all blocks

• External port interface including the host interface, SDRAM con-
troller, static pipelined interface, four DMA channels, four link
ports (each with two DMA channels), and multiprocessing support

Figure 1-2. ADSP-TS101 TigerSHARC Processor Peripherals Diagram

L1

3

8

L2 8

3

L3

3

8

INPUT FIFO

OUTPUT BUFFER

OUTPUT FIFO

HOST INTERFACE

MULTIPROCESSOR
INTERFACE

CLUSTER BUS
ARBITOR

DATA

64

LINK
PORTS

JTAG PORT

SDRAM CONTROLLER

L0

EXTERNAL PORT

3

8

ADDR

32

CNTRL

6

LINK PORT
CONTROLLER

CONTROL/
STATUS/
BUFFERS

32

M0 ADDR

M0 DATA

M1 ADDR

M1 DATA

M2 ADDR

M2 DATA

MEMORY
M2

64K X 32

A D

MEMORY
M1

64K X 32

A D

MEMORY
M0

64K X 32

A D

I/O ADDRESS

INTERNAL MEMORY

I/O PROCESSOR

DMA
CONTROLLER

CONTROL/
STATUS/

TCBs

12832 128
DMA DATA LINK DATA

DMA ADDRESS

1-4 ADSP-TS101 TigerSHARC Processor Programming Reference

• 6M bits of internal memory organized as three blocks—M0, M1
and M2—each containing 16K rows and 128 bits wide (a total of
2M bit).

• Debug features

• JTAG Test Access Port

The TigerSHARC processor external port provides an interface to external
memory, to memory-mapped I/O, to host processor, and to additional
TigerSHARC processors. The external port performs external bus arbitra-
tion and supplies control signals to shared, global memory and I/O
devices.

Figure 1-3 illustrates a typical single-processor system. A multiprocessor
system is illustrated in Figure 1-4 on page 1-6 and is discussed later in
“Scalability and Multiprocessing” on page 1-19.

The TigerSHARC processor includes several features that simplify system
development. The features lie in three key areas:

• Support of IEEE floating-point formats

• IEEE 1149.1 JTAG serial scan path and on-chip emulation
features

• Architectural features supporting high-level languages and operat-
ing systems

The features of the TigerSHARC processor architecture that directly sup-
port high-level language compilers and operating systems include:

• Simple, orthogonal instruction allowing the compiler to efficiently
use the multi-instruction slots

• General-purpose data and IALU register files

• 32- and 40-bit floating-point and 8-, 16-, 32-, and 64-bit fixed-
point native data types

ADSP-TS101 TigerSHARC Processor Programming Reference 1-5

Introduction

• Large address space

• Immediate address modify fields

• Easily supported relocatable code and data

• Fast save and restore of processor registers onto internal memory
stacks

Figure 1-3. Single Processor Configuration

CONTROLIMP2–0

DMAR3–0
DMA DEVICE
(OPTIONAL)

DATA

FLAG3–0

ID2–0

FLYBY

IOEN

RAS

CAS

LDQM
HDQM

SDWE
SDCKE

SDA10

IRQ3–0

LCLK_P

SCLK_P

LXCLKIN
LXDAT7–0

LXCLKOUT

LXDIR

LCLKRAT2–0
SCLKFREQ

TMR0E
BM

S/LCLK_N
VREF

MSSD

BUSLOCK

SDRAM
MEMORY

(OPTIONAL)

CS

RAS
CAS

DQM

WE
CKE

A10

ADDR

DATA

CLK

RESET JTAG

ADSP-TS101S

BMS
CLOCK

LINK
DEVICES
(4 MAX)

(OPTIONAL)

BOOT
EPROM

(OPTIONAL)

ADDR

MEMORY
(OPTIONAL)

OE

DATA

ADDR

DATA

HOST
PROCESSOR
INTERFACE
(OPTIONAL)

ACK

BR7–0

CPA

HBG
HBR

MS1–0

DATA63–0

DATA

ADDR

CS

ACK
WE

ADDR31–0

D
A

T
A

C
O

N
TR

O
L

A
D

D
R

E
S

S

BRST
REFERENCE

RD

WRH/WRL

MSH

DPA

BOFF

DS2–0

CS

DSP Architecture

1-6 ADSP-TS101 TigerSHARC Processor Programming Reference

DSP Architecture
As shown in Figure 1-1 on page 1-2 and Figure 1-2 on page 1-3, the DSP
architecture consists of two divisions: the DSP core (where instructions
execute) and the I/O peripherals (where data is stored and off-chip I/O is
processed). The following discussion provides a high-level description of
the DSP core and peripherals architecture. More detail on the core appears
in other sections of this reference. For more information on I/O peripher-
als, see the ADSP-TS101 TigerSHARC Processor Hardware Reference.

Figure 1-4. Multiprocessing Cluster Configuration

TigerSHARCTigerSHARCMEMORY BRIDGE

DEV DEV

DEVDEV

MSSD

MS0

MSH

MSI

LINKS

LINKS

SDRAM TigerSHARC HOST IFTigerSHARC

ADSP-TS101 TigerSHARC Processor Programming Reference 1-7

Introduction

High performance is facilitated by the ability to execute up to four 32-bit
wide instructions per cycle. The TigerSHARC processor uses a variation
of a Static Superscalar™ architecture to allow the programmer to specify
which instructions are executed in parallel in each cycle. The instructions
do not have to be aligned in memory so that program memory is not
wasted.

The 6M bit internal memory is divided into three 128-bit wide memory
blocks. Each of the three internal address/data bus pairs connect to one of
the three memory blocks. The three memory blocks can be used for triple
accesses every cycle where each memory block can access up to four, 32-bit
words in a cycle.

The external port cluster bus is 64 bits wide. The high I/O bandwidth
complements the high processing speeds of the core. To facilitate the high
clock rate, the TigerSHARC processor uses a pipelined external bus with
programmable pipeline depth for interprocessor communications and for
Synchronous SRAM and DRAM (SSRAM and SDRAM).

The four link ports support point-to-point high bandwidth data transfers.
Link ports have hardware supported two-way communication.

The processor operates with a two cycle arithmetic pipeline. The branch
pipeline is two to six cycles. A branch target buffer (BTB) is implemented
to reduce branch delay. The two identical computation units support
floating-point as well as fixed-point arithmetic.

During compute intensive operations, one or both integer ALUs compute
or generate addresses for fetching up to two quad operands from two
memory blocks, while the program sequencer simultaneously fetches the
next quad instruction from the third memory block. In parallel, the com-
putation units can operate on previously fetched operands while the
sequencer prepares for a branch.

While the core processor is doing the above, the DMA channels can be
replenishing the internal memories in the background with quad data
from either the external port or the link ports.

DSP Architecture

1-8 ADSP-TS101 TigerSHARC Processor Programming Reference

The processing core of the TigerSHARC processor reaches exceptionally
high DSP performance through using these features:

• Computation pipeline

• Dual computation units

• Execution of up to four instructions per cycle

• Access of up to eight words per cycle from memory

The two computation units (compute blocks) perform up to 6 floating-
point or 24 fixed-point operations per cycle.

Each multiplier and ALU unit can execute four 16-bit fixed-point opera-
tions per cycle, using Single-Instruction, Multiple-Data (SIMD)
operation. This operation boosts performance of critical imaging and sig-
nal processing applications that use fixed-point data.

Compute Blocks
The TigerSHARC processor core contains two computation units called
compute blocks. Each compute block contains a register file and three inde-
pendent computation units—an ALU, a multiplier, and a shifter. For
meeting a wide variety of processing needs, the computation units process
data in several fixed- and floating-point formats listed here and shown in
Figure 1-5:

• Fixed-point format
These include 64-bit long word, 32-bit normal word, 16-bit short
word, and 8-bit byte word. For short word fixed-point arithmetic,

ADSP-TS101 TigerSHARC Processor Programming Reference 1-9

Introduction

quad parallel operations on quad-aligned data allow fast processing
of array data. Byte operations are also supported for octal-aligned
data.

• Floating-point format
These include 32-bit normal word and 40-bit extended word.
Floating-point operations are single or extended precision. The
normal word floating-point format is the standard IEEE format,
and the 40-bit extended-precision format occupies a double word
(64 bits) with eight additional LSBs of mantissa for greater
accuracy.

Each compute block has a general-purpose, multi-port, 32-word data reg-
ister file for transferring data between the computation units and the data
buses and storing intermediate results. All of these registers can be
accessed as single-, dual-, or quad-aligned registers. For more information
on the register file, see “Compute Block Registers” on page 2-1.

Arithmetic Logic Unit (ALU)

The ALU performs arithmetic operations on fixed-point and floating-
point data and logical operations on fixed-point data. The source and des-
tination of most ALU operations is the compute block register file.

On the ADSP-TS101 processor, the ALU includes a special sub-block,
which is referred to as the communications logic unit (CLU). The CLU
instructions are designed to support different algorithms used for commu-
nications applications. The algorithms that are supported by the CLU
instructions are:

• Viterbi Decoding

• Turbo-code Decoding

• Despreading for code-division multiple access (CDMA) systems

DSP Architecture

1-10 ADSP-TS101 TigerSHARC Processor Programming Reference

For more information on the ALU (and CLU features), see “ALU” on
page 3-1.

Figure 1-5. Word Format Definitions1

1 The TigerSHARC processor internal data buses are 128 bits (one quad word) wide. In a quad word,
the DSP can move 16 byte words, 8 short words, 4 normal words, or 2 long words over the bus at the
same time.

Long Word

Data

Data Bus

Data Types

(64-bit)

Normal Word
(32-bit)

Short Word
(16-bit)

Byte Word
(8-bit)

Extended Word
(40-bit)

Register
(32-bit)

Data
Register
(32-bit)

Data
Register
(32-bit)

Data
Register
(32-bit)

(128-bit)

Dual Register

64-bit

32-bit

Dual Register

32-bit

Single Register

16-

Single Register

bit
16-
bit

8-
bit

8-
bit

8-
bit

8-
bit

Single Register

31 031 0 31 0 31 0

8-
bit

ADSP-TS101 TigerSHARC Processor Programming Reference 1-11

Introduction

Multiply Accumulator (Multiplier)

The multiplier performs fixed-point or floating-point multiplication and
fixed-point multiply/accumulate operations. The multiplier supports sev-
eral data types in fixed- and floating-point. The floating-point formats are
float and float-extended, as in the ALU. The source and destination of
most operations is the compute block register file.

The TigerSHARC processor’s multiplier supports complex multiply-accu-
mulate operations. Complex numbers are represented by a pair of 16-bit
short words within a 32-bit word. The least significant bits (LSBs) of the
input operand represents the real part, and the most significant bits
(MSBs) of the input operand represent the imaginary part.

For more information on the multiplier, see “Multiplier” on page 4-1.

Bit Wise Barrel Shifter (Shifter)

The shifter performs logical and arithmetic shifts, bit manipulation, field
deposit, and field extraction. The shifter operates on one 64-bit, one or
two 32-bit, two or four 16-bit, and four or eight 8-bit fixed-point oper-
ands. Shifter operations include:

• Shifts and rotates from off-scale left to off-scale right

• Bit manipulation operations, including bit set, clear, toggle and
test

• Bit field manipulation operations, including field extract and
deposit, using register BFOTMP (which is internal to the shifter)

• Bit FIFO operations to support bit streams with fields of varying
length

• Support for ADSP-2100 family compatible fixed-point/floating-
point conversion operations (such as exponent extract, number of
leading 1s or 0s)

DSP Architecture

1-12 ADSP-TS101 TigerSHARC Processor Programming Reference

For more information on the shifter, see “Shifter” on page 5-1.

Integer Arithmetic Logic Unit (IALU)
The IALUs can execute standard standalone ALU operations on IALU
register files. The IALUs also provide memory addresses when data is
transferred between memory and registers. The DSP has dual IALUs (the
J-IALU and the K-IALU) that enable simultaneous addresses for multiple
operand reads or writes. The IALUs allow computational operations to
execute with maximum efficiency because the computation units can be
devoted exclusively to processing data.

Each IALU has a multiport, 32-word register file. Operations in the IALU
are not pipelined. The IALUs support pre-modify with no update and
post-modify with update address generation. Circular data buffers are
implemented in hardware. The IALUs support the following types of
instructions:

• Regular IALU instructions

• Move Data instructions

• Load Data instructions

• Load/Store instructions with register update

• Load/Store instructions with immediate update

For indirect addressing (instructions with update), one of the registers in
the register file can be modified by another register in the file or by an
immediate 8- or 32-bit value, either before (pre-modify) or after (post-
modify) the access. For circular buffer addressing, a length value can be
associated with the first four registers to perform automatic modulo
addressing for circular data buffers; the circular buffers can be located at
arbitrary boundaries in memory. Circular buffers allow efficient imple-
mentation of delay lines and other data structures, which are commonly

ADSP-TS101 TigerSHARC Processor Programming Reference 1-13

Introduction

used in digital filters and Fourier transformations. The TigerSHARC pro-
cessor circular buffers automatically handle address pointer wraparounds,
reducing overhead and simplifying implementation.

The IALUs also support bit reverse addressing, which is useful for the FFT
algorithm. Bit reverse addressing is implemented using a reverse carry
addition that is similar to regular additions, but the carry is taken from the
upper bits and is driven into lower bits.

The IALU provides flexibility in moving data as single-, dual-, or quad-
words. Every instruction can execute with a throughput of one per cycle.
IALU instructions execute with a single cycle of latency while computa-
tion units have two cycles of latency. Normally, there are no dependency
delays between IALU instructions, but if there are, three or four cycles of
latency can occur.

For more information on the IALUs, see “IALU” on page 6-1.

Program Sequencer
The program sequencer supplies instruction addresses to memory and,
together with the IALUs, allows computational operations to execute with
maximum efficiency. The sequencer supports efficient branching using
the branch target buffer (BTB), which reduces branch delays for condi-
tional and unconditional instructions. The sequencer and IALU’s control
flow instructions divide into two types:

• Control flow instructions. These instructions are used to direct pro-
gram execution by means of jumps and to execute individual
instructions conditionally.

• Immediate extension instructions. These instructions are used to
extend the numeric fields used in immediate operands for the
sequencer and the IALU.

DSP Architecture

1-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Control flow instructions divide into two types:

• Direct jumps and calls based on an immediate address operand
specified in the instruction encoding. For example: ‘if <cond>
jump 100;’ always jumps to address 100, if the <cond> evaluates as
true.

• Indirect jumps based on an address supplied by a register. The
instructions used for specifying conditional execution of a line are a
subcategory of indirect jumps. For example: ‘if <cond> cjmp;’ is a
jump to the address pointed to by the CJMP register.

The control flow instruction must use the first instruction slot in
the instruction line.

The TigerSHARC processor achieves its fast execution rate by means of an
eight-cycle pipeline.

Two stages of the sequencer’s pipeline actually execute in the computation
units. The computation units perform single-cycle operations with a two-
cycle computation pipeline, meaning that results are available for use two
cycles after the operation is begun. Hardware causes a stall if a result is not
available in a given cycle (register dependency check). Up to two compu-
tation instructions per compute block can be issued in each cycle,
instructing the ALU, multiplier or shifter to perform independent, simul-
taneous operations.

The TigerSHARC processor has four general-purpose external interrupts,
IRQ3-0. The processor also has internally generated interrupts for the two
timers, DMA channels, link ports, arithmetic exceptions, multiprocessor
vector interrupts, and user-defined software interrupts. Interrupts can be
nested through instruction commands. Interrupts have a short latency and
do not abort currently executing instructions. Interrupts vector directly to
a user-supplied address in the interrupt table register file, removing the
overhead of a second branch.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-15

Introduction

The branch penalty in a deeply pipelined processor such as the Tiger-
SHARC processor can be compensated for by the use of a branch target
buffer (BTB) and branch prediction. The branch target address is stored
in the BTB. When the address of a jump instruction, which is predicted
by the user to be taken in most cases, is recognized (the tag address), the
corresponding jump address is read from the BTB and is used as the jump
address on the next cycle. Thus the latency of a jump is reduced from
three to six wasted cycles to zero wasted cycles. If this address is not stored
in the BTB, the instruction must be fetched from memory.

Other instructions also use the BTB to speed up these types of branches.
These instructions are interrupt return, call return, and computed jump
instructions.

Immediate extensions are associated with IALU or sequencer (control
flow) instructions. These instructions are not specified by the program-
mer, but are implied by the size of the immediate data used in the
instructions. The programmer must place the instruction that requires an
immediate extension in the first instruction slot and leave an empty
instruction slot in the line (use only three slots), so the assembler can place
the immediate extension in the second instruction slot of the instruction
line.

Note that only one immediate extension may be in a single instruc-
tion line.

For more information on the sequencer, BTB, and immediate extensions,
see “Program Sequencer” on page 7-1.

Quad Instruction Execution

The TigerSHARC processor can execute up to four instructions per cycle
from a single memory block, due to the 128-bit wide access per cycle. The
ability to execute several instructions in a single cycle derives from a Static
Superscalar architectural concept. This is not strictly a superscalar archi-
tecture because the instructions executed in each cycle are specified in the

DSP Architecture

1-16 ADSP-TS101 TigerSHARC Processor Programming Reference

instruction by the programmer or by the compiler, and not by the chip
hardware. There is also no instruction reordering. Register dependencies
are, however, examined by the hardware and stalls are generated where
appropriate. Code is fully compacted in memory and there are no align-
ment restrictions for instruction lines.

Relative Addresses for Relocation

Most instructions in the TigerSHARC processor support PC relative
branches to allow code to be relocated easily. Also, most data references
are register relative, which means they allow programs to access data blocks
relative to a base register.

Nested Call and Interrupt

Nested call and interrupt return addresses (along with other registers as
needed) are saved by specific instructions onto the on-chip memory stack,
allowing more generality when used with high-level languages. Non-
nested calls and interrupts do not need to save the return address in inter-
nal memory, making these more efficient for short, non-nested routines.

Context Switching

The TigerSHARC processor provides the ability to save and restore up to
eight registers per cycle onto a stack in two internal memory blocks when
using load/store instructions. This fast save/restore capability permits effi-
cient interrupts and fast context switching. It also allows the TigerSHARC
processor to dispense with on-chip PC stack or alternate registers for regis-
ter files or status registers.

Internal Memory and Other Internal Peripherals
The on-chip memory consists of three blocks of 2M bits each. Each block
is 128 bits (four words) wide, thus providing high bandwidth sufficient to
support both computation units, the instruction stream and external I/O,

ADSP-TS101 TigerSHARC Processor Programming Reference 1-17

Introduction

even in very intensive operations. The TigerSHARC processor provides
access to program and two data operands without memory or bus con-
straints. The memory blocks can store instructions and data
interchangeably.

Each memory block is organized as 64K words of 32 bits each. The
accesses are pipelined to meet one clock cycle access time needed by the
core, DMA, or by the external bus. Each access can be up to four words.
Memories (and their associated buses) are a resource that must be shared
between the compute blocks, the IALUs, the sequencer, the external port,
and the link ports. In general, if during a particular cycle more than one
unit in the processor attempts to access the same memory, one of the com-
peting units is granted access, while the other is held off for further
arbitration until the following cycle—see “Bus Arbitration Protocol” in
the ADSP-TS101 TigerSHARC Processor Hardware Reference. This type of
conflict only has a small impact on performance due to the very high
bandwidth afforded by the internal buses.

An important benefit of large on-chip memory is that by managing the
movement of data on and off chip with DMA, a system designer can real-
ize high levels of determinism in execution time. Predictable and
deterministic execution time is a central requirement in DSP and real-
time systems.

Internal Buses

The processor core has three buses, each one connected to one of the
internal memories. These buses are 128 bits wide to allow up to four
instructions, or four aligned data words, to be transferred in each cycle on
each bus. On-chip system elements also use these buses to access memory.
Only one access to each memory block is allowed in each cycle, so DMA
or external port transfers must compete with core accesses on the same
block. Because of the large bandwidth available from each memory block,
not all the memory bandwidth can be used by the core units, which leaves

DSP Architecture

1-18 ADSP-TS101 TigerSHARC Processor Programming Reference

some memory bandwidth available for use by the DSP’s DMA processes
or by the bus interface to serve other DSPs bus master transfers to the
DSP’s memory.

Internal Transfer

Most registers of the TigerSHARC processor are classified as universal reg-
isters (Uregs). Instructions are provided for transferring data between any
two Uregs, between a Ureg and memory, or for the immediate load of a
Ureg. This includes control registers and status registers, as well as the
data registers in the register files. These transfers occur with the same tim-
ing as internal memory load/store.

Data Accesses

Each move instruction specifies the number of words accessed from each
memory block. Two memory blocks can be accessed on each cycle because
of the two IALUs. For a discussion of data and register widths and the
syntax that specifies these accesses, see “Register File Registers” on
page 2-5.

Quad Data Access

Instructions specify whether one, two or four words are to be loaded or
stored. Quad words1 can be aligned on a quad-word boundary and long
words aligned on a long-word boundary. This, however, is not necessary
when loading data to computation units because a data alignment buffer
(DAB) automatically aligns quad words that are not aligned in memory.

1 A memory quad word is comprised of four 32-bit words or 128 bits of data.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-19

Introduction

Up to four data words from each memory block can be supplied to each
computation unit, meaning that new data is not required on every cycle
and leaving alternate cycles for I/O to the memories. This is beneficial in
applications with high I/O requirements since it allows the I/O to occur
without degrading core processor performance.

Booting
The internal memory of the TigerSHARC processor can be loaded from
an 8-bit EPROM using a boot mechanism at system powerup. The DSP
can also be booted using another master or through one of the link ports.
Selection of the boot source is controlled by external pins. For informa-
tion on booting the DSP, see the ADSP-TS101 TigerSHARC Processor
Hardware Reference.

Scalability and Multiprocessing
The TigerSHARC processor, like the related Analog Devices product the
SHARC DSP, is designed for multiprocessing applications. The primary
multiprocessing architecture supported is a cluster of up to eight Tiger-
SHARC processors that share a common bus, a global memory, and an
interface to either a host processor or to other clusters. In large multipro-
cessing systems, this cluster can be considered an element and connected
in configurations such as torroid, mesh, tree, crossbar, or others. The user
can provide a personal interconnect method or use the on-chip communi-
cation ports.

The TigerSHARC processor improves on most of the multiprocessing
capabilities of the SHARC DSP and enhances the data transfer band-
width. These capabilities include:

• On-chip bus arbitration for glueless multiprocessing

• Globally accessible internal memory and registers

Instruction Line Syntax and Structure

1-20 ADSP-TS101 TigerSHARC Processor Programming Reference

• Semaphore support

• Powerful, in-circuit multiprocessing emulation

Emulation and Test Support
The TigerSHARC processor supports the IEEE standard P1149.1 Joint
Test Action Group (JTAG) standard for system test. This standard defines
a method for serially scanning the I/O status of each component in a sys-
tem. The JTAG serial port is also used by the TigerSHARC processor
EZ-ICE® to gain access to the processor’s on-chip emulation features.

Instruction Line Syntax and Structure
TigerSHARC processor is a static superscalar DSP processor that executes
from one to four 32-bit instruction slots in an instruction line. With few
exceptions, an instruction line executes with a throughput of one cycle in
an eight-deep pipeline. Figure 1-6 shows the instruction slot and line
structure.

There are some important things to note about the instruction slot and
instruction line structure and how this structure relates to instruction
execution.

• Each instruction line consists of up to four 32-bit instruction slots.

• Instruction slots are delimited with one semicolon “;”.

• Instruction lines are terminated with two semicolons “;;”.

• The up to four instructions on an instruction line are executed in
parallel.

• Every instruction slot consists of a 32-bit opcode.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-21

Introduction

• Some instructions (such as immediate extensions) require two 32-
bit opcodes (instruction slots) to execute.

• Some instructions (program sequencer, conditional, and immediate
extension) require specific instruction slots.

An instruction is a 32-bit word that activates one or more of the Tiger-
SHARC processor’s execution units to carry out an operation. The DSP
executes or stalls the instructions in the same instruction line together.
Although the DSP fetches quad words from memory, instruction lines do
not have to be aligned to quad-word boundaries. Regardless of size (one to
four instructions), instruction lines follow one after the other in memory

Figure 1-6. Instruction Line and Slot Structure

An instruction LINE consists of up to four instruction SLOTS.

Slot_1_Instruction ; Slot_2_instruction ; Slot_3_instruction; Slot_4_instruction ;;

Each instruction SLOT is delimited with one semicolon.

The instruction LINE is terminated with two semicolons.

The first two instruction SLOTS are special:

1. (if used) Conditional (if-do, if-else) or a sequencer (jump or other)

2. (if used) Immediate extension instructions must use SLOT 2.

instructions must use SLOT 1.

Instruction Line Syntax and Structure

1-22 ADSP-TS101 TigerSHARC Processor Programming Reference

with a new instruction line beginning one word from where the previous
instruction line ended. The end of an instruction line is identified by the
most significant bit (MSB) in the instruction word.

Instruction Notation Conventions
The TigerSHARC processor assembly language is based on an algebraic
syntax for ease of coding and readability. The syntax for TigerSHARC
processor instructions selects the operation that the DSP executes and the
mode in which the DSP executes the operation. Operations include com-
putations, data movements, and program flow controls. Modes include
Single-Instruction, Single-Data (SISD) versus Single-Instruction, Multi-
ple-Data (SIMD) selection, data format selection, word size selection,
enabling saturation, and enabling truncation. All controls on instruction
execution are included in the DSP’s instruction syntax—there are no
mode bits to set in control registers for this DSP.

This book presents instructions in summary format. This format presents
all the selectable items and optional items available for an instruction. The
conventions for these are:

this|that|other Lists of items delimited with a vertical bar “|” indi-
cate that syntax permits selection of one of the
items. One item from the list must be selected. The
vertical bar is not part of instruction syntax.

{option} An item or a list of items enclosed within curley
braces “{}” indicate an optional item. The item may
be included or omitted. The curley braces are not
part of instruction syntax.

() [] , ; ;; Parenthesis, square bracket, comma, semicolon,
double semicolon, and other symbols are required
items in the instruction syntax and must appear

ADSP-TS101 TigerSHARC Processor Programming Reference 1-23

Introduction

where shown in summary syntax with one exception.
Empty parenthesis (no options selected) may not
appear in an instruction.

Rm Rmd Rmq Register names are replaceable items in the sum-
mary syntax and appear in italics. Register names
indicate that the syntax requires a single (Rm), dou-
ble (Rmd), or quad (Rmq) register. For more
information on register name syntax, compute
block selection, and data format selection, see “Reg-
ister File Registers” on page 2-5.

<imm#> Immediate data (literal values) in the summary syn-
tax appears as <imm#> with # indicating the bit
width of the value.

For example, the following instruction in summary format:

{X|Y|XY}{S|B}Rs = MIN|MAX (Rm, Rn) {({U}{Z})} ;

could be coded as any of the following instructions:

XR3 = MIN (R2, R1) ;

YBR2 = MAX (R1, R0) (UZ);

XYSR2 = MAX (R3, R4) (U);

Unconditional Execution Support
The DSP supports unconditional execution of up to four instructions in
parallel. This support lets programmers use simultaneous computations
with data transfers and branching or looping. These operations can be
combined with few restrictions. The following example code shows three
instruction lines containing 2, 4, and 1 instruction slots each, respectively:

XR3:0=Q[J5+=J9]; YR1:0=R3:2+R1:0;;

XR3:0=Q[J5+=J9]; YR3:0=Q[K5+=K9]; XYR7:6=R3:2+R1:0; XYR8=R4*R5;;

J5=J9-J10;;

Instruction Parallelism Rules

1-24 ADSP-TS101 TigerSHARC Processor Programming Reference

It is important to note that the above instructions execute uncondition-
ally. Their execution does not depend on computation-based conditions.
For a description of condition dependent (conditional) execution, see
“Conditional Execution Support” on page 1-24.

Conditional Execution Support
All instructions can be executed conditionally (a mechanism also known as
predicated execution). The condition field exists in one instruction slot in
an instruction line, and all the remaining instructions in that line either
execute or not, depending on the outcome of the condition.

In a conditional computational instruction, the execution of the entire
instruction line can depend on the specified condition at the beginning of
the instruction line. Conditional instructions take one of the following
forms:

IF Condition;

DO, Instruction; DO, Instruction; DO, Instruction ;;

IF Condition, Sequencer_Instruction;

ELSE, Instruction; ELSE, Instruction; ELSE, Instruction ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. For more information, see “Conditional Execution” on page 7-12.

Instruction Parallelism Rules
The TigerSHARC processor executes from one to four 32-bit instructions
per line. The compiler or programmer determines which instructions may
execute in parallel in the same line prior to runtime (leading to the name
Static Superscalar). The DSP architecture places several constraints on the
application of different instructions and various instruction combinations.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-25

Introduction

Note that all the restrictions refer to combinations of instructions within
the same line. There is no restriction of combinations between lines.
There are, however, cases in which certain combinations between lines
may cause stall cycles (see “Conditional Branch Effects on Pipeline” on
page 7-44), mostly because of data conflicts (operand of an instruction in
line n+1 is the result of instruction in line #n, which is not ready when
fetched).

Table 1-1 on page 1-29 and Table 1-2 on page 1-34 identify instruction
parallelism rules for the TigerSHARC processor. The following sections
provide more details on each type of constraint and accompany the details
with examples:

• “General Restriction” on page 1-36

• “IALU Instruction Restrictions” on page 1-39

• “Compute Block Instruction Restrictions” on page 1-37

• “Sequencer Instruction Restrictions” on page 1-45

The instruction parallelism rules in Table 1-1 and Table 1-2 present the
resource usage constraints for instructions that occupy instruction slots in
the same instruction line. The horizontal axis lists resources—portions of
the DSP architecture that are active during an instruction—and lists the
number of resources that are available. The vertical axis lists instruction
types—descriptive names for classes of instructions. For resources, a ‘1’
indicates that a particular instruction uses one unit of the resource, and a
‘2’ indicates that the instruction uses two units of the resource. Typical
instructions of most classes are listed with the descriptive name for the
instruction type.

It is important to note that Table 1-1 and Table 1-2 identify static restric-
tions for the TigerSHARC processor. Static restrictions are distinguished
from dynamic restrictions, in that static restrictions can be resolved by the

Instruction Parallelism Rules

1-26 ADSP-TS101 TigerSHARC Processor Programming Reference

assembler. For example, the assembler flags the instruction
XR3:0 = Q[J0 += 3];; because the modifier is not a multiple of 4—this is
a static violation.

Dynamic restrictions cannot be resolved by the assembler because these
restrictions represent runtime conditions, such as stray pointers. When the
processor encounters a dynamic (runtime) violation, an exception is issued
when the violation runs through the core. Whatever the case, the proces-
sor does not arrive at a deadlock situation, although unpredictable results
may be written into registers or memory.

As a dynamic restriction example, examine the instruction
xr3:0 = Q[J0 += 4];;. Although this instruction looks correct to the
assembler, it may violate hardware restrictions if J0 is not quad aligned.
Because the assembler cannot predict what the code will do to J0 up to the
point of this instruction, this violation is dynamic, since it occurs at
runtime.

Further, Table 1-1 and Table 1-2 cover restrictions that arise from the
interaction of instructions that share a line, but mostly omits restrictions
of single instructions. An example of the former occurs when two instruc-
tions attempt to use the same unit in the same line. An example of an
individual instruction restriction is an attempt to use a register that is not
valid for the instruction. For example, the instruction XR0 = CB[J5+=1];;
is illegal because circular buffer accesses can only use IALU registers J0
through J3.

For most instruction types, you can locate the instruction in Table 1-1 or
Table 1-2 and read across to find out the resources it uses. Resource usage
for data movement instructions is more complicated to analyze. Resource
usage for these instructions is calculated by adding together base resources,
where base resources are determined by the type of move instruction.
Move instructions are Ureg transfer (register to register), immediate load
(immediate values to register), memory load (memory to register), and

ADSP-TS101 TigerSHARC Processor Programming Reference 1-27

Introduction

memory store (register to memory). Source resources are determined by
the resource register and are only applicable when the source itself is a reg-
ister (Ureg transfer and stores). Destination resources may be of two types:

• Address pointer in post-modify (for example, XR0 = [J0 += 2];;)

• Destination register—only applicable when the destination is a reg-
ister (Ureg transfer, memory loads and immediate loads)

If a particular combination of base, source, and destination uses more
resources than are available, that combination is illegal. Consider, for
example, the following instruction:

XR3:0 = Q[K31+0x40000];;

This is a memory load instruction, or specifically, a K-IALU load using a
32-bit offset. Reading across the table, the base resources used by the
instruction are two slots in the line—the K-IALU instruction and the sec-
ond instruction slot (for the immediate extension). The destination is
XR3:0, which are X-compute block registers. The ‘X-Register File,
Dreg = XR31–0’ line under ‘Ureg transfer and Store (Source Register)
Resources’ in the table indicates that the instruction also uses an X-com-
pute block port and an X-compute block input port.

The following Ureg transfer instruction provides another example:

XYR0=CJMP;;

This example uses the following resources:

• One instruction slot

• Base resources—an IALU instruction (no matter whether J-IALU
or K-IALU) and the Ureg transfer resource (base resources) for the
IALU instruction

Instruction Parallelism Rules

1-28 ADSP-TS101 TigerSHARC Processor Programming Reference

• Source resources—the sequencer I/O port

• Destination resources—an X-compute block port, an X-compute
block input port, a Y-compute block port, and a Y-compute block
input port

By comparison, the instruction R3:0 = j7:4;; uses an instruction slot, an
IALU slot (no matter whether J or K), the Ureg transfer slot, and the J-
IALU input port and output port.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-29

Introduction

Table 1-1. Parallelism Rules for Register File, DAB, J/K-IALU, and Port
Access Instructions

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 i

ns
t.

 s
lo

t2

IA
LU

 in
st

.
Im

m
. l

oa
d

or
 U

re
g

xf
er

J-
IA

LU
K

-I
A

LU
J-

IA
LU

-p
or

t
I/

O
K

-I
A

LU
-p

or
t

I/
O

X
-p

or
ts

 I
/O

3

X
-p

or
ts

 in
pu

t
X

-p
or

ts
 o

ut
pu

t
X

-D
A

B

Y-
po

rt
s

I/
O

3

Y-
po

rt
s

in
pu

t
Y-

po
rt

s
ou

tp
ut

Y-
D

A
B

Se
q.

-p
or

t
I/

O
E

xt
. P

or
t

I/
O

IO
P

-p
or

t
I/

O
3

L
in

k
Po

rt
 I

/O
3

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 3 3

⇓ Instruction Types: ⇓

IALU Arithmetic

J-IALU
Js = Jm Op Jn|Imm8

1 1 1

J-IALU, 32-bit immediate
Js = Jm Op Imm32

2 1 1 1

K-IALU
Ks = Km Op Kn|Imm8

1 1 1

K-IALU, 32-bit immediate
Ks = Km Op Imm32

2 1 1 1

Data Move (resource total = instr. + Uregs)

Ureg Transfer
Ureg = Ureg

1 1 1

Immediate Load (resource total = instr. + Ureg)

Immediate 16-bit Load
Ureg = Imm16

1 1 1

Immediate 32-bit Load
Ureg = Imm32

2 1 1 1

Instruction Parallelism Rules

1-30 ADSP-TS101 TigerSHARC Processor Programming Reference

Memory Load (resource total = instr. + Ureg)

J-IALU Load
Ureg = [Jm +|+= Jn|imm8]

1 1 1 1

J-IALU Load, 32-bit offset
Ureg = [Jm +|+= imm32]

2 1 1 1

K-IALU Load
Ureg = [Km +|+= Kn|imm8]

1 1 1

K-IALU Load, 32-bit offset
Ureg = [Km +|+= imm32]

2 1 1 1

Memory Store (resource total = instr. + Ureg)

J-IALU Store
[Jm +|+= Jn|imm8] = Ureg

1 1 1

J-IALU Store, 32-bit offset
[Jm +|+= imm32] = Ureg

2 1 1 1

K-IALU Store
[Km +|+= Kn|imm8] = Ureg

1 1 1

K-IALU Store, 32-bit offset
[Km +|+= imm32] = Ureg

2 1 1 1

Table 1-1. Parallelism Rules for Register File, DAB, J/K-IALU, and Port
Access Instructions (Cont’d)

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 i

ns
t.

 s
lo

t2

IA
LU

 in
st

.
Im

m
. l

oa
d

or
 U

re
g

xf
er

J-
IA

LU
K

-I
A

LU
J-

IA
LU

-p
or

t
I/

O
K

-I
A

LU
-p

or
t

I/
O

X
-p

or
ts

 I
/O

3

X
-p

or
ts

 in
pu

t
X

-p
or

ts
 o

ut
pu

t
X

-D
A

B

Y-
po

rt
s

I/
O

3

Y-
po

rt
s

in
pu

t
Y-

po
rt

s
ou

tp
ut

Y-
D

A
B

Se
q.

-p
or

t
I/

O
E

xt
. P

or
t

I/
O

IO
P

-p
or

t
I/

O
3

L
in

k
Po

rt
 I

/O
3

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 3 3

⇓ Instruction Types: ⇓

ADSP-TS101 TigerSHARC Processor Programming Reference 1-31

Introduction

Ureg transfer and Store (Source Register) Resources

J-IALU
Ureg = J30–0|JB3–0|JL3–0

1

K-IALU
Ureg = K30–0|KB3–0|KL3–0

1

X-Register File
Dreg = XR31–0

1 1

Y-Register File
Dreg = XR31–0

1 1

XY-Register Files (SIMD)
Ureg = XYR31–0

1 1 1 1

Sequencer
Ureg = CJMP|RETI|RETS|…4 1

External Port Control/Status
Ureg = SYSCON|BUSLK|…5 1

I/O Processor (DMA)
Ureg = DCS0|DCD0|…6 1

Link Port Control/Status/Buf.
Ureg = LCTL0|LCTL1|…7

1

Table 1-1. Parallelism Rules for Register File, DAB, J/K-IALU, and Port
Access Instructions (Cont’d)

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 i

ns
t.

 s
lo

t2

IA
LU

 in
st

.
Im

m
. l

oa
d

or
 U

re
g

xf
er

J-
IA

LU
K

-I
A

LU
J-

IA
LU

-p
or

t
I/

O
K

-I
A

LU
-p

or
t

I/
O

X
-p

or
ts

 I
/O

3

X
-p

or
ts

 in
pu

t
X

-p
or

ts
 o

ut
pu

t
X

-D
A

B

Y-
po

rt
s

I/
O

3

Y-
po

rt
s

in
pu

t
Y-

po
rt

s
ou

tp
ut

Y-
D

A
B

Se
q.

-p
or

t
I/

O
E

xt
. P

or
t

I/
O

IO
P

-p
or

t
I/

O
3

L
in

k
Po

rt
 I

/O
3

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 3 3

⇓ Instruction Types: ⇓

Instruction Parallelism Rules

1-32 ADSP-TS101 TigerSHARC Processor Programming Reference

Ureg Transfer and Load (Destination Register) Resources

J-IALU
Ureg = J30–0|JB3–0|JL3–0

1

K-IALU
Ureg = K30–0|KB3–0|KL3–0

1

X-Register File
Dreg = XR31–0

1 1

Y-Register File
Dreg = XR31–0

1 1

XY-Register Files (SIMD)
Ureg = XYR31–0

1 1 1 1

Sequencer
Ureg = CJMP|RETI|RETS|…4 1

External Port Control/Status
Ureg = SYSCON|BUSLK|…5 1

I/O Processor (DMA)
Ureg = DCS0|DCD0|…6 1

Link Port Control/Status/Buf.
Ureg = LCTL0|LCTL1|…7 1

Table 1-1. Parallelism Rules for Register File, DAB, J/K-IALU, and Port
Access Instructions (Cont’d)

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 i

ns
t.

 s
lo

t2

IA
LU

 in
st

.
Im

m
. l

oa
d

or
 U

re
g

xf
er

J-
IA

LU
K

-I
A

LU
J-

IA
LU

-p
or

t
I/

O
K

-I
A

LU
-p

or
t

I/
O

X
-p

or
ts

 I
/O

3

X
-p

or
ts

 in
pu

t
X

-p
or

ts
 o

ut
pu

t
X

-D
A

B

Y-
po

rt
s

I/
O

3

Y-
po

rt
s

in
pu

t
Y-

po
rt

s
ou

tp
ut

Y-
D

A
B

Se
q.

-p
or

t
I/

O
E

xt
. P

or
t

I/
O

IO
P

-p
or

t
I/

O
3

L
in

k
Po

rt
 I

/O
3

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 3 3

⇓ Instruction Types: ⇓

ADSP-TS101 TigerSHARC Processor Programming Reference 1-33

Introduction

Memory Load Ureg (Destination Register) Resources

X-Register File DAB/SDAB
XDreg = DAB q[addr]
XDreg = XR31–0

1 1 1

Y-Register File DAB/SDAB
YDreg = DAB q[addr]
YDreg = YR31–0

1 1 1

XY-Register Files DAB/SDAB
XYDreg = DAB q[addr]
XYDreg = XYR31–0

1 1 1 1 1 1

1 If a conditional instruction is present on the instruction line, it must use the first instruction slot.
2 If an immediate extension is present on the instruction line, it must use the second instruction slot.
3 These resources are listed for informational purposes only. These constraints can not be exceeded

within the core.
4 Complete list is all registers in register groups 0x1A, 0x38, and 0x39: CJMP, RETI, RETIB, RETS,

DBGE, ILATSTL, ILATSTH, LC0, LC1, ILATL, ILATH, IMASKL, IMASKH, PMASKL,
PMASKH, TIMER0L, TIMER0H, TIMER1L, TIMER1H, TMRIN0L, TMRIN0H, TMRIN1L,
TMRIN1H, SQCTL, SQCTLST, SQCTLCL, SQSTAT, SFREG, ILATCLL, and ILATCLH.

5 Complete list is all registers in register groups 0x24 and 0x3A: SYSCON, BUSLK, SDRCON, SYS-
TAT, SYSTATCL, BMAX, BMAXC, AUTODMA0, and AUTODMA1.

6 Complete list is all registers in register groups 0x20 and 0x23: DCS0, DCD0, DCS1, DCD1, DCS2,
DCD2, DCS3, DCD3, DCNT, DCNTST, DCNTCL, CSTAT, and DSTATC.

7 Complete list is all registers in register groups 0x25 and 0x27: LBUFTX0, LBUFRX0, LBUFTX1,
LBUFRX1, LBUFTX2, LBUFRX2, LBUFTX3, LBUFRX3, LCTL0, LCTL1, LCTL2, LCTL3,
LSTAT0, LSTAT1, LSTAT2, and LSTAT3.

Table 1-1. Parallelism Rules for Register File, DAB, J/K-IALU, and Port
Access Instructions (Cont’d)

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 i

ns
t.

 s
lo

t2

IA
LU

 in
st

.
Im

m
. l

oa
d

or
 U

re
g

xf
er

J-
IA

LU
K

-I
A

LU
J-

IA
LU

-p
or

t
I/

O
K

-I
A

LU
-p

or
t

I/
O

X
-p

or
ts

 I
/O

3

X
-p

or
ts

 in
pu

t
X

-p
or

ts
 o

ut
pu

t
X

-D
A

B

Y-
po

rt
s

I/
O

3

Y-
po

rt
s

in
pu

t
Y-

po
rt

s
ou

tp
ut

Y-
D

A
B

Se
q.

-p
or

t
I/

O
E

xt
. P

or
t

I/
O

IO
P

-p
or

t
I/

O
3

L
in

k
Po

rt
 I

/O
3

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 1 1 2 2 1 1 2 2 1 1 1 1 3 3

⇓ Instruction Types: ⇓

Instruction Parallelism Rules

1-34 ADSP-TS101 TigerSHARC Processor Programming Reference

Table 1-2. Parallelism Rules for Compute Block and Sequencer Instructions

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 in

st
. s

lo
t2

X
-C

om
p

B
lo

ck
 I

ns
t.

X
-A

LU

X
-M

ul
ti

pl
ie

r

X
-S

hi
ft

er

Y-
C

om
p

B
lo

ck
 I

ns
t.

Y-
A

LU

Y-
M

ul
ti

pl
ie

r

Y-
Sh

if
te

r

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 2 1 1 1

⇓ Instruction Types: ⇓

Sequencer Instructions

Conditional Jump/Call, 16-bit offset
IF cond, JUMP|CALL Imm16

1 1

Conditional Jump/Call, 32-bit offset
IF cond, JUMP|CALL Imm32

2 1 1

Other Conditionals, Indirect Jumps, Static Flag Ops 1 1

X Compute Block Operations

X-ALU instruction, except quad output
XDreg = Dreg + Dreg

1 1 1

X-Multiplier instruction, except quad output
XDreg = Dreg * Dreg

1 1 1

X-Shifter instruction, except MASK, FDEP, STAT 1 1 1

X-ALU instruction with quad output
(add_sub, EXPAND, MERGE)

1 1 1 1

X-Multiplier instruction with quad output 1 1 1 1

X-Shifter instructions MASK, FDEP, XSTAT 1 2

ADSP-TS101 TigerSHARC Processor Programming Reference 1-35

Introduction

Y Compute Block Operations

Y-ALU instruction, except quad output
YDreg = Dreg + Dreg

1 1 1

Y-Multiplier instruction, except quad output
YDreg = Dreg * Dreg

1 1 1

Y-Shifter instruction, except MASK, FDEP, STAT 1 1 1

Y-ALU instruction with quad output
(add_sub, EXPAND, MERGE)

1 1 1 1

Y-Multiplier instruction with quad output 1 1 1 1

Y-Shifter instructions MASK, FDEP, YSTAT 1 2

X and Y Compute Block Operations (SIMD)

XY-ALU instruction, except quad output
XYDreg = Dreg + Dreg

1 1 1 1 1

XY-Multiplier instruction, except quad output
XYDreg = Dreg * Dreg

1 1 1 1 1

XY-Shifter instruction, except MASK, FDEP, STAT 1 1 1 1 1

XY-ALU instruction with quad output
(add_sub, EXPAND, MERGE)

1 1 1 1 1 1 1

XY-Multiplier instruction with quad output 1 1 1 1 1 1 1

XY-Shifter instructions MASK, FDEP, X/YSTAT 1 2 2

1 If a conditional instruction is present on the instruction line, it must use the first instruction slot.
2 If an immediate extension is present on the instruction line, it must use the second instruction slot.

Table 1-2. Parallelism Rules for Compute Block and Sequencer Instructions

Resources:

In
st

. s
lo

ts
 u

se
d

Fi
rs

t
in

st
. s

lo
t1

Se
co

nd
 in

st
. s

lo
t2

X
-C

om
p

B
lo

ck
 I

ns
t.

X
-A

LU

X
-M

ul
ti

pl
ie

r

X
-S

hi
ft

er

Y-
C

om
p

B
lo

ck
 I

ns
t.

Y-
A

LU

Y-
M

ul
ti

pl
ie

r

Y-
Sh

if
te

r

⇒ Resources Available: ⇒ 4 1 1 2 1 1 1 2 1 1 1

⇓ Instruction Types: ⇓

Instruction Parallelism Rules

1-36 ADSP-TS101 TigerSHARC Processor Programming Reference

General Restriction
There is a general restriction that applies to all types of instructions: Two
instructions may not write to the same register. This restriction is checked
statically by the assembler. For example:

XR0 = R1 + R2 ; XR0 = R5 * R6 ;;

/* Invalid; these instructions cannot be on the same instruction

line */

XR1 = R2 + R3 , XR1 = R2 - R3 ;;

/* Invalid; add-subtract to the same register */

Consequently, a load instruction may not be targeted to a register that is
updated in the same line by another instruction. For example:

XR0 = [J17 + 1] ; R0 = R3 * R8 ;; /* Invalid */

A load/store instruction in that uses post-modify and update addressing
cannot load the same register that is used as the index Jm/Km (pointer to
memory). For example:

J0 = [J0 += 1] ;;

/* Invalid; J0 cannot be used as both destination (Js) and index

(Jm) in a post-modify (+=) load or store */

No instruction can write to the CJMP register in the same line as a CALL
instruction (which also updates the CJMP register). For example:

if ALE, CALL label ; J6 = J0 + J1 (CJMP) ;; /* Invalid */

There are two types of loop counter updates, where combining them is
illegal. For example:

IF LC0E; DO … ; LC0 = [J0 + J1] ;; /* Invalid */

ADSP-TS101 TigerSHARC Processor Programming Reference 1-37

Introduction

Compute Block Instruction Restrictions
There are two compute blocks, and instructions can be issued to either or
both.

• Instructions in the format XRs = Rm op Rn are issued to the X-com-
pute block

• Instructions in the format YRs = Rm op Rn are issued to the Y-com-
pute block

• Instructions in the format Rs = Rm op Rn or XYRs = Rm op Rn are
issued to both the X- and Y-compute blocks

The following conditions apply when issuing instructions to the compute
blocks. Note that the assembler statically checks all of these restrictions.

• Up to two instructions can be issued to each compute block (mak-
ing that a maximum of four compute block instructions in one
line). Note, however, that for this rule, the instructions of type
Rs = Rm op Rn count as one instruction for each compute block.
For example:

R0 = R1 + R2 ; R3 = R4 * R5 ;;

/* Valid; a total of four instructions */

XR0 = R1 + R2 ; XR3 = R4 * R5 ; XR6 = LSHIFT R1 BY R7 ;;

/* Invalid; three instructions to compute block X */

• Only one instruction can be issued to each unit (ALU, multiplier,
or shifter) in a cycle. Each of the two instructions must be issued to
a different unit (ALU, multiplier or shifter). For example:

XR0 = R1 + R2 ; XR6 = R1 + R2 ;; /* Invalid */

XR0 = R1 + R2 ; YR0 = R1 + R2 ;; /* Valid */

Instruction Parallelism Rules

1-38 ADSP-TS101 TigerSHARC Processor Programming Reference

• When one of the shifter instructions listed below is executed, it
must be the only instruction in that line for the particular compute
block. The instructions are: FDEP, MASK, GETBITS, PUTBITS and
access to XSTAT/YSTAT registers. For example:

XR0 += MASK R1 BY R2 ; XR6 = R1 + R2 ;;

/* Invalid; three operand shifter instruction in same line

with an ALU operation; both issued to compute block X */

• Only one unit (ALU or multiplier) can use two result buses. A unit
uses two result buses either when the result is quad word or when
there are two results (dual ADD and SUB instructions—R0 = R1+R2,

R5 = R1-R2;). Another instruction is allowed in the same line, as
long as it is not a shifter instruction. For example:

R0 = R1 + R2 , R5 = R1 - R2 ; XR6 = R1 * R2 ;; /* Valid */

R0 = R1 + R2 , R5 = R1 - R2 ; XR6 = LSHIFT R1 BY R2 ;;

/* Invalid; shifter instruction and two result ALU instruc-

tion */

R0 = R1 + R2 , R5 = R1 - R2 ; XR3:0 = MR3:0 ;;

/* Invalid; two instructions using two buses */

• There can be no other compute block instruction with Shifter load/
store of X/YSTAT.

• In the multiplier, the option CR (clear and set round bit) and the
option I (integer – not fractional) may not be used in the same
multiply-accumulate instruction.

• The CR option of multiplier may be used only in these instructions:

MR3:2|MR1:0 +|-= Rm * Rn 32-bit fractional multiply-accumulate
MR3:0 +|-= Rmd * Rnd Quad 16-bit fractional multiply-accumulate
MR3:2|MR1:0 += Rm ** Rn Complex multiply-accumulate

ADSP-TS101 TigerSHARC Processor Programming Reference 1-39

Introduction

• Communications Logic Unit (CLU) register load instructions have
the same restrictions as shifter instructions, with one exception—a
CLU register load instruction can be executed in the same instruc-
tion line with another compute instruction that has a quad result.

• All CLU instructions, except for load of CLU registers, refer to the
same rules as compute ALU instructions.

IALU Instruction Restrictions
There are four types of IALU instructions:

• Memory load/store—for example: R0 = [J0 + 1] ;

• IALU operations—for example: J0 = J1 + J2 ;

• Load data—for example: R1 = 0xABCD ;

• Ureg transfer—for example: XR0 = YR0 ;

These restrictions apply when issuing instructions to the IALU. Except for
the load data restriction, the assembler flags all of these restrictions.

• Up to one J-IALU and up to one K-IALU instruction can be issued
in the same instruction line. For example:

R0 = [J0 += 1] ; R1 = [K0 += 1] ;;

/* It’s recommended that J0 and K0 point to different mem-

ory blocks to avoid stall */

[J0 += 1] = XR0 ; [K0 += 1] = YR0;;

J0 = [J5 + 1] ; XR0 = [K6 + 1] ;;

R1 = 0xABCD ; R0 = [J0 += 1] ;;

/* One load data instruction (in K-IALU) and one J-IALU

operation */

XR0 = YR0 ; XR1 = [J0 += 1] ; YR1 = [K0 += 1] ;;

Instruction Parallelism Rules

1-40 ADSP-TS101 TigerSHARC Processor Programming Reference

/* Invalid; three IALU instructions */

XR0 = [J0 + 1] ; YR0 = [J1 + 1] ;;

/* Invalid; both use the same IALU (J-IALU) */

XR0 = [J0 + 1] ; J5 = J1 + 1 ;;

/* Invalid; both use the same IALU (J-IALU) */

• Two accesses to the same memory address in the same line, when
one of them is a store instruction is liable to give unpredictable
results.

• Loading from external memory is only allowed to the compute
block and IALU register files.

• Reading from a multiprocessing broadcast zone is illegal.

• Move register to register instruction: if one of the registers is com-
pute block merged, the other may not be compute block register.
For example:

XYR1:0 = XR11:8 ; /* Invalid */

XR11:8 = XYR1:0 ; /* Invalid */

XYR1:0 = J11:8 ; /* Valid */

J11:8 = XYR1:0 ; /* Valid */

• A line of instructions may contain at the most one of either “load
immediate data to register” or “Ureg to Ureg transfer” instructions.
For example:

XR0 = YR0 ;; /* Valid */

XR5 = YR5 ; YR8 = [J3 + J6] ;; /* Valid */

ADSP-TS101 TigerSHARC Processor Programming Reference 1-41

Introduction

R0 = 0xFFFFFFFF ;;

/* Valid; one load immediate data and one immediate exten-

sion */

XR0 = YR0 ; J5 = 0xFFFF ;;

/* Invalid; one Ureg to Ureg transfer and one load immedi-

ate data instruction */

XR0 = YR0 ; J0 = XR1 ;;

/* Invalid; two Ureg to Ureg transfers */

R0 = 0xFFFF ; J1 = 0xFF ;;

/* Invalid; two load immediate data instructions */

• Access via DAB must be through a quad word load. It can not be
via “merged” Ureg groups. For example:

R3:0 = DAB Q[J0 += 4] ;; /* Valid; broadcast */

R1:0 = DAB Q[J0 += 4] ;; /* Invalid; merged */

• DAB and circular buffer access to memory is allowed only with
post-modify with update. For example:

XR1:0 = CB L[J2 + 2] ;; /* Invalid */

• Register groups 0x20 to 0x3F can be accessed via Ureg transfer only.

• In a register-to-register move, XY register may not be used as source
or destination of the transaction, unless it is both source and desti-
nation. For example:

R1:0 = R11:10 ;; /* Valid */

J1:0 = R11:10 ;; /* Invalid */

R3:0 = J3:0 ;; /* Invalid */

Instruction Parallelism Rules

1-42 ADSP-TS101 TigerSHARC Processor Programming Reference

• There can be up to two load instructions to the same compute
block register file or up to one load to and one store from the same
compute block register file. (A compute block register file has one
input port and one input/output port.) If two store instructions are
issued, none of them will be executed.For example:

[J0 + 1] = XR0 ; [K0 + 1] = XR1 ;;

/* Invalid; attempts to use two output ports */

R0 = [J0 + 1] ; R1 = [K1 + 1] ;;

/* Valid; uses two input ports in compute block X and Y */

R0 = [J0 + 1] ; [K1 + 1] = XR1 ;; /* Valid */

• A Ureg transfer within the same compute register file cannot be
used with any other store to that register file. For example:

XR3:0 = R7:4 ; [J17 + 2] = YR4 ;;

/* Valid; different register files */

XR3:0 = R7:4 ; XR0 = [J17 + 2] ;;

/* Valid; one Ureg trans. and one load to compute block X

*/

XR3:0 = R7:4 ; [J17 + 2] = XR4 ;;

/* Invalid; one Ureg transfer and one store from compute

block X */

R3:0 = R31:28 ;; /* Valid—SIMD Ureg transfer */

R3:0 = R31:28 ; [J17 + 2] = YR8;;

/* Invalid—SIMD Ureg transfer (in both RFs) and store from

compute block Y */

ADSP-TS101 TigerSHARC Processor Programming Reference 1-43

Introduction

• Only one DAB load per Compute Block is allowed. For example:

XR3:0 = DAB Q[J0 += 4] ; XR7:4 = DAB Q[K0 += 4] ;;

/* Invalid */

XR3:0 = DAB Q[J0 += 4] ; YR7:4 = DAB Q[K0 += 4] ;; /* Valid

*/

• Only one memory load/store to and from the same single port reg-
ister files is allowed. The single port register files are:

• J-IALU registers: groups 0xC and 0xE

• K-IALU registers: groups 0xD and 0xF

• Bus Control registers: groups 0x24 and 0x3A

• Sequencer, Interrupt and BTB registers: groups 0x1A, 0x30–
0x39, and 0x3B

• Debug logic registers: groups 0x1B, 0x3D–0x3F

For example:

J0 = [J5 + 1] ; K0 = [K6 + 1] ;; /* Valid */

J0 = [J5 + 1] ; [K6 + 1] = K0 ;; /* Valid */

J0 = [J5 + 1] ; [K6 + 1] = J1 ;;

/* Invalid; one load to J-IALU register file and one store

from J-IALU register file */

• Access to memory must be aligned to its size. For example, quad
word access must be quad-word aligned. The long access must be
aligned to an even address. This excludes load to compute block via

Instruction Parallelism Rules

1-44 ADSP-TS101 TigerSHARC Processor Programming Reference

DAB. In addition, the immediate address modifier must be a mul-
tiple of four in quad accesses and of two in long accesses. For
example:

XR3:0 = Q[J0 += 3] ;; /* Invalid */

XR3:0 = Q[J0 += 4] ;; /* Valid */

• A Ureg store instruction and an instruction that updates the same
Ureg may not be issued in the same instruction line, because the
store instruction may be stalled and by the time it progresses, the
contents may have been modified by the update instruction. For
example:

XR0 = R1 + R3 ; Q[J7 += 4] = XR3:0 ;; /* Invalid */

IF ALE, CALL label ; [J0 += 1] = CJMP ;;

/* Invalid; CJMP is updated by the call instruction */

• For the following J-IALU circular buffer or bit-reversed addressing
operations, Jm (the index) only may be J0, J1, J2, or J3:

Js = Jm +|- Jn (CB)

Ureg = CB [L] [Q] (Jm +|+= Jn|Imm)

CB [L] [Q] (Jm +/+= Jn|Imm) = Ureg

Ureg = DAB [L] [Q] (Jm +|+= Jn|Imm)

Ureg = BR [L] [Q] (Jm +|+= Jn|imm)

BR [L] [Q] (Jm +|+= Jn|imm) = Ureg

Ureg = BR [L] [Q] (Jm +|+= Jn|Imm)

The same restrictions apply to K-IALU instructions that use circu-
lar buffer or bit-reversed addressing operations.

ADSP-TS101 TigerSHARC Processor Programming Reference 1-45

Introduction

• On load or store instructions the memory address may not be a reg-
ister. For example, the address may not be a memory mapped
register address in the range of 0x180000 to 0x1FFFFF. For example:

Q[J2 + 0] = XR3:0 ;;

/* Invalid if J2 is in the range of 0x180000 to 0x1FFFFF */

• If one IALU is used to access the other IALU register, there may
not be an immediate load instruction in the same line. For
example:

Q[J2 + 0] = K3:0 ; XR0 = 100 ;; /* Invalid */

Q[K2 + 0] = K3:0 ; XR0 = 100 ;; /* Valid */

Sequencer Instruction Restrictions
There can be one sequencer instruction and one immediate extension per
line, where the sequencer instruction can be jump, indirect jump, and
other instructions. The assembler statically checks all of these restrictions:

• The sequencer instruction must be the first instruction in the four-
slot instruction line.

• The immediate extension must be the second instruction in the
four-slot instruction line.

• The immediate extension is counted as one of the four instructions
in the line.

Instruction Parallelism Rules

1-46 ADSP-TS101 TigerSHARC Processor Programming Reference

• There cannot be two instructions that end in the same quad-word
boundary, and where both have branch instructions with a pre-
dicted bit set. For example:

IF MLE, JUMP + 100 ;; /* begin address 100 */

IF NALE JUMP -50 ;

XR0 = R5 + R6 ; J0 = J2 + J3 ; YR4 = [K3 + 40] ;;

/* Valid; first instruction line ends on 1001; second

instruction line ends on 1005 */

IF MLE, JUMP + 100 ;; /* begin address 100 */

IF NALE JUMP - 50 ;;

/* Invalid; both lines within the same quad word */

• For instruction SCFx += op Cond, there can be no operation
between compute block static flags (XSF0/1, YSF0/1, and XYSF0/1)
and non-compute block conditions.

ADSP-TS101 TigerSHARC Processor Programming Reference 2-1

2 COMPUTE BLOCK REGISTERS

The TigerSHARC processor core contains two compute blocks. Each
compute block contains a register file and three independent computation
units—an ALU, a multiplier, and a shifter. Because the execution of all
computational instructions in the TigerSHARC DSP depends on the
input and output data formats and depends on whether the instruction is
executed on one computational block or both, it is important to under-
stand how to use the TigerSHARC DSP’s compute block registers. This
chapter describes the registers in the compute blocks, shows how the regis-
ter name syntax controls data format and execution location, and defines
the available data formats.

The DSP has two compute blocks—compute block X and compute
block Y. Each block contains a register file and three independent compu-
tation units. The units are the ALU, multiplier, and shifter.

A general-purpose, multiport, 32-word data register file in each compute
block serves for transferring data between the computation units and the
data buses and stores intermediate results. Figure 2-1 shows how each of
the register files provide the interface between the internal buses and the
computational units within the compute blocks.

As shown in Figure 2-1, data input to the register file passes through the
data alignment buffer (DAB). The DAB is a two quad-word FIFO that
provides aligned data for registers when dual- or quad-register loads
receive misaligned data from memory. For more information on using the
DAB, see “IALU” on page 6-1.

2-2 ADSP-TS101 TigerSHARC Processor Programming Reference

Within the compute block, there are two types of registers—mem-
ory-mapped registers and non-memory-mapped registers. The memory
mapped registers in each of the compute blocks are the general-purpose
data register file registers XR31–0 and YR31–0. Because these registers are
memory mapped, they are accessible to external bus devices.

For operations within a single DSP, the distinction between mem-
ory-mapped and non-memory-mapped compute block registers is
important because the memory-mapped registers are Universal registers
(Ureg). The Ureg group of registers is available for many types of opera-
tions working with portions of the DSP’s core other than the portion of
the core where the Ureg resides. The compute block Ureg registers can be

Figure 2-1. Data Register Files in Compute Block X and Y

Y
REGISTER

FILE
32x32

MULTIPLIER

ALU

SHIFTER

DAB

128 128 128

128

128

TO DATA BUSES

6464

COMPUTE BLOCK Y

X
REGISTER

FILE
32x32

MULTIPLIER

ALU

SHIFTER

DAB

128 128

6464

COMPUTE BLOCK X

128

128

128

TO DATA BUSES

ADSP-TS101 TigerSHARC Processor Programming Reference 2-3

Compute Block Registers

used for additional operations unavailable to other Ureg registers. To dis-
tinguish the compute block register file registers from other Ureg registers,
the XR31–0 and YR31–0 registers are also referred to as Data registers (Dreg).

For operations in a multiprocessing DSP system, it is very useful that 90%
of the registers in the TigerSHARC processor are memory-mapped regis-
ters. The memory-mapped registers have absolute addresses associated
with them, meaning that they can be accessed by other processors through
multiprocessor space or accessed by any other bus masters in the system.

A DSP can access its own registers by using the multiprocessor
memory space, but the DSP would have to tie up the external bus
to access its own registers this way.

The compute blocks have a few registers that are non-memory mapped.
These registers do not have absolute addresses associated with them. The
non-memory-mapped registers are special registers that are dedicated for
special instructions in each compute block. The unmapped registers in the
compute blocks include:

• Compute block status (XSTAT and YSTAT) registers

• Parallel Result (XPR1–0 and YPR1–0) registers—ALU

• Multiplier Result (XMR3–0 and YMR3–0) registers—Multiplier

• Multiplier Result Overflow (XMR4 and YMR4) registers—Multiplier

• Bit FIFO Overflow Temporary (XBFOTMP and YBFOTMP) registers—
Shifter

2-4 ADSP-TS101 TigerSHARC Processor Programming Reference

The non-memory-mapped registers serve special purposes in each com-
pute block. The X/YSTAT registers (shown in Figure 2-2 and Figure 2-3)
hold the status flags for each compute block. These flags are set or reset to
indicate the status of an instruction’s execution a compute block’s ALU,
multiplier, and shifter. The X/YPR1–0 registers hold parallel results from
the ALU’s SUM, ABS, VMAX, and VMIN instructions. The X/YMR3–0 registers
optionally hold results from fixed-point multiply operations, and the
X/YMR4 register holds overflow from those operations. The X/YBFOTMP reg-
isters temporarily store or return overflow from GETBITS and PUTBITS
instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MIS—Multiplier floating-pt. invalid op., sticky
MOS—Multiplier fixed-pt. overflow, sticky
MVS—Multiplier floating-pt. overflow, sticky
MUS—Multiplier floating-pt, underflow, sticky
AIS—ALU floating-pt. invalid op., sticky
AOS—ALU fixed-pt. overflow, sticky
AVS—ALU floating-pt. overflow, sticky
AUS—ALU floating-pt. underflow,sticky
Reserved
IVEN—Invalid enable
OEN—Overflow enable
UEN—Underflow enable
Reserved

Figure 2-2. XSTAT/YSTAT (Upper) Register Bit Descriptions

ADSP-TS101 TigerSHARC Processor Programming Reference 2-5

Compute Block Registers

Register File Registers
The compute block X and Y register files contain thirty-two 32-bit regis-
ters, which serve as a compute block’s interface between DSP internal bus
and the computational units. The register file registers—XR31–0 and
YR31–0—are both universal registers (Ureg) and data registers (Dreg).

All inputs for computations come from the register file and all results are
sent to the register file, except for fixed-point multiplies which can
optionally be sent to the MR3–0 registers.

It is important to note that a register may be used once in an
instruction slot, but the assembly syntax permits using registers mul-
tiple times within an instruction line (which contains up to four
instruction slots). The register file registers are hardware inter-
locked, meaning that there is dependency checking during each
computation to make sure the correct values are being used. When

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AZ—ALU zero
AN—ALU negative
AV—ALU overflow
AC—ALU carry
MZ—Multiplier zero
MN—Multiplier negative
MV—Multiplier overflow
MU—Multiplier underflow
SZ—Shifter zero
SN—Shifter negative
BF—Block floating-point flags
AI—ALU floating-point invalid operation
MI—Multiplier floating-point invalid operation
TROV—Trellis overflow
TRSOV—Trellis overflow, sticky

Figure 2-3. XSTAT/YSTAT (Lower) Register Bit Descriptions

Register File Registers

2-6 ADSP-TS101 TigerSHARC Processor Programming Reference

a computation accesses a register, the DSP performs a register
check to make sure there are no other dependencies on that regis-
ter. For more information on instruction lines and dependencies,
see “Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

There are many ways to name registers in the TigerSHARC DSP’s assem-
bly syntax. The register name syntax provides selection of many features of
computational instructions. Using the register name syntax in an instruc-
tion, you can specify:

• Compute block selection

• Register width selection

• Operand size selection

• Data format selection

ADSP-TS101 TigerSHARC Processor Programming Reference 2-7

Compute Block Registers

Figure 2-4 shows the parts of the register name syntax and the features
that the syntax selects.

The DSP’s assembly syntax also supports selection of integer or
fractional and real or complex data types. These selections are pro-
vided as options to instructions and are not part of register file
register name syntax.

Compute Block Selection
As shown in Figure 2-4, the assembly syntax for naming registers lets you
select the compute block of the register with which you are working.

The X and Y register-name prefixes denote in which compute block the
register resides: X = compute block X only, Y = compute block Y only, and
XY (or no prefix) = both. The following ALU instructions provide some
register name syntax examples.

XR0 = R1 + R2 ;; /* This instruction executes in block X */

This instruction uses registers XR0, XR1, and XR2.

YR1 = R5 + R6 ;; /* This instruction executes in block Y */

This instruction uses registers YR1, YR5, and YR6.

Figure 2-4. Register File Register Name Syntax

Compute block selection (none, X, Y, or XY)

Operand size selection (none, L, S, or B)

Register width selection (# or #:#)

Register name___R_

Fixed- or floating-point data format selection (none or F)

{for result registers only}

Register File Registers

2-8 ADSP-TS101 TigerSHARC Processor Programming Reference

XYR0 = R0 + R2 ;; /* This instruction executes in block X & Y */

This instruction uses registers XR0, XR2, YR0, and YR2.

R0 = R22 + R3 ;; /* This instruction executes in block X & Y */

This instruction uses registers XR0, XR22, XR3, YR0, YR22, and YR3.

Because the compute block prefix lets you select between executing the
instruction in one or both compute blocks, this prefix provides the selec-
tion between Single-Instruction, Single-Data (SISD) execution and
Single-Instruction, Multiple-Data (SIMD) execution. Using SIMD execu-
tion is a powerful way to optimize execution if the same algorithm is being
used to process multiple channels of data.

It is important to note that SISD and SIMD are not modes that are turned
on or off with some latency in the change. SISD and SIMD execution are
always available as execution options simply through register name
selection.

To represent optional items, instruction syntax definitions use curley
braces { } around the item. To represent choices between items, instruc-
tion syntax definitions place a vertical bar | between items. The following
syntax definition example and comparable instruction indicates the differ-
ence for compute block selection:

{X|Y|XY}Rs = Rm + Rn ;;

/* the curly braces enclose options */

/* the vertical bars separate choices */

XYR0 = R1 + R0 ;;

/* code, no curly braces — no vertical bars */

Register Width Selection
As shown in Figure 2-4 on page 2-7, the assembly syntax for naming regis-
ters lets you select the width of the register with which you are working.

ADSP-TS101 TigerSHARC Processor Programming Reference 2-9

Compute Block Registers

Each individual register file register (XR31–0 and YR31–0) is 32 bits wide.
To support data sizes larger than a 32-bit word, the DSP’s assembly syntax
lets you combine registers to hold larger words. The register name syntax
for register width works as follows:

• Rs, Rm, or Rn indicates a Single register containing a 32-bit word (or
smaller).

For example, these are register names such as R1, XR2, and so on.

• Rsd, Rmd, or Rnd indicates a Double register containing a 64-bit word
(or smaller).

For example, these are register names such as R1:0, XR3:2, and so
on. The lower register must be evenly divisible by two.

• Rsq, Rmq, or Rnq indicates a Quad register containing a 128-bit word
(or smaller).

For example, these are register names such as R3:0, XR7:4, and so
on. The lowest register must be evenly divisible by 4.

The combination of italic and code font in the register name syntax above
indicates a user-substitutable value. Instruction syntax definitions use this
convention to represent multiple register names. The following syntax
definition example and comparable instruction indicates the difference for
register width selection.

{X|Y|XY}Rsd = Rmd + Rnd ;;

/* replaceable register names, italics are variables */

XR1:0 = R3:2 + R1:0 ;;

/* code, no substitution */

Register File Registers

2-10 ADSP-TS101 TigerSHARC Processor Programming Reference

Operand Size and Format Selection
As shown in Figure 2-4 on page 2-7, the assembly syntax for naming regis-
ters lets you select the operand size and fixed- or floating-point format of
the data placed within the register with which you are working.

Single, double, and quad register file registers (Rs, Rsd, Rsq) hold operands
(inputs and outputs) for instructions. Depending on the operand size and
fixed- or floating-point format, there may be more that one operand in a
register.

To select the operand size within a register file register, a register name
prefix selects a size that is equal or less than the size of the register. These
operand size prefixes for fixed-point data work as follows.

• B — Indicates Byte (8-bit) word data. The data in a single 32-bit
register is treated as four 8-bit words. Example register names with
byte word operands are BR1, BR1:0, and BR3:0.

• S — Indicates Short (16-bit) word data. The data in a single 32-bit
register is treated as two 16-bit words. Example register names with
short word operands are SR1, SR1:0, and SR3:0.

• None — Indicates Normal (32-bit) word data. Example register
names with normal word operands are R0 R1:0, and R3:0.

• L — Indicates Long (64-bit) word data. An example register name
with a long word operand is LR1:0.

The B, S, and L options apply for ALU and Shifter operations.
Operand size selection differs slightly for the multiplier. For more
information, see “Multiplier Operations” on page 4-4.

ADSP-TS101 TigerSHARC Processor Programming Reference 2-11

Compute Block Registers

To distinguish between fixed- and floating-point data, the register name
prefix F indicates that the register contains floating-point data. The DSP
supports the following floating-point data formats.

• None — Indicates fixed-point data

• FRs, FRm, or FRn (floating-point data in a single register) — Indi-
cates normal (IEEE format, 32-bit) word data. An example register
name with a normal word, floating-point operand is FR3.

• FRsd, FRmd, or FRnd (floating-point data in a double register) —
Indicates extended (40-bit) word data. An example register name
with an extended word, floating-point operand is FR1:0.

Register File Registers

2-12 ADSP-TS101 TigerSHARC Processor Programming Reference

It is important to note that the operand size influences the execution of
the instruction. For example, SRsd = Rmd + Rnd;; is an addition of four
short data operands, stored in two register pairs. An example of this type
of instruction follows and has the results shown in Figure 2-5.

SR1:0 = R31:30 + R25:24;;

As shown in Figure 2-5, this instruction executes the operation on all 64
bits in this example. The operation is executed on every group of 16 bits
separately.

Figure 2-5. Addition of Four Short Word Operands in Double Registers

R31:30

R25:24

R1:0

[15:0]

[15:0]

R30[15:0]+

[31:16]

[31:16]

R30[31:16]+

[15:0]

[15:0]

[31:16]

[31:16]

R24[15:0]R24[31:16]

R31[15:0]+R31[31:16]+

R25[15:0]R25[31:16]

Low RegisterHigh RegisterRegisters

ADSP-TS101 TigerSHARC Processor Programming Reference 2-13

Compute Block Registers

Registers File Syntax Summary
Data register file registers are used in computational instructions and
memory load/store instructions. The syntax for those instructions is
described in:

• “ALU” on page 3-1

• “Multiplier” on page 4-1

• “Shifter” on page 5-1

The following ALU instruction syntax description shows the conventions
that all syntax descriptions use for data register file names:

{X|Y|XY}{F}Rsd = Rmd + Rnd ;;

Where:

• {X|Y|XY} — The X, Y, or XY (none is same as XY) prefix on the
register name selects the compute block or blocks to execute the
instruction. The curly braces around these items indicate they are
optional, and the vertical bars indicate that only one may be
chosen.

• {F} — The F prefix on the register name selects floating-point for-
mat for the operation. Omitting the prefix selects fixed-point
format.

• Rsd — The result is a double register as indicated by the d. The reg-
ister name takes the form R#:#, where the lower number is evenly
divisible by two (as in R1:0).

• Rmd, Rnd — The inputs are double registers. The m and n indicate
that these must be different registers.

Register File Registers

2-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Here are some examples of register naming. In Figure 2-6, the register
name XBR3 indicates the operation uses four fixed-point 8-bit words in the
X compute block R3 data register. In Figure 2-7, the register name XSR3
indicates the operation uses two fixed-point 16-bit words in the X com-
pute block R3 data register. In Figure 2-8, the register name XR3 indicates
the operation uses one fixed-point 32-bit word in the X compute block R3
data register. In Figure 2-8, the register name XFR3 indicates floating-point
data.

Figure 2-6. Register R3 in Compute Block X, Treated as Byte Data

Figure 2-7. Register R3 in Compute Block X, Treated as Short Data

Figure 2-8. Register R3 in Compute Block X, Treated as Normal Data

XBR3 8 bits8 bits8 bits8 bits

31 24 23 16 15 8 7 0

(Byte)

XSR3
16 bits16 bits

31 16 15 0

(Short)

XR3 or XFR3
32 bits

31 0

(Normal)

ADSP-TS101 TigerSHARC Processor Programming Reference 2-15

Compute Block Registers

Here are additional examples of register naming. Figure 2-9, Figure 2-10,
and Figure 2-11 show examples of operand size in double registers, which
are similar to the examples in Figure 2-6, Figure 2-7, and Figure 2-8.

The examples in Figure 2-12 and Figure 2-13 refer to two registers, but
hold a single data word.

Figure 2-9. Register R3:2 in Compute Block X, Treated as Byte Data

Figure 2-10. Register R3:2 in Compute Block X, Treated as Short Data

Figure 2-11. Register R3:2 in Compute Block X, Treated as Normal Data

Figure 2-12. Register R3:2 in Compute Block X, Treated as Extended
(Floating-Point) Data

XBR3:2

63 48 47 32 31 16 15 0

(Byte)
8 bits8 bits8 bits8 bits 8 bits 8 bits 8 bits 8 bits

56 55 40 39 24 23 8 7

XSR3:2

63 48 47 32 31 16 15 0

(Short)
16 bits 16 bits 16 bits 16 bits

XR3:2

63 32 31 0

(Normal)
32 bits 32 bits

XFR3:2

63 40 39 0

(Extended)
not used 40 bits

Numeric Formats

2-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Numeric Formats
The DSP supports the 32-bit single-precision floating-point data format
defined in the IEEE Standard 754/854. In addition, the DSP supports a
40-bit extended-precision version of the same format with eight additional
bits in the mantissa. The DSP also supports 8-, 16-, 32-, and 64-bit
fixed-point formats—fractional and integer—which can be signed
(two’s-complement) or unsigned.

IEEE Single-Precision Floating-Point Data Format
IEEE Standard 754/854 specifies a 32-bit single-precision floating-point
format, shown in Figure 2-14. A number in this format consists of a sign
bit s, a 24-bit significand, and an 8-bit unsigned-magnitude exponent e.

For normalized numbers, the significand consists of a 23-bit fraction f and
a hidden bit of 1 that is implicitly presumed to precede f22 in the signifi-
cand. The binary point is presumed to lie between this hidden bit and f22.
The least significant bit (LSB) of the fraction is f0; the LSB of the expo-
nent is e0.

The hidden bit effectively increases the precision of the floating-point sig-
nificand to 24 bits from the 23 bits actually stored in the data format.
This bit also insures that the significand of any number in the IEEE nor-
malized number format is always greater than or equal to 1 and less
than 2.

Figure 2-13. Register R3:2 in Compute Block X, Treated as Long Data

XLR3:2

63 0

(Long)
64 bits

ADSP-TS101 TigerSHARC Processor Programming Reference 2-17

Compute Block Registers

The unsigned exponent e can range between 1 ≤ e ≤ 254 for normal num-
bers in the single-precision format. This exponent is biased by
+127 (254/2). To calculate the true unbiased exponent, 127 must be sub-
tracted from e.

The IEEE standard also provides for several special data types in the sin-
gle-precision floating-point format:

• An exponent value of 255 (all ones) with a nonzero fraction is a
Not-A-Number (NAN). NANs are usually used as flags for data
flow control, for the values of uninitialized variables, and for the
results of invalid operations such as 0 ∗ ∞.

• Infinity is represented as an exponent of 255 and a zero fraction.
Note that because the fraction is signed, both positive and negative
Infinity can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
Infinity, both positive zero and negative zero can be represented.

The IEEE single-precision floating-point data types supported by the DSP
and their interpretations are summarized in Table 2-1.

Figure 2-14. IEEE 32-Bit Single-Precision Floating-Point Format
(Normal Word)

FRs

31 30 23 22 0

Hidden Bit

s e7 e0 1.f22 f0.

Binary Point

Numeric Formats

2-18 ADSP-TS101 TigerSHARC Processor Programming Reference

The TigerSHARC processor is compatible with the IEEE single-precision
floating-point data format in all respects, except for:

• The TigerSHARC processor does not provide inexact flags.

• NAN inputs generate an invalid exception and return a quiet
NAN.

• Denormal operands are flushed to zero when input to a computa-
tion unit and do not generate an underflow exception. Any
denormal or underflow result from an arithmetic operation is
flushed to zero and an underflow exception is generated.

• Round-to-nearest and round-towards-zero are supported.
Round-to-±infinity are not supported.

Table 2-1. IEEE Single-Precision Floating-Point Data Types

Type Exponent Fraction Value

NAN 255 Nonzero Undefined

Infinity 255 0 (–1)s Infinity

Normal 1 ≤ e ≤ 254 Any (–1)s (1.f22-0) 2 e–127

Zero 0 0 (–1)s Zero

ADSP-TS101 TigerSHARC Processor Programming Reference 2-19

Compute Block Registers

Extended Precision Floating-Point Format
The extended precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the standard format but with a 32-bit signifi-
cand. This format is shown in Figure 2-15. In all other respects, the
extended floating-point format is the same as the IEEE standard format.

Fixed-Point Formats
The DSP supports fixed-point fractional and integer formats for 16-, 32-,
and 64-bit data. In these formats, numbers can be signed (two’s-comple-
ment) or unsigned. The possible combinations are shown in Figure 2-20
through Figure 2-27. In the fractional format, there is an implied binary
point to the left of the most significant magnitude bit. In integer format,
the binary point is understood to be to the right of the LSB. Note that the
sign bit is negatively weighted in a two’s-complement format.

The DSP supports a fixed-point, signed, integer format for
8-bit data. Data in the 8- and 16-bit formats is always packed in
32-bit registers as follows—a single register holds four 8-bit or two
16-bit words, a dual register holds eight 8-bit or four 16-bit words,
and a quad register holds sixteen 8-bit or eight 16-bit words.

Figure 2-15. 40-Bit Extended-Precision Floating-Point Format
(Extended Word)

FRsd

39 38 31 30 0

Hidden Bit

s e7 e0 1.f30 f0.

Binary Point

Numeric Formats

2-20 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU outputs always have the same width and data format as the inputs.
The multiplier, however, produces a 64-bit product from two 32-bit
inputs. If both operands are unsigned integers, the result is a 64-bit
unsigned integer. If both operands are unsigned fractions, the result is a
64-bit unsigned fraction. These formats are shown in Figure 2-30 and
Figure 2-31.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit posi-
tion. Normally bit 63 and bit 62 are identical when both operands are
signed. (The only exception is full-scale negative multiplied by itself.)
Thus, the left shift normally removes a redundant sign bit, increasing the
precision of the most significant product. Also, if the data format is frac-
tional, a single bit left shift renormalizes the MSB to a fractional format.
The signed formats with and without left shifting are shown in
Figure 2-28 and Figure 2-29.

The multiplier has an 80-bit accumulator to allow the accumulation of
64-bit products. For more information on the multiplier and accumula-
tor, see “Multiplier” on page 4-1.

Figure 2-16. 8-Bit Fixed-Point Format, Signed Integer
(Byte Word)

BRs
7 6 5 2 0

Sign Bit

–27

Binary Point

Signed
Integer

 .

1

.26 25 22 21 20

ADSP-TS101 TigerSHARC Processor Programming Reference 2-21

Compute Block Registers

Figure 2-17. 8-Bit Fixed-Point Format, Signed Fractional
(Byte Word)

Figure 2-18. 8-Bit Fixed-Point Format, Unsigned Integer
(Byte Word)

Figure 2-19. 8-Bit Fixed-Point Format, Unsigned Fractional
(Byte Word)

BRs
7 6 5 2 0

Sign Bit

–2–0

Binary Point

Signed
Fractional

 .

1

. 2–1 2–2 2–5 2–6 2–7

BRs
7 6 5 2 0

27

Binary Point

Unsigned
Integer

 .

1

.26 25 22 21 20

BRs
7 6 5 2 0

2–1

Binary Point

Unsigned
Fractional

 .

1

. 2–2 2–3 2–6 2–7 2–8

Numeric Formats

2-22 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 2-20. 16-Bit Fixed-Point Format, Signed Integer
(Short Word)

Figure 2-21. 16-Bit Fixed-Point Format, Signed Fractional
(Short Word)

Figure 2-22. 16-Bit Fixed-Point Format, Unsigned Integer
(Short Word)

SRs
15 14 13 2 0

Sign Bit

–215

Binary Point

Signed
Integer

 .

1

.214 213 22 21 20

SRs
15 14 13 2 0

Sign Bit

–2–0

Binary Point

Signed
Fractional

 .

1

. 2–1 2–2 2–13 2–14 2–15

SRs
15 14 13 2 0

215

Binary Point

Unsigned
Integer

 .

1

.214 213 22 21 20

ADSP-TS101 TigerSHARC Processor Programming Reference 2-23

Compute Block Registers

Figure 2-23. 16-Bit Fixed-Point Format, Unsigned Fractional
(Short Word)

Figure 2-24. 32-Bit Fixed-Point Format, Signed Integer
(Normal Word)

Figure 2-25. 32-Bit Fixed-Point Format, Signed Fractional
(Normal Word)

SRs
15 14 13 2 0

2–1

Binary Point

Unsigned
Fractional

 .

1

. 2–2 2–3 2–14 2–15 2–16

Rs
31 30 29 2 0

Sign Bit

–231

Binary Point

Signed
Integer

 .

1

.230 229 22 21 20

Rs
31 30 29 2 0

Sign Bit

–2–0

Binary Point

Signed
Fractional

 .

1

. 2–1 2–2 2–29 2–30 2–31

Numeric Formats

2-24 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 2-26. 32-Bit Fixed-Point Format, Unsigned Integer
(Normal Word)

Figure 2-27. 32-Bit Fixed-Point Format, Unsigned Fractional
(Normal Word)

Figure 2-28. 64-Bit Fixed-Point Format, Signed Integer
(Long Word)

Rs
31 30 29 2 0

231

Binary Point

Unsigned
Integer

 .

1

.230 229 22 21 20

Rs
31 30 29 2 0

2–1

Binary Point

Unsigned
Fractional

 .

1

. 2–2 2–3 2–30 2–31 2–32

LRs
63 62 61 2 0

Sign Bit

–263

Binary Point

Signed
Integer

 .

1

.–262 –261 –22 –21 –20

ADSP-TS101 TigerSHARC Processor Programming Reference 2-25

Compute Block Registers

Figure 2-29. 64-Bit Fixed-Point Format, Signed Fractional
(Long Word)

Figure 2-30. 64-Bit Fixed-Point Format, Unsigned Integer
(Long Word)

Figure 2-31. 64-Bit Fixed-Point Format, Unsigned Fractional
(Long Word)

LRs
63 62 61 2 0

Sign Bit

–2–0

Binary Point

Signed
Fractional

 .

1

. 2–1 2–2 2–61 2–62 2–63

LRsd
63 62 61 2 0

263

Binary Point

Unsigned
Integer

 .

1

.262 261 22 21 20

LRsd
63 62 61 2 0

2–1

Binary Point

Unsigned
Fractional

 .

1

. 2–2 2–3 2–62 2–63 2–64

Numeric Formats

2-26 ADSP-TS101 TigerSHARC Processor Programming Reference

ADSP-TS101 TigerSHARC Processor Programming Reference 3-1

3 ALU

The TigerSHARC processor core contains two computation units known
as compute blocks. Each compute block contains a register file and three
independent computation units—an ALU, a multiplier, and a shifter. The
Arithmetic Logic Unit (ALU) is highlighted in Figure 3-1. The ALU takes
its inputs from the register file, and returns its outputs to the register file.

Figure 3-1. ALUs in Compute Block X and Y

Y
REGISTER

FILE
32x32

MULTIPLIER

SHIFTER

DAB

128 128 128

128

128

TO DATA BUSES

6464

COMPUTE BLOCK Y

X
REGISTER

FILE
32x32

MULTIPLIER

SHIFTER

DAB

128 128

6464

COMPUTE BLOCK X

128

128

128

TO DATA BUSES

ALUALU

3-2 ADSP-TS101 TigerSHARC Processor Programming Reference

This unit performs all arithmetic operations (addition/subtraction) for the
processor on data in fixed-point and floating-point formats and performs
logical operations for the processor on data in fixed-point formats. The
ALU also executes data conversion operations such as expand/compact on
data in fixed-point formats.

On the ADSP-TS101 processor, the ALU also performs specialized com-
munications functions, primarily to support decoding and CDMA
despreading operations. This functionality within the ALU is referred to
as the communication logic unit (CLU).

Not all ALU operations can be applied to both fixed- and floating-point
data. Relating ALU operations and supported data types shows that the
64-Bit ALU unit within each compute block supports:

• Fixed- and floating-point arithmetic operations — add (+), subtract
(-), minimum (MIN), maximum (MAX), Viterbi maximum (VMAX),
comparison (COMP), clipping (CLIP), and absolute value (ABS)

• Fixed-point only arithmetic operations — increment (INC), decre-
ment (DEC), sideways add (SUM), parallel result of sideways add
(PRx=SUM), one’s complement (ONES), and bit FIFO pointer incre-
ment (BFOINC)

• Floating-point only arithmetic operations — floating-point conver-
sion (FLOAT), fixed-point conversion (FIX), copy sign (COPYSIGN),
scaling (SCALB), inverse or division seed (RECIPS), square root or
inverse square root seed (RSQRTS), extract mantissa (MANT), extract
exponent (LOGB), extend operand (EXTD), and translate extended to
a single operand (SNGL)

• Fixed-point only logical operations — AND, AND NOT, OR, XOR, and
PASS

ADSP-TS101 TigerSHARC Processor Programming Reference 3-3

ALU

• Fixed-point only data conversion (promotion/demotion) operations
— expand (EXPAND), compact (COMPACT), and merge (MERGE)

• Fixed-point only CLU operations — maximum of values for Viterbi
decode (VMAX), Jacobian logarithm for turbo decode (TMAX), CDMA
despreader (DESPREAD), polynomial reordering (PERMUTE), and trel-
lis add/compare/select (ACS)

Examining the supported operands for each operation shows that the ALU
operations support these data types:

• Fixed-point arithmetic operations and logical operations support:

• 8-bit (byte) input operands

• 16-bit (short) input operands

• 32-bit (normal) input operands

• 64-bit (long) input operands

• output 8-, 16-, 32- or 64-bit results

• Floating-point arithmetic operations support:

• 32-bit (normal) input operands (IEEE standard)

• 40-bit (extended) input operands

• output 32- or 40-bit results

3-4 ADSP-TS101 TigerSHARC Processor Programming Reference

• Fixed-point data conversion operations support:

• 8-bit (byte) input operands

• 16-bit (short) input operands

• 32-bit (normal) input operands

• 64-bit (long) input operands

• 128-bit (quad) input operands

• output 8-, 16-, 32-, 64-, or 128-bit results; 128-bit input
and output operands only apply for EXPAND and COMPACT

• Fixed-point CLU operations support:

• one or two 32-bit operands

• two or four 16-bit operands

• four or eight 8-bit operands

• output 8-, 16-, or 32-bit results

Within instructions, the register name syntax identifies the input operand
and output result data size and type. For more information on data size
and type selection for ALU instructions, see “Register File Registers” on
page 2-5.

The remainder of this chapter presents descriptions of ALU instructions,
options, and results using instruction syntax. For an explanation of the
instruction syntax conventions used in ALU and other instructions, see
“Instruction Line Syntax and Structure” on page 1-20. For a list of ALU
instructions and their syntax, see “ALU Instruction Summary” on
page 3-28.

ADSP-TS101 TigerSHARC Processor Programming Reference 3-5

ALU

ALU Operations
The ALU performs arithmetic operations on fixed-point and
floating-point data and logical operations on fixed-point data. The DSP
uses compute block registers for the input operands and output result
from ALU operations. The compute block register file registers are XR31
through XR0 and YR31 through YR0. The ALU has one special-purpose
double register—the PR register—for parallel results. The DSP uses the PR
register with the different types of SUM, VMAX, and VMIN instructions. For
more information on the register files and register naming syntax for
selecting data type and width, see “Register File Registers” on page 2-5.
The following examples are ALU instructions that demonstrate arithmetic
operations.

XR2 = R1 + R0 ;;

/* This is a fixed-point add of the 32-bit input operands XR1 and

XR0; the DSP places the result in XR2. */

YLR1:0 = ABS(R3:2 - R5:4) ::

/* This is a fixed-point subtract of the 64-bit input operand

XR5:4 from XR3:2; the DSP places the absolute value of the result

in XR1:0; the “L” in the result register name directs the DSP to

treat the input and output as 64-bit long data. */

XYFR2 = (R1 + R0) / 2 ;;

/* This is a floating-point add and divide by 2 of the 32-bit

input operands XR1+XR0 and YR1+YR0; the DSP places the results in

XR2 and YR2; this is a Single-Instruction, Multiple-Data (SIMD)

operation, executing in both compute blocks simultaneously. */

ALU Operations

3-6 ADSP-TS101 TigerSHARC Processor Programming Reference

When multiple input operands are held in a single register, the DSP pro-
cesses the data in parallel. For example, assume that the YR0 register
contains 0x00050003 and the YR1 register contains 0x00040008 (as shown
in Figure 3-2.

After executing the instruction YSR2 = R0 - R1;;, the YR2 register con-
tains 0x0001FFFB (0x1 in upper half and –0x5 in lower half).

All ALU instructions generate status flags to indicate the status of the
result. Because multiple operations are occurring in a parallel instruction,
the value of the flag is an ORing of the results of all of the operations. The
instruction demonstrated in Figure 3-2 sets the YAN flag (Y compute block,
ALU result negative) because one of the two subtractions resulted in a
negative value. For more information on ALU status, see “ALU Execution
Status” on page 3-11.

Figure 3-2. Input Operands for Parallel Subtract

YR1

032 16 15

0004 0008YR0

032 16 15

0005 0003

YR0

032 16 15

0001 –0005

ADSP-TS101 TigerSHARC Processor Programming Reference 3-7

ALU

ALU Instruction Options
Most of the ALU instructions have options associated with them that per-
mit flexibility in how the instructions execute. It is important to note that
these options modify the detailed execution of instructions and options
that are particular to a group of instructions—not all options are applica-
ble to all instructions. Instruction options appear in parenthesis at the end
of the instruction’s slot. For a list indicating which options apply for par-
ticular ALU instructions, see “ALU Instruction Summary” on page 3-28.
The ALU instruction options include:

• () signed operation, no saturation1, round-to-nearest even2, frac-
tional mode3

• (S) signed operation, saturation1

• (U) unsigned operation, no saturation1, round-to-nearest even2

• (SU) unsigned operation, saturation1

• (X) extend operation for ABS

• (T) signed operation, truncate4

• (TU) unsigned operation, truncate4

• (Z) signed result returns zero operation for MIN/MAX

• (UZ) unsigned result returns zero operation for MIN/MAX

• (I) signed operation, integer mode3

• (IU) unsigned operation, integer mode3

1 Where saturation applies
2 Where rounding applies
3 Where applies for floating-point operations
4 Where truncation applies

ALU Operations

3-8 ADSP-TS101 TigerSHARC Processor Programming Reference

• (IS) signed operation, saturation, integer mode3

• (ISU) unsigned operation, saturation, integer mode3

The following examples are ALU instructions that demonstrate arithmetic
operations with options applied.

XR2 = R1 + R0 (S);;

/* This is a fixed-point add of the 32-bit input operands with

saturation. */

YLR1:0 = ABS(R3:2 - R5:4) (T) ::

/* This is a fixed-point subtract of the 64-bit input operands

with truncation. */

XYFR2 = (R1 + R0) / 2 () ;;

/* This is a floating-point add and divide by 2 of the 32-bit

input operands without truncation; this is the same as omitting

the parenthesis. */

Signed/Unsigned Option

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. Fixed- and floating-point data in the
ALU may be unsigned or two’s-complement. For information on the sup-
ported numeric formats, see “Numeric Formats” on page 2-16.

Saturation Option

There are two types of saturation arithmetic that may be enabled for an
instruction — signed or unsigned. For signed saturation, whenever over-
flow occurs (AV flag is set), the maximum positive value or the minimum
negative value is replaced as the output of the operation. For unsigned sat-
uration, overflow causes the maximum value or zero to be replaced as the
output of the operation. Maximum and minimum values refer to the max-
imum and minimum values representable in the output format. For

ADSP-TS101 TigerSHARC Processor Programming Reference 3-9

ALU

example, the maximum positive, minimum negative, and maximum
unsigned values in 16-bit short word arithmetic are 0x7fff, 0x8000, and
0xffff respectively.

Under saturation arithmetic, the flags AV and AC reflect the state of the
ALU operation prior to saturation. For example, with signed saturation
when an operation overflows, the maximum or minimum value is
returned and AV remains set. On the other hand, the flags AN and AZ are set
according to the final saturated result, therefore they correctly reflect the
sign and any equivalence to zero of the final result. This allows the correct
evaluation of the conditions AEQ, ALT, and ALE even during overflow, when
using saturation arithmetic.

Extension (ABS) Option

For the ABS instruction, the X option provides an extended output range.
Without the X, the output range is 0 to the maximum positive signed
value (0x0 through 0x7F…F). When ABS with the X option is used, the out-
put range is extended from 0x0 to 0xFF…FF. The output numbers are
unsigned in the extended range.

Truncation Option

For ALU instructions that support truncation as the T option, this option
permits selection of the results rounding mode. The DSP supports two
modes of rounding — round-toward-zero and round-toward-nearest. The
rounding modes comply with the IEEE 754 standard and have these
definitions:

• Round-Toward-Nearest (not using T option). If the result before
rounding is not exactly representable in the destination format, the
rounded result is the number that is nearer to the result before

ALU Operations

3-10 ADSP-TS101 TigerSHARC Processor Programming Reference

rounding. If the result before rounding is exactly halfway between
two numbers in the destination format (differing by an LSB), the
rounded result is the number that has an LSB equal to zero.

• Round-Toward-Zero (using T option). If the result before round-
ing is not exactly representable in the destination format, the
rounded result is the number that is nearer to zero. This is equiva-
lent to truncation.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents Infinity, a result that is halfway between
the maximum floating-point value and Infinity rounds to Infinity in this
mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Return Zero (MAX/MIN) Option

For the MAX/MIN instructions, the Z option changes the operation, return-
ing zero if the second input register contains the maximum (for MAX) or
minimum (for MIN) value. For example, without the Z option, the pseudo
code for the MAX instruction is:

Rsd = MAX (Rmd, Rnd) ;;

The ALU determines whether Rmd or Rnd contains the maximum and
places the maximum in Rsd.

ADSP-TS101 TigerSHARC Processor Programming Reference 3-11

ALU

For example, with the Z option, the pseudo code for the MAX instruction is:

Rsd = MAX (Rmd, Rnd) (Z) ;;

The ALU determines whether Rmd or Rnd contains the maximum. If Rmd
contains the maximum, the ALU places the maximum in Rsd. If Rnd con-
tains the maximum, the ALU places zero in Rsd.

Fractional/Integer Option

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. In the ALU, fractional or integer
format is available for the EXPAND and COMPACT instructions. The default is
fractional format. Use the I option for integer format. For information on
the supported numeric formats, see “Numeric Formats” on page 2-16.

ALU Execution Status
ALU operations update status flags in the compute block’s Arithmetic Sta-
tus (XSTAT and YSTAT) register (see Figure 2-2 on page 2-4 and Figure 2-3
on page 2-5). Programs can use status flags to control execution of condi-
tional instructions and initiate software exception interrupts. For more
information, see “ALU Execution Conditions” on page 3-14.

Table 3-1 shows the flags in XSTAT or YSTAT that indicate ALU status (a 1
indicates the condition) for the most recent ALU operation.

Table 3-1. ALU Status Flags

Flag Definition Updated By…

AZ ALU fixed-point zero and floating-point underflow All ALU ops

AN ALU negative All ALU ops

AV ALU overflow All arithmetic ops

ALU Operations

3-12 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU operations also update sticky status flags in the compute block’s
Arithmetic Status (XSTAT and YSTAT) register. Table 3-2 shows the flags in
XSTAT or YSTAT that indicate ALU sticky status (a 1 indicates the condi-
tion) for the most recent ALU operation. Once set, a sticky flag remains
high until explicitly cleared.

Flag update occurs at the end of each operation and is available on the
next instruction cycle. A program cannot write the Arithmetic Status reg-
ister explicitly in the same cycle that the multiplier is performing an
operation.

Multi-operand instructions (for example, BRs = Rm + Rn) produce multi-
ple sets of results. In this case, the DSP determines a flag by ORing the
result flag values from individual results.

AC ALU carry All fixed-point ops;
cleared by floating-point ops

AI ALU floating-point invalid operation All floating-point ops;
cleared by fixed-point ops

Table 3-2. ALU Status Sticky Flags

Flag Definition Updated By…

AUS ALU floating-point underflow, sticky All floating-point ops

AVS ALU floating-point overflow, sticky All floating-point ops

AOS ALU fixed-point overflow, sticky All fixed-point ops

AIS ALU floating-point invalid operation, sticky All floating-point ops

Table 3-1. ALU Status Flags (Cont’d)

Flag Definition Updated By…

ADSP-TS101 TigerSHARC Processor Programming Reference 3-13

ALU

AN — ALU Negative

The AN flag is set whenever the result of an ALU operation is negative. The
AN flag is set to the most significant bit of the result. An exception is the
instructions below, in which the AN flag is set differently:

• Rs = ABS Rm; AN is Rm (input data) sign

• FRs = ABS Rm; AN is Rm (input data) sign

• Rs = ABS (Rm {+|-} Rn); AN is set to be the sign of the result prior
to ABS operation

• Rs = MANT FRm; AN is Rm (input data) sign

• FRs = ABS (Rm {+|-} Rn); AN is set to be the sign of the result
prior to ABS operation

The result sign of the above instructions is not indicated as it is always
positive.

AV — ALU Overflow

The AV flag is an overflow indication. In all ALU operations, this bit is set
when the correct result of the operation is too large to be represented by
the result format. The overflow check is done always as signed operands,
unless the instruction defines otherwise.

ALU Operations

3-14 ADSP-TS101 TigerSHARC Processor Programming Reference

If in the following example R5 and R6 are 0x70…0 (large positive numbers),
the result of the Add instruction (above) will produce a result that is larger
than the maximum at the given format.

R10 = R5 + R6;;

As shown in the following example, an instruction can be composed of
more than one operation.

R11:10 = expand (Rm + Rn)(I);

If Rm and Rn are 0x70…0, the overflow is defined by the final result and is
not defined by intermediate results. In the case above, there is no
overflow.

AI — ALU Invalid

The AI flag indicates an invalid floating-point operation as defined by
IEEE floating-point standard.

AC — ALU Carry

The AC flag is used as carry out of add or subtract instructions that can be
chained. It can also be used as an indication for unsigned overflow in these
operations. AV is set when there is signed overflow.

ALU Execution Conditions
In a conditional ALU instruction, the execution of the entire instruction
line can depend on the specified condition at the beginning of the instruc-
tion line. Conditional ALU instructions take the form:

IF cond; DO, instr.; DO, instr.; DO, instruct. ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the DO before the instruction makes the instruction
unconditional.

ADSP-TS101 TigerSHARC Processor Programming Reference 3-15

ALU

Table 3-3 lists the ALU conditions. For more information on conditional
instructions, see “Conditional Execution” on page 7-12.

ALU Static Flags
In the program sequencer, the static flag (SFREG) can store status flag val-
ues for later usage in conditional instructions. With SFREG, each compute
block has two dedicated static flags X/YSCF0 (condition is SF0) and
X/YSCF1 (condition is SF1). The following example shows how to load a
compute block condition value into a static flag register.

XSCF0 = XAEQ ;; /* Load X-compute block SEQ flag into XSCF0 bit

in static flags (SFREG) register */

IF SF0, XR5 = R4 + R3 ;; /* the SF0 condition tests the XSCF0

static flag */

For more information on static flags, see “Conditional Execution” on
page 7-12.

Table 3-3. ALU Conditions

Condition Description Flags Set

AEQ ALU equal to zero AZ = 1

ALT ALU less than zero AN and AZ = 1

ALE ALU less than or equal to zero AN or AZ = 1

NAEQ NOT (ALU equal to zero) AZ = 0

NALT NOT (ALU less than zero) AN and AZ = 0

NALE NOT (ALU less than or equal to zero) AN or AZ = 0

ALU Examples

3-16 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU Examples
Listing 3-1 provides a number of example ALU arithmetic instructions.
The comments with the instructions identify the key features of the
instruction, such as fixed- or floating-point format, input operand size,
and register usage.

Listing 3-1. ALU Instruction Examples

LR5:4 = R11:10 + R1:0 ;;

/* This is a fixed-point add of the 64-bit input operands

XR11:10 + XR1:0 and YR11:10 + YR1:0; the DSP places the result in

XR5:4 and YR5:4. */

YSR1:0 = R31:30 + R25:24 ;;

/* This is a fixed-point add of the four 16-bit input operands

YR31:30 and the four operands in YR25:24; the DSP places the four

results in YR1:0. */

XR3 = R5 AND R7 ;;

/* This is a logical AND of the 32-bit input operands XR5 and

XR7; the DSP places the result in XR3. */

YR4 = SUM SR3:2 ;;

/* This is a signed sideways sum of the four 16-bit input oper-

ands in YR3:2; the DSP places the result in YR4. */

R9 = R4 + R8, R2 = R4 - R8 ;;

/* This is a dual instruction (two instructions in one instruc-

tion slot); the first instruction is a fixed-point add of the

32-bit input operands XR4 + XR8 and YR4 + YR8; the DSP places the

results in XR9 and YR9; the second instruction is a fixed-point

subtract of the 32-bit input operands XR4 - XR8 and YR4 - YR8;

the DSP places the results in XR2 and YR2. */

ADSP-TS101 TigerSHARC Processor Programming Reference 3-17

ALU

FR9 = R4 + R8 ;;

/* This is a floating-point add of the 32-bit input operands in

XR4 +XR8 and YR4 + YR8; the DSP places the results in XR9 and

YR9. */

XFR9:8 = R3:2 + R5:4 ;;

/* This is a floating-point add of the 40-bit (Extended Word)

input operands in XR3:2 and XR5:4; the DSP places the result in

XR9:8. */

ALU Examples

3-18 ADSP-TS101 TigerSHARC Processor Programming Reference

Example Parallel Addition of Byte Data
Figure 3-3 shows an ALU add using Byte input operands and dual regis-
ters. The syntax for the instruction is:

XBR11:10 = R9:8 + R7:6 ;;

It is important to note that the ALU processes the eight add operations
independent of each other, but updates the arithmetic status based on an
ORing of the status of all eight operations.

Figure 3-3. Input Operands for Parallel Add

07

XR9:8

07070707070707

07

XR7:6

07070707070707

07

XR11:10

07070707070707

Byte
Input

Operands

Byte
Output
Results

ADSP-TS101 TigerSHARC Processor Programming Reference 3-19

ALU

Example Sideways Addition of Byte Data
Figure 3-4 shows an ALU sideways sum using Byte input operands and a
dual register. The syntax for the instruction is:

XR11 = SUM BR9:8 (U) ;; /* unsigned sideways sum */

Example Parallel Result (PR) Register Usage
The ALU supports a set of special instructions such as SUM, VMAX, VMIN,
and ABS that can use the PR1:0 register. The PR1:0 register is an ALU reg-
ister that is not memory mapped the way that data register file registers are
mapped. To load or store, programs must load PR1:0 from data registers,

Figure 3-4. Input Operands for Sideways Add

07

XR9:8

07070707070707

XR11

031

Byte
Input

Operands

Output
Results

ALU Examples

3-20 ADSP-TS101 TigerSHARC Processor Programming Reference

or store PR1:0 to data registers—there is no memory load or store for the
PR1:0 register. To access the PR1:0 registers, the application must use
instructions with the pseudo code:

PR1:0 = Rmd ;;

Rsd = PR1:0 ;;

The instruction must operate on double registers even if only PR0
or PR1 is required.

The SUM instruction is one of the instructions that can use the PR1:0 regis-
ter to hold parallel results. When using the PR1:0 register, the SUM
instruction performs a short or byte wise parallel add of the input oper-
ands, adds this quantity to the contents of one of the PR registers, then
stores the parallel result to the PR register.

ADSP-TS101 TigerSHARC Processor Programming Reference 3-21

ALU

This instruction performs four 16-bit additions and adds the result to the
current contents of the PR0 register.

PR0 += SUM SR5:4;;

CLU Examples
The communications logic unit (CLU) instructions are designed to sup-
port different algorithms used for communications applications. These
instructions were designed primarily with the following algorithms in
mind (although many other uses are possible):

• Viterbi Decoding

• Decoding of turbo codes

• Despreading for code-division multiple access (CDMA) systems

Figure 3-5. Input Operands for Parallel/Sideways Add

0

XR5:4

15015015015

PR0

031

Short
Input

Operands

Output
Results

Previous
PR0

Contents

6 4 3 1

19 (=5)

CLU Examples

3-22 ADSP-TS101 TigerSHARC Processor Programming Reference

The inclusion of the CLU instructions simplifies the programming of
these algorithms, yet still retains the flexibility of a software approach. In
this way, it is easy to tune the algorithm according to a user's specific
requirements. Additionally, the instructions can be used for a variety of
purposes; for example, the TMAX instruction, included to support the
decoding of turbo codes, is also very useful in the decoding of low-density
parity-check codes.

The major strength of the TigerSHARC processor is the huge data transfer
rate—two 128-bit memory accesses every cycle. For despreading, this
enables 16 complex multiply-accumulate operations per cycle of 16-bit
complex data (8-bit real, 8-bit imaginary). This enables calculation of a
whole 16-bit 64-state trellis calculation every two cycles in both compute
blocks together.

CLU Data Types and Sizes
For turbo and Viterbi decoding, the communications logic unit (CLU)
input data sizes of 8- and 16-bit soft values are supported; output value
data sizes of 16 and 32 bits are supported. Care should be taken when
choosing the data size to prevent overflow in the calculation.

The DESPREAD function works with 16-bit complex numbers. Each 16-bit
complex is composed of the real part (bits 7–0) and the imaginary part
(bits 15–8). The result is always one or two complex words, each consist-
ing of two shorts. Bits 15–0 represent the real part, and bits 31–16
represent the imaginary part (as complex numbers in the multiplier).

ADSP-TS101 TigerSHARC Processor Programming Reference 3-23

ALU

The CLU instructions refer to three types of registers:

• Rm,n,s—register file (data) registers

• TRm,n,s—16 (trellis) registers that are dedicated to the CLU
instructions

• THR—two (trellis history) registers used by the ACS and DESPREAD
instructions for shifted data

TMAX Function
The TMAX function is commonly used in the decoding of turbo codes and
other high-performance error-correcting codes. The function is:

TMAX (A, B) = max (A, B) + ln (1 + e-|a-b|)

The second term is implemented as a table:

ln (1 + e-|a-b|)

(for large |a - b|, ln of 1 is 0).

The TMAX table input is the result of the subtraction on clock high of the
execute1 (EX1) pipe stage. If the result is negative, it is inverted (assuming
that the difference between one’s complement and two’s complement is
within the allowed error). The input to Table 3-4 is the seven LSB’s of the
compare subtract result. If the compare subtract result is larger than seven
bits, the output is zero. Note that the implied decimal point is always
placed before the five least significant bits.

Table 3-4 shows the TMAX values. The maximum output error is one LSB.

CLU Examples

3-24 ADSP-TS101 TigerSHARC Processor Programming Reference

Trellis Function
The trellis diagram is a widely-used tool in communications systems. For
example, the Viterbi and turbo decoding algorithms both operate on trel-
lises. The ADSP-TS101 processor provides specialized instructions for

Table 3-4. TMAX Values

Negative Input Positive Input Output (Hex)

11..111.1111X 000.0000X 000.10110

11..111.1110X 000.0001X 000.10101

11..111.1101X 000.0010X 000.10100

11..111.1100X 000.0011X 000.10011

11..111.1011X 000.0100X 000.10010

11..111.1010X 000.0101X 000.10001

11..111.100XX 000.011XX 000.10000

11..111.011XX 000.100XX 000.01110

11..111.010XX 000.101XX 000.01101

11..111.001XX 000.110XX 000.01100

11..111.000XX 000.111XX 000.01011

11..110.111XX 001.000XX 000.01010

11..110.110XX 001.001XX 000.01000

11..110.10XXX 001.01XXX 000.00111

11..110.01XXX 001.10XXX 000.00110

11..110.00XXX 001.11XXX 000.00101

11..101.1XXXX 010.0XXXX 000.00011

11..101.0XXXX 010.1XXXX 000.00010

11..100.XXXXX 011.XXXXX 000.00001

<= 11..10XX.XXXXX >= 1XX.XXXXX 000.00000

ADSP-TS101 TigerSHARC Processor Programming Reference 3-25

ALU

trellises with binary transitions and up to eight states. Trellis with larger
numbers of states can often be broken up into subtrellises with eight states
or fewer and then applied to these instructions.

A typical trellis diagram is shown in Figure 3-6 on page 3-26, and repre-
sents the set of possible state transitions from one stage to the next. At
each stage n, we need to compute the accumulated metrics for every state.
For a particular state, this value will depend on the metrics of each of its
two possible previous states (at stage n-1) as well as transition metrics
(gamma(n)) corresponding to particular input/output combinations. The
particular symmetry among the transition metrics shown in the figure is
typical for practical error-correcting codes.

The ACS (Add-Compare-Select) instruction has options for two types of
state metric computations. In the Viterbi algorithm, the metrics for each
of the two possible previous state are updated, and the one with maximum
value is selected. For example, the metric for state "100" (binary for 4) at
stage n is computed as:

Metrics ("100", n) =
max ((Metrics("010", n-1) - γ3(n)),

(Metrics("110", n-1) + γ3(n)))

The ACS instruction computes the metrics for four or eight states in paral-
lel, and additionally records information specifying the selected transitions
for use in a trace back routine.

A second option, used in turbo decoding, replaces the MAX operation above
with the TMAX operation defined in “TMAX Function” on page 3-23.

CLU Examples

3-26 ADSP-TS101 TigerSHARC Processor Programming Reference

Despread Function
The DESPREAD instruction implements a highly parallel complex multi-
ply-and-accumulate operation that is optimized for CDMA systems.
Despreading involves computing samples of a correlation between com-
plex input data and a precomputed complex spreading/scrambling code
sequence.

Figure 3-6. Trellis Diagram

��
4[n]

000

001

010

011

100

101

110

111

��
4[n]

��
3[n]

��
3[n]

��
4[n]

��
4[n]

��
2[n]

��
2[n]

��
1[n]

��
1[n]

��
3[n]

��
3[n]

��
2[n]

��
2[n]

��
1[n]

��
1[n]

��
4[n+1]

��
4[n+1]

��
3[n+1]

��
3[n+1]

��
4[n+1]

��
4[n+1]

��
2[n+1]

��
2[n+1]

��
1[n+1]

��
1[n+1]

��
3[n+1]

��
3[n+1]

��
2[n+1]

��
2[n+1]

��
1[n+1]

��
1[n+1]

Stage = n–1 Stage = n Stage = n+1

ADSP-TS101 TigerSHARC Processor Programming Reference 3-27

ALU

The input data consists of samples with 8-bit real and imaginary parts.
The code sequence samples, on the other hand, are always members of
{ 1+j, -1+j, -1-j, 1-j }, and are therefore specified by 1-bit real and imagi-
nary parts. The DESPREAD instruction takes advantage of this property and
is able to compute eight parallel complex multiply-and-accumulates in
each block in a single cycle.

The DESPREAD instruction supports accumulations over lengths (spread
factors) of four, eight, and multiples of eight samples.

CLU Execution Status
CLU operations update status flags in the compute block’s Arithmetic Sta-
tus (XSTAT and YSTAT) register (see Figure 2-2 on page 2-4 and Figure 2-3
on page 2-5). Programs can use status flags to control execution of condi-
tional instructions and initiate software exception interrupts.

Table 3-5 shows the flags in XSTAT or YSTAT that indicate CLU status (a 1
indicates the condition) for the most recent CLU operation.

CLU operations also update sticky status flags in the compute block’s
Arithmetic Status (XSTAT and YSTAT) register. Table 3-6 shows the flags in
XSTAT or YSTAT that indicate CLU sticky status (a 1 indicates the condi-
tion) for the most recent CLU operation. Once set, a sticky flag remains
high until explicitly cleared.

Table 3-5. CLU Status Flags

Flag Definition Updated By…

TROV CLU overflow All CLU ops

Table 3-6. CLU Status Sticky Flags

Flag Definition Updated By…

TRSOV CLU overflow, sticky All CLU ops

ALU Instruction Summary

3-28 ADSP-TS101 TigerSHARC Processor Programming Reference

Flag update occurs at the end of each operation and is available on the
next instruction cycle. A program cannot write the arithmetic status regis-
ter explicitly in the same cycle that the CLU is performing an operation.

Multi-operand instructions (for example, STRsd = TMAX(TRmd + Rmq_h,

TRnd + Rmq_l) ;) produce multiple sets of results. In this case, the DSP
determines a flag by ORing the result flag values from individual results.

ALU Instruction Summary
The following listings show the ALU instructions’ syntax:

• Listing 3-2 “ALU Fixed-Point Instructions”

• Listing 3-3 “ALU Logical Operation Instructions”

• Listing 3-4 “ALU Fixed-Point Miscellaneous”

• Listing 3-5 “Floating-Point ALU Instructions”

• Listing 3-6 “Fixed-Point CLU Instructions”

ADSP-TS101 TigerSHARC Processor Programming Reference 3-29

ALU

The conventions used in these listings for representing register names,
optional items, and choices are covered in detail in “Register File Regis-
ters” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of
the instruction syntax.

• Rmd – the register names in italic represent user-selectable single
(Rs, Rm, or Rn), double (Rsd, Rmd, or Rnd) or quad (Rsq, Rmq, or Rnq)
register names.

Each instruction presented here occupies one instruction slot in an
instruction line. For more information about instruction lines and
instruction combination constraints, see “Instruction Line Syntax
and Structure” on page 1-20 and “Instruction Parallelism Rules”
on page 1-24.

Listing 3-2. ALU Fixed-Point Instructions

{X|Y|XY}{S|B}Rs = Rm +|- Rn {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd {({S|SU})} ;1

{X|Y|XY}Rs = Rm + CI {-1} ;

{X|Y|XY}LRsd = Rmd + CI {-1} ;

{X|Y|XY}{S|B}Rs = Rm +|- Rn + CI {-1} {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd + CI {-1} {({S|SU})} ;1

{X|Y|XY}{S|B}Rs = (Rm +|- Rn)/2 {({T}{U})} ;2

{X|Y|XY}{L|S|B}Rsd = (Rmd +|- Rnd)/2 {({T}{U})} ;2

{X|Y|XY}{S|B}Rs = ABS Rm ;

{X|Y|XY}{L|S|B}Rsd = ABS Rmd ;

1 Options include: (): no saturation, (S): saturation, signed, (SU): saturation, unsigned
2 Options include: (): signed, round-to-nearest even, (T): signed, truncate, (U): unsigned,

round-to-nearest even, (TU): unsigned, truncate

ALU Instruction Summary

3-30 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}{S|B}Rs = ABS (Rm + Rn) {(X)} ;1

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd + Rnd) {(X)} ;1

{X|Y|XY}{S|B}Rs = ABS (Rm - Rn) {({X}{U})} ;2

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd - Rnd) {({X}{U})} ;2

{X|Y|XY}{S|B}Rs = - Rm ;

{X|Y|XY}{L|S|B}Rsd = - Rmd ;

{X|Y|XY}{S|B}Rs = MAX|MIN (Rm, Rn) {({U}{Z})} ;3

{X|Y|XY}{L|S|B}Rsd = MAX|MIN (Rmd, Rnd) {({U}{Z})} ;3

{X|Y|XY}S|BRsd = VMAX|VMIN (Rmd, Rnd) ;

{X|Y|XY}{S|B}Rs = INC|DEC Rm {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = INC|DEC Rmd {({S|SU})} ;1

{X|Y|XY}{S|B}COMP(Rm, Rn) {(U)} ;3

{X|Y|XY}{L|S|B}COMP(Rnd,Rnd) {(U)} ;3

{X|Y|XY}{S|B}Rs = CLIP Rm BY Rn ;

{X|Y|XY}{L|S|B}Rsd = CLIP Rmd BY Rnd ;

{X|Y|XY}Rs = SUM S|B Rm {(U)} ;4

{X|Y|XY}Rs = SUM S|B Rmd {(U)} ;4

{X|Y|XY}Rs = ONES Rm|Rmd ;

{X|Y|XY}PR1:0 = Rmd ;

{X|Y|XY}Rsd = PR1:0 ;

{X|Y|XY}Rs = BFOINC Rmd ;

{X|Y|XY}PR0|PR1 += ABS (SRmd - SRnd){(U)} ;4

{X|Y|XY}PR0|PR1 += ABS (BRmd - BRnd){(U)} ;4

{X|Y|XY}PR0|PR1 += SUM SRm {(U)} ;4

{X|Y|XY}PR0|PR1 += SUM SRmd {(U)} ;4

{X|Y|XY}PR0|PR1 += SUM BRm {(U)} ;4

{X|Y|XY}PR0|PR1 += SUM BRmd {(U)} ;4

1 Options include: (X): extend for ABS
2 Options include: (X): extend for ABS, (U): unsigned, round-to-nearest even, (XU): unsigned,

extend
3 Options include: (): regular signed comparison, (U): comparison between unsigned numbers,
(Z): returned result is zero if Rn is selected by MIN/MAX operation; otherwise returned result is Rm,
(UZ): unsigned comparison with option (Z) as described above

4 Options include: (): signed, (U): unsigned

ADSP-TS101 TigerSHARC Processor Programming Reference 3-31

ALU

{X|Y|XY}{S|B}Rs = Rm + Rn, Ra = Rm - Rn ; (dual operation)
{X|Y|XY}{L|S|B}Rsd = Rmd + Rnd, Rad = Rmd - Rnd ; (dual operation)

Listing 3-3. ALU Logical Operation Instructions

{X|Y|XY}Rs = PASS Rm ;

{X|Y|XY}LRsd = PASS Rmd ;

{X|Y|XY}Rs = Rm AND|AND NOT|OR|XOR Rn ;

{X|Y|XY}LRsd = Rmd AND|AND NOT|OR|XOR Rnd ;

{X|Y|XY}Rs = NOT Rm ;

{X|Y|XY}LRsd = NOT Rmd ;

Listing 3-4. ALU Fixed-Point Miscellaneous

{X|Y|XY}Rsd = EXPAND SRm {+|- SRn} {({I|IU})} ;1

{X|Y|XY}Rsq = EXPAND SRmd {+|- SRnd} {({I|IU})} ;1

{X|Y|XY}Rsd = EXPAND BRm {+|- BRn} {({I|IU})} ;1

{X|Y|XY}Rsq = EXPAND BRmd {+|- BRnd} {({I|IU})} ;1

{X|Y|XY}SRs = COMPACT Rmd {+|- Rnd} {({T|I|IS|ISU})} ;2

{X|Y|XY}BRs = COMPACT SRmd {+|- SRnd} {({T|I|IS|ISU})} ;2

{X|Y|XY}BRsd = MERGE Rm, Rn ;

{X|Y|XY}BRsq = MERGE Rmd, Rnd ;

{X|Y|XY}SRsd = MERGE Rm, Rn ;

{X|Y|XY}SRsq = MERGE Rmd, Rnd ;

Listing 3-5. Floating-Point ALU Instructions

{X|Y|XY}FRs = Rm +|- Rn {(T)} ;3

{X|Y|XY}FRsd = Rmd +|- Rnd {(T)} ;3

1 Options include: (): fractional, (I): integer signed, (IU): integer unsigned
2 Options include: (): fractional round, (I): integer, no saturate, (T): fractional, truncate, (IS):

integer, saturate, signed, (ISU): integer, saturate, unsigned
3 Options include: (): round, (T): truncate

ALU Instruction Summary

3-32 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}FRs = (Rm +|- Rn)/2 {(T)} ;3

{X|Y|XY}FRsd = (Rmd +|- Rnd)/2 {(T)} ;3

{X|Y|XY}FRs = MAX|MIN (Rm +|- Rn) {(T)} ;1

{X|Y|XY}FRsd = MAX|MIN (Rmd +|- Rnd) {(T)} ;3

{X|Y|XY}FRs = ABS (Rm) ;

{X|Y|XY}FRsd = ABS (Rmd) ;

{X|Y|XY}FRs = ABS (Rm +|- Rn) {(T)} ;3

{X|Y|XY}FRsd = ABS (Rmd +|- Rnd) {(T)} ;3

{X|Y|XY}FRs = - Rm ;

{X|Y|XY}FRsd = - Rmd ;

{X|Y|XY}FCOMP (Rm, Rn) ;

{X|Y|XY}FCOMP (Rmd, Rnd) ;

{X|Y|XY}Rs = FIX FRm|FRmd {BY Rn} {(T)} ;3

{X|Y|XY}FRs|FRsd = FLOAT Rm {BY Rn} {(T)} ;3

{X|Y|XY}FRsd = EXTD Rm ;

{X|Y|XY}FRs = SNGL Rmd ;

{X|Y|XY}FRs = CLIP Rm BY Rn ;

{X|Y|XY}FRsd = CLIP Rmd BY Rnd ;

{X|Y|XY}FRs = Rm COPYSIGN Rn ;

{X|Y|XY}FRsd = Rmd COPYSIGN Rnd ;

{X|Y|XY}FRs = SCALB FRm BY Rn ;

{X|Y|XY}FRsd = SCALB FRmd BY Rn ;

{X|Y|XY}FRs = PASS Rm ;

{X|Y|XY}FRsd = PASS Rmd ;

{X|Y|XY}FRs = RECIPS Rm ;

{X|Y|XY}FRsd = RECIPS Rmd ;

{X|Y|XY}FRs = RSQRTS Rm ;

{X|Y|XY}FRsd = RSQRTS Rmd ;

{X|Y|XY}Rs = MANT FRm|FRmd ;

{X|Y|XY}Rs = LOGB FRm|FRmd {(S)} ;2

1 Options include: (): round, (T): truncate (MIN only)
2 Options include: (): do not saturate, (S): saturate

ADSP-TS101 TigerSHARC Processor Programming Reference 3-33

ALU

{X|Y|XY}FRs = Rm + Rn, FRa = Rm - Rn ; (dual instruction)
{X|Y|XY}FRsd = Rmd + Rnd, FRad = Rmd - Rnd ; (dual instruction)

Listing 3-6. Fixed-Point CLU Instructions

{X|Y|XY}{S}TRsd = TMAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = TMAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

{X|Y|XY}{S}Rs = TMAX(TRm, TRn) ;

{X|Y|XY}{S}TRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

{X|Y|XY}Rs = TRm ;

{X|Y|XY}Rsd = TRmd ;

{X|Y|XY}Rsq = TRmq ;

{X|Y|XY}TRs = Rm ;

{X|Y|XY}TRsd = Rmd ;

{X|Y|XY}TRsq = Rmq ;

{X|Y|XY}Rs = THRm ;

{X|Y|XY}Rsd = THRmd ;

{X|Y|XY}Rsq = THRmq ;1

{X|Y|XY}THRs = Rm} ;

{X|Y|XY}THRsd = Rmd {(i)} ;

{X|Y|XY}THRsq = Rmq ;1

{X|Y|XY}TRs = DESPREAD (Rmq, THRd) + TRn ;

{X|Y|XY}Rs = TRs, TRs = DESPREAD (Rmq, THRd) ; (dual instruction)
{X|Y|XY}Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ; (dual instruction)
{X|Y|XY}{S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ;

{X|Y|XY}Rsq = TRaq, {S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ; (dual
instr.)
{X|Y|XY}Rsd = PERMUTE (Rmd, Rn) ;

{X|Y|XY}Rsq = PERMUTE (Rmd, -Rmd, Rn) ;

1 Not implemented, but syntax reserved

ALU Instruction Summary

3-34 ADSP-TS101 TigerSHARC Processor Programming Reference

ADSP-TS101 TigerSHARC Processor Programming Reference 4-1

4 MULTIPLIER

The TigerSHARC processor core contains two computation units known
as compute blocks. Each compute block contains a register file and three
independent computation units—an ALU, a multiplier, and a shifter. The
multiplier is highlighted in Figure 4-1. The multiplier takes its inputs
from the register file, and returns its outputs to the register file.

Figure 4-1. Multipliers in Compute Block X and Y

Y
REGISTER

FILE
32x32

SHIFTER

DAB

128 128 128

128

128

TO DATA BUSES

6464

COMPUTE BLOCK Y

X
REGISTER

FILE
32x32

SHIFTER

DAB

128 128

6464

COMPUTE BLOCK X

128

128

128

TO DATA BUSES

ALUALU

MULTIPLIER MULTIPLIER

4-2 ADSP-TS101 TigerSHARC Processor Programming Reference

The multiplier performs all multiply operations for the processor on fixed-
and floating-point data and performs all multiply-accumulate operations for
the processor on fixed-point data. This unit also performs all complex mul-
tiply operations for the processor on fixed-point data. The multiplier also
executes data compaction operations on accumulated results when moving
data to the register file in fixed-point formats.

Examining the supported operands for each operation shows that the mul-
tiplier operations support these data types:

• Fixed-point fractional and integer multiply operations and multi-
ply-accumulate operations support:

• Eight 16-bit (short) input operands with four 16- or 32-bit
results

• Two 32-bit (normal) input operands with a 32- or 64-bit
result

• Floating-point fractional multiply operations support:

• Two 32-bit (normal) input operands (IEEE standard) with
32-bit result

• Two 40-bit (extended) input operands with 40-bit result

• Fixed-point data compaction operations support:

• 16-bit (short) input operands

• 32-bit (normal) input operands

• 64-bit (long) input operands

• output 16- or 32-bit results

ADSP-TS101 TigerSHARC Processor Programming Reference 4-3

Multiplier

Fixed-point formats include these data size distinctions:

• The multiplier can operate on two 32-bit normal words producing
either a 64-bit or a 32-bit result or operate on eight 16-bit short
words producing either four 32-bit or four 16-bit results. There is
no byte word support in the multiplier.

• The result of a multiplier operation (with the exception of the
compress instruction) is always either the same size as the operands,
or larger.

— Normal word multiplication results in either a normal word
or a long word result.

— Quad short word multiplication always results in either a
quad short-word or a quad-word results.

The TigerSHARC processor supports complex multiply-accumulates.
Complex numbers are represented by a pair of short words in a 32-bit reg-
ister. The least significant bits of the input operands (Rm_L, Rn_L)
represent the real part, and the most significant bits of the input operands
(Rm_H, Rn_H) represent the imaginary part. The result of a complex multi-
plication is always stored in a pair of MR registers. The complex
multiply-accumulate (indicated with the ** operator) is defined as follows:

Complex multiply-accumulate operations have an option to multiply the
first complex operand times the complex conjugate of the second. This
complex conjugate operation is defined as:

Real Result RealRm_L RealRn_L×() ImaginaryRm_H ImaginaryRn_H×()–=

Imaginary Result RealRm_L ImaginaryRn_H×() ImaginaryRm_H RealRn_L×()+=

Real Result RealRm_L RealRn_L×() ImaginaryRm_H ImaginaryRn_H×()+=

Imaginary Result RealRm_L ImaginaryRn_H×() ImaginaryRm_H RealRn_L×()+=

Multiplier Operations

4-4 ADSP-TS101 TigerSHARC Processor Programming Reference

The complex conjugate option is denoted with a (J) following the
instruction. (See “Complex Conjugate Option” on page 4-16.)

The TigerSHARC processor is compatible with the IEEE 32-bit sin-
gle-precision floating-point data format with minor exceptions. For more
information, see “IEEE Single-Precision Floating-Point Data Format” on
page 2-16.

Within instructions, the register name syntax identifies the input operand
and output result data size and type. For information on data type selec-
tion for multiplier instructions, see “Register File Registers” on page 2-5.
For information on data size selection for multiplier instructions, see the
examples in “Multiplier Operations” on page 4-4.

Note that multiplier instruction conventions for selecting input
operand and output result data size differ slightly from the conven-
tions for the ALU and shifter.

The remainder of this chapter presents descriptions of multiplier instruc-
tions, options, and results using instruction syntax. For an explanation of
the instruction syntax conventions used in multiplier and other instruc-
tions, see “Instruction Line Syntax and Structure” on page 1-20. For a list
of multiplier instructions and their syntax, see “Multiplier Instruction
Summary” on page 4-23.

Multiplier Operations
The multiplier performs fixed-point or floating point multiplication and
fixed-point multiply-accumulate operations. The multiplier supports sev-
eral data types in fixed- and floating-point. The floating-point formats are
float and float-extended. The input operands and output result of most
operations is the compute block register file.

ADSP-TS101 TigerSHARC Processor Programming Reference 4-5

Multiplier

The multiplier has one special purpose, five-word register—the MR regis-
ter—for accumulated results. The DSP uses the MR register to store the
results of fixed-point multiply-accumulate operations. Also, the multiplier
can transfer the contents of the MR register to the register file before an
accumulate operation. The upper 32 bits of the MR register (MR4) store
overflow for multiply accumulate operations. For more information on
the register files and register naming syntax for selecting data type and
width, see “Register File Registers” on page 2-5.

Figure 4-2 on page 4-7 through Figure 4-4 on page 4-8 show the data
flow for multiplier operations. The following are multiplier instructions
that demonstrate multiply and multiply-accumulate operations.

XR2 = R1 * R0 ;;

/* This is a fixed-point multiply of two signed fractional 32-bit

input operands XR1 and XR0; the DSP places the 32-bit result in

XR2. */

YR1:0 = R3 * R2 ;;

/* This is a fixed-point multiply of two signed fractional 32-bit

input operands YR3 and YR2; the DSP places the 64-bit result in

YR1:0. */

For fixed-point multiply operations, single register names (Rm, Rn)
for input operands select 32-bit input operands. Single versus dou-
ble register names output for select 32- versus 64-bit output results.

XR3:2 = R5:4 * R1:0 ;;

/* This is a fixed-point multiply of eight signed fractional

16-bit operands:

XR5_upper_half * XR1_upper_half,

XR5_lower_half * XR1_lower_half,

XR4_upper_half * XR0_upper_half,

XR4_lower_half * XR0_lower_half;

The DSP places the four 16-bit results in XR3_upper_half,

XR3_lower_half, XR2_upper_half, and XR2_lower_half. */

Multiplier Operations

4-6 ADSP-TS101 TigerSHARC Processor Programming Reference

YR3:0 = R7:6 * R5:4 ;;

/* This is similar to the previous example of a quad 16-bit mul-

tiply, but the selection of a quad register for output produces

32-bit (instead of 16-bit) results; the DSP places the four

results in YR3, YR2, YR1, and YR0. */

For fixed-point multiply operations, double register names (Rmd,
Rnd) for input operands select 16-bit input operands. Double ver-
sus quad register names for output select 16- versus 32-bit output
results.

XFR2 = R1 * R0 ;;

/* This is a floating-point multiply of two fractional 32-bit

input operands XR1 and XR0 (IEEE format); the DSP places the

32-bit result in XR2. */

YFR1:0 = R5:4 * R3:2 ::

/* This is a floating-point multiply of two signed fractional

40-bit input operands YR5:4 and YR3:2; the DSP places the 40-bit

result in YR1:0. */

For floating-point multiply operations, single register names (Rm,
Rn) for input operands select 32-bit input operands and 32-bit out-
put result. For floating-point multiply operations, double register
names (Rmd, Rnd, Rsd) for input and output operands select 40-bit
input operands and 40-bit output result.

ADSP-TS101 TigerSHARC Processor Programming Reference 4-7

Multiplier

Figure 4-2. 32-Bit Multiplier Operations

Figure 4-3. 40-Bit Multiplier Operations

Rm

Rn

Rs

32-Bit
Floating-Point

Multiply

8-Bit Exponent

Adder

8-Bit Exponent

8-Bit Exponent

24-Bit Mantissa

24x24 Mult

24-Bit Matissa

24-Bit Mantissa

31 024 23

Rm

Rn

Rs/Rsd

32-Bit
Fixed-Point

Multiply

32-Bit Operand

32x32 Mult

32-/64-Bit Result

32-Bit Operand

31 0

MR4:0 Dual Accum (64/80)

Reserved

Reserved8-Bit Exponent

Adder

8-Bit Exponent

8-Bit Exponent

Rmd

Rnd

Rsd

40-Bit
Floating-Point

Multiply

32-Bit Mantissa

32x32 Mult

32-Bit Matissa

32-Bit Mantissa

55 032 3163 56

Multiplier Operations

4-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiplier Instruction Options
Most of the multiplier instructions have options associated with them that
permit flexibility in how the instructions execute. It is important to note
that these options modify the detailed execution of instructions and
options that are particular to a group of instructions—not all options are
applicable to all instructions. Instruction options appear in parenthesis at

Figure 4-4. 16-Bit Complex Multiplier Operations

real 1

dual accumulator

Rm

Rn

M1:0

031

16 x 16
mult

16 x 16
mult

16 x 16
mult

16 x 16
mult

imag 1

real 2imag 2

3:2

dual accumulator
M1:0

3:2
real 1imag 1⇒ input

result ⇒ real 1imag 1

-+

ADSP-TS101 TigerSHARC Processor Programming Reference 4-9

Multiplier

the end of the instruction’s slot. For a list indicating which options apply
for particular multiplier instructions, see “Multiplier Instruction Sum-
mary” on page 4-23. The multiplier instruction options include:

• () signed operation, no saturation1, round-to-nearest even2, frac-
tional mode3

• (U) unsigned operation, no saturation1, round-to-nearest even2

• (nU) signed/unsigned input

• (I) signed operation, integer mode4

• (S) signed operation, saturation1

• (T) signed operation, truncation4

• (C) clear operation

• (CR) clear/round operation

• (J) complex conjugate operation

The following are multiplier instructions that demonstrate multiply and
multiply-accumulate operations with options applied.

XR2 = R1 * R0 (U) ;;

/* This is a fixed-point multiply of two unsigned fractional

32-bit input operands XR1 and XR0; the DSP places the unsigned

32-bit result in XR2. */

1 Where saturation applies
2 Where rounding applies
3 Where applies for floating-point operations
4 Where truncation applies

Multiplier Operations

4-10 ADSP-TS101 TigerSHARC Processor Programming Reference

YR1:0 = R3 * R2 (I) ::

/* This is a fixed-point multiply of two integer 32-bit input

operands YR3 and YR2; the DSP places the 64-bit result in YR1:0.

*/

XFR2 = R1 * R0 (T) ;;

/* This is a floating-point multiply of two fractional 32-bit

input operands XR1 and XR0 (IEEE format); the DSP places the

truncated 32-bit result in XR2. */

Signed/Unsigned Option

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. Fixed-point data in the multiplier
may be unsigned or two’s-complement. Floating-point data in the multi-
plier is always signed (two’s-complement). For information on the
supported numeric formats, see “Numeric Formats” on page 2-16.

All fixed-point multiplier instructions may use signed or unsigned data
types. The options are:

() Both input operands signed (default)

(U) Both input operands unsigned

(nU) Rm is signed, Rn is unsigned; this option is valid only
for Rs = Rm * Rn or Rsd = Rm * Rn

Fractional/Integer Option

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. In the multiplier, fractional or inte-
ger format is available for the fixed-point multiply, multiply-accumulate
and COMPACT instructions. Floating-point multiply operations use frac-
tional format. For information on the supported numeric formats, see
“Numeric Formats” on page 2-16.

ADSP-TS101 TigerSHARC Processor Programming Reference 4-11

Multiplier

The integer and fractional option are defined for the fixed-point
operations:

() Data is fractional (default)

(I) Data is integer

Saturation Option

Saturation is performed on fixed-point operations if option (S) is active
when the result overflows—crosses the maximum value in which the result
format can be represented. In these cases, the returned result is the
extreme value that can be represented in the format of the operation fol-
lowing the direction of the correct result. For example, if the format of the
result is 16-bit signed and the full result is -0x100000, the saturated result
would be 0x8000. If the operation is unsigned, the result would be 0x0.
This can occur in three types of operations:

• Multiply operations

When multiplying integer data and the actual result is outside the
range of the destination format, the largest representable number
in the destination format is returned. When multiplying fractional
data, the special case of -1 times -1 (for example, 0x80…0 times
0x80…0) always returns the largest representable fraction (for exam-
ple, 0x7F…F).

• Multiply-accumulate operations

Saturation affects both integer and fractional data types. Accumu-
lation values are kept at 80-, 40-, and 20-bit precision and are
stored in the combination of MR3:0 and MR4 registers (See “Multi-
plier Examples” on page 4-21). When performing saturation in a
multiply-accumulate operation, the resulting value out of the mul-
tiplier (at 64, 32, or 16 bits) is added to the current accumulation

Multiplier Operations

4-12 ADSP-TS101 TigerSHARC Processor Programming Reference

value. When the accumulation value overflows past 80, 40, or 20
bits, it is substituted by the maximum or minimum possible value.
Note that multiply-accumulate operations always saturate.

• MR register transfers

See “Multiplier Examples” on page 4-21.

The final saturated result at 32 --bits for all operations is:

• 0x7F…F – if operation is signed and result is positive

• 0x80…0 – if operation is signed and result is negative

• 0xFF…F – if operation is unsigned and result is positive

• 0x00…0 – if operation is unsigned and result is negative (only in
signed MR -= Rm * Rn)

Saturation option exists for any fixed-point multiplications that may over-
flow. The following options are available:

() No saturation (default)

(S) Saturation is active

Truncation Option

For multiplier instructions that support truncation as the T option, this
option permits selection of the results rounding mode. The DSP supports
two modes of rounding—round-toward-zero and round-toward-nearest.
The rounding modes comply with the IEEE 754 standard and have these
definitions:

• Round-Toward-Nearest (not using T option). If the result before
rounding is not exactly representable in the destination format, the
rounded result is the number that is nearer to the result before

ADSP-TS101 TigerSHARC Processor Programming Reference 4-13

Multiplier

rounding. If the result before rounding is exactly halfway between
two numbers in the destination format (differing by an LSB), the
rounded result is the number that has an LSB equal to zero.

• Round-Toward-Zero (using T option). If the result before round-
ing is not exactly representable in the destination format, the
rounded result is the number that is nearer to zero. This is equiva-
lent to truncation.

Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB
less than the value that represents Infinity, a result that is halfway between
the maximum floating-point value and Infinity rounds to Infinity in this
mode.

Though these rounding modes comply with standards set for float-
ing-point data, they also apply for fixed-point multiplier operations on
fractional data. The same two rounding modes are supported, but only the
round-to-nearest operation is actually performed by the multiplier. Using
its local result register for fixed-point operations, the multiplier
rounds-to-zero by reading only the upper bits of the result and discarding
the lower bits.

Round-to-nearest even is executed by adding the LSB to the truncated
result if the first bit under the LSB is set and all bits under are cleared—
for example, multiplying two short operands. The real result is a normal
word. If the expected result is short, it has to be rounded.

Figure 4-5. Rounding Multiplier Results

0.XXXX

0.YYYY

0.ZZZZZZZZ
031

031

X

Multiplier Operations

4-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Bits 31–16 should be returned, and bits 15–0 should be rounded. The
rounding is set according to bit 15 (round bit), bit 16 (LSB), and whether
bits 14–0 (lower bits) are zero or non-zero:

• If bit 15 is zero, the result is not incremented

• If bit 15 is 1 and bits 14–0 are non-zero, the result is incremented
by one.

• If bit 15 is 1 and bits 14–0 are zero, add bit 16 to the result 31–16.

There is no support for round-to-nearest even for multiply-accumulate
instructions that also transfer the current MR contents to the register file. If
round-to-nearest even is required, transfer the MR registers to the register
file as a whole and use the ALU COMPACT instruction. As an alternative, if
round-to-nearest (not even) is sufficient, this can be achieved by using the
clear and round option in the first multiply-accumulate instruction of the
series. For more information, see “Clear/Round Option” on page 4-14.

Rounding options are:

() Round-to-nearest even (default)

(T) Truncate—round-to-zero for floating-point and
round-to-minus infinity for fixed-point

Clear/Round Option

Multiply operations and multiply-accumulate with MR register move oper-
ations support the clear MR (C) option. Using this option forces the
multiplier to clear (=0) the MR register before the accumulate operation.

Multiply-accumulate operations (without an MR move) also support the
clear and round (CR) options as an alternative to the clear option. Using
the CR option forces the multiplier to clear MR and set the round bit before
the accumulate operation. For more information about rounding and the
round bit, see “Truncation Option” on page 4-12.

ADSP-TS101 TigerSHARC Processor Programming Reference 4-15

Multiplier

The clear and clear/round options are:

() No change of MR register prior to multiply-accumu-
late operation (default)

(C) Set target MR to zero prior to multiply-accumulate
operation

(CR) Set target MR to zero and set round bit prior to mul-
tiply-accumulate operation

The C and CR options may be used only for fractional arithmetic,
for example when the option (I) is not used.

When this option is set, the MR registers are set to an initial value of
0x00000000 80000000 for 32-bit fractional multiply-accumulate and
0x00008000 in each of the MR registers for quad 16-bit fractional multi-
ply-accumulate. After this initialization, the result is rounded up by
storing the upper part of the result in the end of the multiply-accumulate
sequence.

For example with the C option, assume a sequence of three quad short
fractional multiply-accumulate operations (with quad short result) such
that the multiplication results are:

Result 1 = 0x0024 0048, 0x0629 4501

Result 2 = 0x0128 0128, 0x2470 2885

Result 3 = 0x1011 fffe, 0x4A30 6d40

Sum = 0x115d 016e, 0x74c9 dac6

In this example, the bottom 16 bits are not to be used if only a short result
is expected. Extracting the top 16 bits will give a truncated result, which is
0x115d for the first short and 0x74c9 for the second short. The rounded

Multiplier Operations

4-16 ADSP-TS101 TigerSHARC Processor Programming Reference

result is 0x115d for the first short (no change) and 0x74ca (increment) for
the second short. If the MR registers are initialized to 0x00008000, the sum
result will be:

Sum = 0x115d 816e, 0x74ca 5ac6

The top short is exactly the expected result. Note that this is
round-to-nearest, and not round-to-nearest even.

For example with the CR option, assume a sequence of three quad short
fractional multiply-accumulate operations, such that the multiplication
results are:

Result 1 = 0x0024 0048, 0x0629 4501

Result 2 = 0x0128 0128, 0x2470 2885

Result 3 = 0x1011 FFFE, 0x4A30 6D40

Sum = 0x115D 016E, 0x74C9 DAC6

In this example, if a short result is expected, the multiplier does not use
the lower 16 bits. Extracting the upper 16 bits produces a truncated result,
which is 0x115D for the first short and 0x74C9 for the second short. The
rounded result is 0x115D for the first short (no change) and 0x74CA (incre-
ment of one) for the second short. If the MR registers are initialized to
0x0000 8000, the sum result is:

SUM = 0x115D 816E, 0x74CA 5AC6

The high short is exactly as expected. The rounding method is
round-to-nearest, not round-to-nearest even. For information on round-
ing, see “Truncation Option” on page 4-12.

Complex Conjugate Option

For complex multiply-accumulate operations (** operator), the multiplier
supports the complex conjugate (J) option. The J option directs the mul-
tiplier to multiply the Rm operand with the complex conjugate of Rn

ADSP-TS101 TigerSHARC Processor Programming Reference 4-17

Multiplier

operand, negating the imaginary part of Rn. For more information, see the
discussion on page 4-3. The options are:

() No conjugate

(J) Conjugate for complex multiply

Multiplier Result Overflow (MR4) Register
The MR4 register holds the extra bits (overflow) from a multiply-accumu-
late operation. MR4 register fields are assigned according to the MR register
used and the size of the result. See:

• Figure 4-6–Result is a long word (80-bit accumulation)

• Figure 4-7–Result is word (40-bit accumulation)

• Figure 4-8–Result is short (20-bit accumulation)

Figure 4-6. MR4 for Long Word Result (80-Bit Accumulation)

Figure 4-7. MR4 for Normal Word Result (40-Bit Accumulation)

MR4

0151631

MR3:2 MR1:0

MR4

0781516232431

MR0MR1MR2MR3

Multiplier Operations

4-18 ADSP-TS101 TigerSHARC Processor Programming Reference

These bits are also used as the input to the accumulate step of the multi-
ply-accumulate operation. The bits are cleared together with the clear of
the corresponding MR register, and when stored, are used for saturation.
The purpose of these bits is to enable the partial result of a multiply-accu-
mulate sequence to go beyond the range assigned by the final result.

Multiplier Execution Status
Multiplier operations update status flags in the compute block’s Arith-
metic Status (XSTAT and YSTAT) register (see Figure 2-2 on page 2-4 and
Figure 2-3 on page 2-5). Programs can use status flags to control execu-
tion of conditional instructions and initiate software exception interrupts.
For more information, see “Multiplier Execution Conditions” on
page 4-20.

Table 4-1 shows the flags in XSTAT or YSTAT that indicate multiplier status
(a 1 indicates the condition) for the most recent multiplier operation.

Figure 4-8. MR4 for Short Word Result (20-Bit Accumulation)

Table 4-1. Multiplier Status Flags

Flag Definition Updated By…

MZ Multiplier fixed-point zero and floating-point
underflow

All fixed- and floating-point multi-
plier ops

MN Multiplier result is negative All fixed- and floating-point multi-
plier ops

MR4

0

_H indicates High short word field

34781112151619202324272831

MR0_LMR0_HMR1_LMR1_HMR2_LMR2_HMR3_LMR3_H

_L indicates Low short word field

ADSP-TS101 TigerSHARC Processor Programming Reference 4-19

Multiplier

Multiplier operations also update sticky status flags in the compute block’s
Arithmetic Status (XSTAT and YSTAT) register. Table 4-2 shows the flags in
XSTAT or YSTAT that indicate multiplier sticky status (a 1 indicates the con-
dition) for the most recent multiplier operation. Once set, a sticky flag
remains high until explicitly cleared.

Flag update occurs at the end of each operation and is available on the
next instruction cycle. A program cannot write the arithmetic status regis-
ter explicitly in the same cycle that the multiplier is performing an
operation.

Multi-operand instructions (for example, Rsd = Rmd + Rnd) produce mul-
tiple sets of results. In this case, the DSP determines a flag by ORing the
result flag values from individual results.

MV Multiplier overflow All fixed- and floating-point multi-
plier ops

MU Multiplier underflow All floating-point multiplier ops;
cleared by fixed-point ops

MI Multiplier floating-point invalid operation All floating-point multiplier ops;
cleared by fixed-point ops

Table 4-2. Multiplier Sticky Status Flags

Flag Definition Updated By…

MUS Multiplier underflow, sticky All floating-point multiply ops

MVS Multiplier floating-point overflow, sticky All floating-point multiply ops

MOS Multiplier fixed-point overflow, sticky All fixed-point multiply ops

MIS Multiplier floating-point invalid operation,
sticky

All floating-point multiply ops

Table 4-1. Multiplier Status Flags (Cont’d)

Flag Definition Updated By…

Multiplier Operations

4-20 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiplier Execution Conditions
In a conditional multiplier instruction, the execution of the entire instruc-
tion line can depend on the specified condition at the beginning of the
instruction line. Conditional multiplier instructions take the form:

IF cond; DO, instr.; DO, instr.; DO, instruct. ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the DO before the instruction makes the instruction
unconditional.

Table 4-3 lists the multiplier conditions. For more information on condi-
tional instructions, see “Conditional Execution” on page 7-12.

Table 4-3. Multiplier Conditions

Condition Description Flags Set

MEQ Multiplier equal to zero MZ = 1

MLT Multiplier less than zero MN and MZ = 1

MLE Multiplier less than or equal to zero MN or MZ = 1

NMEQ NOT (Multiplier equal to zero) MZ = 0

NMLT NOT (Multiplier less than zero) MN and MZ = 0

NMLE NOT (Multiplier less than or equal to zero) MN or MZ = 0

ADSP-TS101 TigerSHARC Processor Programming Reference 4-21

Multiplier

Multiplier Static Flags
In the program sequencer, the static flag (SFREG) can store status flag val-
ues for later usage in conditional instructions. With SFREG, each compute
block has two dedicated static flags X/YSCF0 (condition is SF0) and
X/YSCF1 (condition is SF1). The following example shows how to load a
compute block condition value into a static flag register.

XSCF0 = XMEQ ;; /* Load X-compute block MEQ flag into XSCF0 bit

in static flags (SFREG) register */

IF SF0, XR5 = R4 * R3 ;; /* the SF0 condition tests the XSCF0

static flag */

For more information on static flags, see “Conditional Execution” on
page 7-12.

Multiplier Examples
Listing 4-1 provides a number of example multiply and multiply-accumu-
late instructions. The comments with the instructions identify the key
features of the instruction, such as fixed- or floating-point format, input
operand size, and register usage.

Listing 4-1. Multiplier Instruction Examples

XYR4 = R6 * R8 ;;

/* This instruction is a 32-bit multiply that produces a 32-bit

result. */

XYR5:4 = R6 * R8 ;;

/* This instruction is a 32-bit multiply that produces a 64-bit

result. */

XR11:10 = R9:8 * R7:6 ;;

Multiplier Examples

4-22 ADSP-TS101 TigerSHARC Processor Programming Reference

/* This instruction is a quad 16-bit multiply; the input operands

are XR9_H x XR7_H, XR9_L x XR7_L, XR8_H x XR6_H, and

XR8_L x XR6_L (where _H is high half and _L is low half); the

16-bit results go to XR11_H, XR11_L, XR10_H, and XR10_L (respec-

tively). */

XMR3:2 += R1 * R0 ;;

/* This is a multiplication of source operands XR1 and XR0, and

the multiplication result is added to the current contents of the

target XMR registers, overflowing into XMR4. */

YMR1:0 -= R3 * R2 ;;

/* This is a multiplication of source operands YR3 and YR2, and

the multiplication result is subtracted from the current contents

of the target YMR registers, overflowing into YMR4. */

XR7 = MR3:2, MR3:2 += R1 * R0 ;;

/* This instruction executes a multiply-accumulate and transfers

the MR registers into the register file; the previous value in

the MR registers is transferred to the register file. */

YMR3:0 += R5:4 * R7:6 ;;

/* This instruction is four multiplications of four 16-bit shorts

in register pair YR5:4 and four 16-bit shorts in pair YR7:6. The

four results are accumulated in MR3:0 as a word result. The over-

flow bits are written into MR4. */

XMR3:2 += R9:8 * R7:6 ;;

/* This instruction is a quad 16-bit multiply-accumulate with

16-bit results; the input operands are XR9_H x XR7_H,

XR9_L x XR7_L, XR8_H x XR6_H, and XR8_L x XR6_L (where _H is high

half and _L is low half); the 16-bit accumulated results go to

XMR3_H, XMR3_L, XMR2_H, and XMR2_L (respectively). */

ADSP-TS101 TigerSHARC Processor Programming Reference 4-23

Multiplier

MR3:0 += R9:8 * R7:6 ;;

/* This instruction is a quad 16-bit multiply-accumulate with

32-bit results; the input operands are XR9_H x XR7_H,

XR9_L x XR7_L, XR8_H x XR6_H, and XR8_L x XR6_L (where _H is high

half and _L is low half); the 32-bit accumulated results go to

XMR3, XMR2, XMR1, and XMR0 (respectively). */

XMR1:0 += R9 ** R7 ;;

/* This instruction is a multiplication of the complex value in

XR9 and the complex value in XR7. The result is accumulated in

XMR1:0. */

XFR20 = R22 * R23 (T) ;;

/* This is a 32-bit (single precision) floating-point multiply

instruction with 32-bit result; single registers select 32-bit

operation. */

YFR25:24 = R27:26 * R30:29 (T) ;;

/* This is a 40-bit (extended precision) floating-point multiply

instruction with 40-bit result; double registers select 40-bit

operation. */

Multiplier Instruction Summary
The following listings show the multiplier instructions’ syntax:

• Listing 4-2 “32-Bit Fixed-Point Multiplication Instructions”

• Listing 4-3 “16-Bit Fixed-Point Quad Multiplication Instructions”

• Listing 4-4 “16-Bit Fixed-Point Complex Multiplication
Instructions”

Multiplier Instruction Summary

4-24 ADSP-TS101 TigerSHARC Processor Programming Reference

• Listing 4-5 “32- and 40-Bit Floating-Point Multiplication
Instructions”

• Listing 4-6 “Multiplier Register Load Instructions”

The conventions used in these listings for representing register names,
optional items, and choices are covered in detail in “Register File Regis-
ters” on page 2-5. Briefly, these conventions are:

• { } — The curly braces enclose options; these braces are not part of
the instruction syntax.

• | — The vertical bars separate choices; these bars are not part of
the instruction syntax.

• Rmd — The register names in italic represent user selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

Each instruction presented here occupies one instruction slot in an
instruction line. For more information about instruction lines and
instruction combination constraints, see “Instruction Line Syntax
and Structure” on page 1-20 and “Instruction Parallelism Rules”
on page 1-24.

The MR3:0 registers are four 32-bit accumulation registers. They
overflow into MR4, which stores two 16-bit overflows for 32-bit
multiples, or four 8-bit overflows for quad 16-bit multiples.

Listing 4-2. 32-Bit Fixed-Point Multiplication Instructions

{X|Y|XY}Rs = Rm * Rn {({U|nU}{I}{T}{S})} ;1

{X|Y|XY}Rsd = Rm * Rn {({U|nU}{I})} ;

{X|Y|XY}MRa += Rm * Rn {({U}{I}{C|CR})} ;2

1 Options include: (): fractional, signed, and no saturation; (S): saturation, signed, (SU): satura-
tion, unsigned

ADSP-TS101 TigerSHARC Processor Programming Reference 4-25

Multiplier

{X|Y|XY}MRa -= Rm * Rn {({I}{C|CR})} ;

{X|Y|XY}Rs = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Listing 4-3. 16-Bit Fixed-Point Quad Multiplication Instructions

{X|Y|XY}Rsd = Rmd * Rnd {({U}{I}{T}{S})} ;

{X|Y|XY}Rsq = Rmd * Rnd {({U}{I})} ;

{X|Y|XY}MRb += Rmd * Rnd {({U}{I}{C})} ;

{X|Y|XY}MRb += Rmd * Rnd {({U}{I}{C})} ;

/* where MRb is either MR1:0 or MR3:2 */

{X|Y|XY}MR3:0 += Rmd * Rnd {({U}{I}{C|CR})} ;{X|Y|XY}Rsd = MRb,

MRb += Rmd * Rnd {{I}{C})} ; dual operation
/* where MRb is either MR1:0, MR3:2, or MR3:0 */

Listing 4-4. 16-Bit Fixed-Point Complex Multiplication Instructions

{X|Y|XY}MRa += Rm ** Rn {({I}{C|CR}{J})} ;

{X|Y|XY}Rs = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Listing 4-5. 32- and 40-Bit Floating-Point Multiplication Instructions

{X|Y|XY}FRs = Rm * Rn {(T)} ;

{X|Y|XY}FRsd = Rmd * Rnd {(T)} ;

2 Options include: (): signed, round-to-nearest even, (T): signed, truncate, (U): unsigned,
round-to-nearest even, (TU): unsigned, truncate

Multiplier Instruction Summary

4-26 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 4-6. Multiplier Register Load Instructions

{X|Y|XY}MRa = Rmd ;

{X|Y|XY}MR4 = Rm ;

{X|Y|XY}{S}Rsd = MRa {({U}{S})} ;

{X|Y|XY}Rsq = MR3:0 {({U}{S})} ;

{X|Y|XY}Rs = MR4 ;

{X|Y|XY}Rs = COMPACT MRa {({U}{I}{S})} ;

{X|Y|XY}SRsd = COMPACT MR3:0 {({U}{I}{S}{C})} ;

/* where MRa is either MR1:0 or MR3:2 */

ADSP-TS101 TigerSHARC Processor Programming Reference 5-1

5 SHIFTER

The TigerSHARC processor core contains two computation units known
as compute blocks. Each compute block contains a register file and three
independent computation units—an ALU, a multiplier, and a shifter. The
shifter is highlighted in Figure 5-1. The shifter takes its inputs from the
register file, and returns its outputs to the register file.

Figure 5-1. Shifters in Compute Block X and Y

Y
REGISTER

FILE
32x32

MULTIPLIER

DAB

128 128 128

128

128

TO DATA BUSES

6464

COMPUTE BLOCK Y

X
REGISTER

FILE
32x32

MULTIPLIER

DAB

128 128

6464

COMPUTE BLOCK X

128

128

128

TO DATA BUSES

ALUALU

SHIFTERSHIFTER

5-2 ADSP-TS101 TigerSHARC Processor Programming Reference

This unit performs bit wise operations (arithmetic and logical shifts) and
performs bit field operations (field extraction and deposition) for the pro-
cessor. The shifter also executes data conversion operations such as fixed-
and floating-point format conversions. Shifter operations include:

• Shift and rotate bit field, from off-scale left to off-scale right

• Bit manipulation; bit set, clear, toggle, and test

• Bit field manipulation; field extract and deposit

• Scaling factor identification, 16-bit block floating-point

• Extract exponent

• Count number of leading ones or zeros

The shifter operates on fixed-point data and can take the following as
input:

• One long word (64-bit) operand

• One or two normal word (32-bit) operands

• Two or four short word (16-bit) operands

• Four or eight byte word (8-bit) operands

ADSP-TS101 TigerSHARC Processor Programming Reference 5-3

Shifter

As shown in Figure 5-1, the shifter has four inputs and four outputs
(unlike the ALU and multiplier, which have two inputs and outputs). The
shifter’s I/O paths within the compute block have some implications for
instruction parallelism.

• Shifter instructions that use three inputs cannot be executed in par-
allel with any other compute block operations.

• For FDEP, MASK, and PUTBIT instructions, there are three registers
that are passed into the shifter. This operation uses three compute
block ports. The output is being placed in the same port.

For more information on available ports and instruction parallel-
ism, see “Instruction Parallelism Rules” on page 1-24.

Within instructions, the register name syntax identifies the input operand
and output result data size and type. For more information on data size
and type selection for shifter instructions, see “Register File Registers” on
page 2-5.

The remainder of this chapter presents descriptions of shifter instructions
and results using instruction syntax. For an explanation of the instruction
syntax conventions used in shifter and other instructions, see “Instruction
Line Syntax and Structure” on page 1-20. For a list of shifter instructions
and their syntax, see “Shifter Instruction Summary” on page 5-19.

Shifter Operations
The shifter operates on one 64-bit, one or two 32-bit, two or four 16-bit,
and four or eight 8-bit fixed-point operands. Shifter operations include:

• Shifts and rotates from off-scale left to off-scale right

• Bit manipulation operations, including bit set, clear, toggle and
test

Shifter Operations

5-4 ADSP-TS101 TigerSHARC Processor Programming Reference

• Bit field manipulation operations, including field extract and
deposit, using register BFOTMP (which is internal to the shifter)

• Bit FIFO operations to support bit streams with fields of varying
length

• Support for ADSP-2100 family compatible fixed-point and float-
ing-point conversion operations (such as exponent extract, number
of leading 1s or 0s)

The shifter operates on the compute block register files and operates on
the shifter register BFOTMP—an internal shifter register which is used for
the PUTBITS instruction. Shifter operations can take their Rm input (data
operated on) from the register file and take their Rn input (shift magni-
tudes) either from the register file or from immediate data provided in the
instruction. In cases where the operation involves a third input operand,
Rm and Rn inputs are taken from the register file, and the third input, Rs, is
a read-modify-write (RMW).

Shift magnitudes for register file-based operations—where the shift mag-
nitude comes from Rn—are held in the right-most bits of Rn. The shift
magnitude size (number of bits) varies with the size of the output operand,
where Rn is 8 bits for long word output, 7 bits for normal word output, 6
bits for short word output and 6 bits for byte word output. In this way,
full-scale right and left shifts can be achieved. Bits of Rn outside of the
shift magnitude field are masked.

The following sections describe shifter operation details:

• “Logical Shift Operation” on page 5-5

• “Arithmetic Shift Operation” on page 5-6

• “Bit Manipulation Operations” on page 5-7

• “Bit Field Manipulation Operations” on page 5-8

ADSP-TS101 TigerSHARC Processor Programming Reference 5-5

Shifter

• “Bit Field Conversion Operations” on page 5-11

• “Bit Stream Manipulation Operations” on page 5-11

Logical Shift Operation
The following instruction is an example of a logical shift (LSHIFT). The
operation shifts the contents of the XR4 register by the shift value (number
of bits) specified in the XR3 register. The shifter places the result in the XR5
register. Figure 5-2 shows how the bits in register XR5 are placed for shift
values of 4 and –4.

XR5 = LSHIFT R4 BY R3;;

Figure 5-2. LSHIFT Instruction Example

XR4

031

0001 0010 0011 0100 0101 0110 1110 1111 0x1234 56EF

XR5

031

0000 0001 0010 0011 0100 0101 0110 1110 0x0123 456E

XR5

031

0010 0011 0100 0101 0110 1110 1111 0000 0x2345 6EF0

For a negative LSHIFT value, the shift is to the RIGHT and ZERO-FILLED.
Here, the LSHIFT value is –4, so bits 31–28 are zero-filled.

For a positive LSHIFT value, the shift is to the LEFT and ZERO-FILLED.
Here, the LSHIFT value is 4, so bits 3–0 are zero-filled.

Shifter Operations

5-6 ADSP-TS101 TigerSHARC Processor Programming Reference

Arithmetic Shift Operation
The following instruction is an example of an arithmetic shift (ASHIFT).
The operation shifts the contents of the XR4 register by the shift value
(number of bits) specified in the XR3 register. The shifter places the result
in the XR5 register. Figure 5-3 shows how the bits in register XR5 are placed
for shift values of 8 and –8.

XR5 = ASHIFT R4 BY R3 ;;

Figure 5-3. ASHIFT Instruction Example

XR4

031

1001 0010 0011 0100 0101 0110 1110 1111 0x9234 56EF

XR5

031

1111 1111 1001 0010 0011 0100 0101 0110 0xFF92 3456

XR5

031

0011 0100 0101 0110 1110 1111 0000 0000 0x3456 EF00

For a negative ASHIFT value, the shift is to the RIGHT and SIGN-EXTENDED.
Here, the ASHIFT value is –8, so bits 31–24 are sign-extended.

For a positive ASHIFT value, the shift is to the LEFT and ZERO-FILLED.
Here, the ASHIFT value is 8, so bits 7–0 are zero-filled.

ADSP-TS101 TigerSHARC Processor Programming Reference 5-7

Shifter

Bit Manipulation Operations
The shifter supports bit manipulation operations including bit clear
(BCLR), bit set (BSET), bit toggle (BTGL), and bit test (BITEST). The operand
size can be a normal word or a long word. For example:

R5 = BCLR R3 By R2 ;; /* 32-bit operand */

R5:4 = BSET R3:2 By R6 ;; /* 64-bit operand */

The following instruction is an example of bit manipulation (BCLR). The
shifter clears the bit in the XR4 register indicated by the bit number speci-
fied in the XR3 register. The shifter places the result in the XR5 register.
Figure 5-4 shows how the bits in register XR5 are affected for bit
number 8.

XR5 = BCLR R4 By R3 ;;

Figure 5-4. BCLR Instruction Example

XR4

031

0001 0010 0011 0100 0101 0111 1110 1111 0x1234 57EF

XR5

031

0001 0010 0011 0100 0101 0110 1110 1111 0x1234 56EF

For a BCLR bit manipulation, the selected bit is CLEARED.
Because XR3=0x8 (the bit number), bit 8 is cleared.

Shifter Operations

5-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Bit Field Manipulation Operations
The shifter supports bit field manipulation operations including:

• FEXT–Extracts a field from a register according to the length and
position specified by another register

• FDEP–Deposits a right-justified field into a register according to the
length and position specified by another register

• MASK–Copies a 32- or 64-bit field created by a mask

• XSTAT/YSTAT–Loads or stores all bits or 14 LSBs only of the XSTAT
or YSTAT register

For field extract and deposit operations, the Rn operand contains the con-
trol information in two fields: <Len7> and <Pos8>. These fields select the
number of bits to extract (Len7) and the starting position in Rm (Pos8).
The location of these fields depends on whether Rn is a single- or dual-reg-
ister as shown in Figure 5-5.

Figure 5-5. FEXT and FDEP Instructions Pos8 and Len7 Fields

Rm

031

Rmd

031

For single register operands, the Pos8 and Len7 fields are in bits 15–8 and 6–0.

3263

<Pos8> <Len7>

<Pos8> <Len7>

06815

063239

For dual register operands, the Pos8 and Len7 fields are in bits 39–32 and 6–0.

ADSP-TS101 TigerSHARC Processor Programming Reference 5-9

Shifter

There are two versions of the FEXT and FDEP is instructions. One version
takes the control information from a register pair. The other version takes
control information from a single register. The FEXT instruction takes the
data from the indicated position in the source register and places right-jus-
tified data in the destination register (Rs). The FDEP instruction takes the
right-justified data from the source register and places data in the indi-
cated position in the destination register (Rs).

The following instruction is an example of bit field extraction (FEXT). The
shifter extracts the bit field in the XR4 register indicated by the field posi-
tion (Pos8) and field length (Len7) values specified in the XR3 register.
The shifter places the right-justified result in the XR5 register. The default
operation zero-fills the unused bits in the destination register (XR5 in the
example). If the FEXT instruction included the sign extend (SE) option, the
most significant bit of the extracted field is extended. Figure 5-6 shows
how the bits in register XR5 are affected for field position Pos8=5 and field
length Len7=8.

XR5 = FEXT R4 By R3 ;; /* Pos8=5, Len7=8, XR3=0x0000 0508 */

Figure 5-6. FEXT Instruction Example

XR4

031

0000 0000 0000 0000 0001 0010 0011 0100 0x0000 1234

XR5

031

0000 0000 0000 0000 0000 0000 1001 0001 0x0000 0091

For a FEXT field extraction, the unused bits in the destination are CLEARED
unless the SE option is used. Here, bits 31–8 are cleared.

Shifter Operations

5-10 ADSP-TS101 TigerSHARC Processor Programming Reference

The following instruction is an example of bit field deposit (FDEP). The
shifter extracts the right-justified bit field in the XR4 register field length
(Len7) value specified in the XR3 register. The shifter places the result in
the XR5 register in the location indicated by the field position (Pos8). The
default operation does not alter the unused bits in the destination register
(XR5 in the example). If the FDEP instruction included the sign extend (SE)
option, the most significant bit of the extracted field is extended. If the
FDEP instruction included the sign extend (ZF) option, the most significant
unused bits of result register are zero filled. Figure 5-7 shows how the bits
in register XR5 are affected for field position Pos8=5 and field length
Len7=8.

XR5 = FDEP R4 By R3 ;; /* Pos8=5, Len7=8, XR3=0x0000 0508, XR5

value before instruction was 0xA5A5 A5A5 */

The following instruction is an example of mask (MASK) operation. The
shifter takes the bits from XR4 corresponding to the mask XR3 and ORs
them into the XR5 register. The bits of XR5 outside the mask remain
untouched.

XR3 = 0x00007B00;;

XR4 = 0x50325032;;

Figure 5-7. FDEP Instruction Example

XR4

031

0000 0000 0000 0000 0001 0010 0011 0100 0x0000 1234

XR5

031

1010 0101 1010 0101 1010 0110 1000 0101 0xA5A5 A685

For a FDEP field deposit, the unused bits in the destination are UNCHANGED
unless the SE or ZF option is used. Here, bits 31–13 and 4–0 are unchanged.

ADSP-TS101 TigerSHARC Processor Programming Reference 5-11

Shifter

XR5 = 0x85FFFFFF;; /* before mask instruction */

XR5 += MASK R4 BY R3

/* After mask instruction, XR5 = 0x85FFD4FF */

Bit Field Conversion Operations
The shifter supports fixed- to floating-point conversion operations
including:

• BKFPT–Determines scaling factor used in 16-bit block
floating-point

• EXP–Extracts the exponent

• LDx–Extracts leading zeros (0) or ones (1)

Bit Stream Manipulation Operations
The bit stream manipulation operations, in conjunction with the ALU
BFOINC instruction, implement a bit FIFO used for modifying the bits in a
contiguous bit stream. The shifter supports bit stream manipulation oper-
ations including:

• GETBITS–Extracts bits from a bit stream

• PUTBITS–Deposits bits in a bit stream

• BFOTMP–Temporarily stores or returns overflow from GETBITS and
PUTBITS instructions

Shifter Operations

5-12 ADSP-TS101 TigerSHARC Processor Programming Reference

For bit stream extract (GETBITS) and deposit (PUTBITS) operations, the Rnd
operand contains the control information in two fields: <BFP6> and
<Len6>. These fields in the dual register, Rnd, appear in Figure 5-8.

The GETBITS instruction extracts the number of bits indicated by Len6
starting at BFP6 and places the right-justified data in the output register.
The unused bits are cleared unless the sign extend (SE) option is used.
With the SE option, the most significant bit of the extract is extended to
the most significant bit of the output register.

The following instruction is an example of bit stream extraction (GET-
BITS). The shifter extracts a portion of the bit stream in the XR3:0 quad
register indicated by the bit FIFO position (BFP6) and field length (Len6)
values specified in the XR7:6 dual register.

Use the ALU’s BFOINC instruction to increment the bit FIFO
pointer. Normally, an update of bit FIFO pointer is necessary after
executing GETBITS. The ALU instruction BFOINC adds BFP6 and
Len6 fields, divides them by 64 and returns the remainder to BFP6
field. If for example, BFP6 is 0x30 and Len6 is 0x18, the new value
of BFP6 is 0x08 and the flag AN in XSTAT register is set. This flag
may be used to identify this situation and proceed accordingly.

In the example, the shifter places the right-justified result in the XR5:4
dual register. The default operation zero-fills the unused bits in the desti-
nation register (XR5:4 in the example). If the GETBITS instruction included

Figure 5-8. GETBITS and PUTBITS Instructions BFP6 and Len6 Fields

Rmd

0313263

<BFP6> <Len6>

053237

The dual register operand provides the BFP6 and Len6 fields (bits 37–32 and 5–0).
Note that the BFP must be incremented using the ALU’s BFOINC instruction.

ADSP-TS101 TigerSHARC Processor Programming Reference 5-13

Shifter

the sign extend (SE) option, the most significant bit of the extracted field
is extended. Figure 5-9 shows how the bits in register XR5:4 are affected
for field position BFP6=16 and field length Len6=24.

XR5:4 = GETBITS R3:0 BY R7:6 ;;

/* BFP6=16, Len6=24, XR7:6=0x0000 0010 0000 0018 */

The PUTBITS instruction deposits the 64 bits from Rmd registers into a con-
tiguous bit stream held in the quad register composed of BFOTMP in the top
and Rsd in the bottom. In PUTBITS, the BFP field specifies the starting bit
where the insertion begins in Rsd register, but the Len6 field is ignored.
Update of BFP may only be performed by the ALU with the instruction
BFOINC.

Figure 5-9. GETBITS Instruction Example

XR3

031

0000 0001 0010 0011 0100 0101 0110 0111 0x0123 4567

XR5

031

0000 0000 1001 1000 0111 0110 0101 0100

0x0000 0000

For a GETBITS field extraction, the unused bits in the destination are CLEARED
unless the SE option is used. Here, bits XR5 and bits 31–24 of XR4 are cleared.

1000 1001 1010 1011 1100 1101 1110 1111

1111 1110 1101 1100 1011 1010 1001 1000

0111 0110 0101 0100 0011 0010 0001 0000

XR2

XR1

XR0

0x98ABCDEF

0xFEDC BA98

0x7654 3210

0000 0000 0000 0000 0000 0000 0000 0000

0x0098 7654XR4

Shifter Operations

5-14 ADSP-TS101 TigerSHARC Processor Programming Reference

The following instruction is an example of bit stream placement (PUT-
BITS). The shifter puts the content of the registers XR3:2 into the bit FIFO
composed by XR5:4 and BFOTMP beginning with bit 16 of XR4 (specified
into BFP field of XR7).

XR3 = 0x01234567 ;;

XR2 = 0x89abcdef ;;

XR5 = 0x0 ;

XR4 = 0x0 ;

XR5:4 += PUTBITS R3:2 BY R7:6 ;; /* BFP6=16, XR7:6=0x0000 0010

0000 0018 */

/* After PUTBITS instruction, the registers hold:

xBFOTMP = 0x0000 0000 0000 0123

XR5 = 0x4567 89ab

XR4 = 0xcdef 0000

Shifter Instruction Options
Some of the shifter instructions have options associated with them that
permit flexibility in how the instructions execute. It is important to note
that these options modify the detailed execution of instructions, and the
options that are particular to a group of instructions—not all options are
applicable to all instructions. Instruction options appear in parenthesis at
the end of the instruction’s slot. For a list indicating which options apply
for particular shifter instructions, see “Shifter Instruction Summary” on
page 5-19. The shifter instruction options include:

• () zero filled, right justified

• (SE) sign extended; applies to FEXT, FDEP, and GETBITS instructions

• (ZF) zero filled; applies to FDEP instruction

ADSP-TS101 TigerSHARC Processor Programming Reference 5-15

Shifter

The following are shifter instructions that demonstrate bit field manipula-
tion operations with options applied.

XR5 = FEXT R4 By R3 (SE) ;;

/* The SE option in this instruction sets bits 31–8 to 1 in Figure 5-6 on
page 5-9 */

XR5 = FDEP R4 By R3 (ZF) ;;

/* The ZF option in this instruction clears bits 31–13 to 0 in Figure 5-7 on
page 5-10 */

Sign Extended Option

The sign extend (SE) option is available for the FEXT, FDEP, and GETBITS
shifter instructions. If used, this option extends the value of the most sig-
nificant bit of the placed bit field through the most significant bit of the
output register.

Zero Filled Option

The zero filled (ZF) option is available only for the FDEP instruction. If
used, this option clears all the unused bits above the most significant bit of
the placed bit field in the output register.

Shifter Execution Status
Shifter operations update status flags in the compute block’s Arithmetic
Status (XSTAT and YSTAT) register (see Figure 2-2 on page 2-4 and
Figure 2-3 on page 2-5). Programs can use status flags to control execu-
tion of conditional instructions and initiate software exception interrupts.
For more information, see “Shifter Execution Conditions” on page 5-16.

Shifter Operations

5-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Table 5-1 shows the flags in XSTAT or YSTAT that indicate shifter status (a 1
indicates the condition) for the most recent shifter operation.

Flag update occurs at the end of each operation and is available on the
next instruction cycle. A program cannot write the arithmetic status regis-
ter explicitly in the same cycle that the multiplier is performing an
operation.

Multi-operand instructions (for example, BRs = ASHIFT Rn BY Rm;) pro-
duce multiple sets of results. In this case, the DSP determines a flag by
ORing the result flag values from individual results.

Shifter Execution Conditions
In a conditional shifter instruction, the execution of the entire instruction
line can depend on the specified condition at the beginning of the instruc-
tion line. Conditional shifter instructions take the form:

IF cond; DO, instr.; DO, instr.; DO, instruct. ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the DO before the instruction makes the instruction
unconditional.

Table 5-1. Shifter Status Flags

Flag Definition Updated By…

SZ Shifter fixed-point zero All shifter ops

SN Shifter negative All shifter ops

BF1–0 Shifter block floating-point BKFPT instruction only

AN ALU negative On overflow of quad result in
PUTBITS instruction

ADSP-TS101 TigerSHARC Processor Programming Reference 5-17

Shifter

Table 5-2 lists the shifter conditions. For more information on condi-
tional instructions, see “Conditional Execution” on page 7-12.

Shifter Static Flags
In the program sequencer, the static flag (SFREG) can store status flag val-
ues for later usage in conditional instructions. With SFREG, each compute
block has two dedicated static flags X/YSCF0 (condition is SF0) and
X/YSCF1 (condition is SF1). The following example shows how to load a
compute block condition value into a static flag register.

XSCF0 = XSEQ ;; /* Load X-compute block SEQ flag into XSCF0 bit

in static flags (SFREG) register */

IF SF0, XR5 = LSHIFT R4 BY R3 ;; /* the SF0 condition tests the

XSCF0 static flag */

For more information on static flags, see “Conditional Execution” on
page 7-12.

Shifter Examples
Listing 5-1 provides a number of shifter instruction examples. The com-
ments with the instructions identify the key features of the instruction,
such as input operand size and register usage.

Table 5-2. Shifter Conditions

Condition Description Flags set

SEQ Equal to zero SZ = 1

SLT Less than zero SN and SZ = 1

NSEQ Not equal to zero SZ = 0

NSLT Not less than zero SN and SZ = 0

Shifter Examples

5-18 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 5-1. Shifter Instruction Examples

XR5 = LSHIFT R4 BY R3;;

/* This is a logical shift of register XR4 by the value contained

in XR3. */

YR1 = ASHIFT R2 BY R0;;

/* This is an arithmetic shift of register XR2 by the value con-

tained in XR0. */

R1:0 = ROT R3:2 BY 8;;

/* This instruction rotates the content of R3:2 in both the X-

and Y-ALUs by 8 and places the result in XR1:0 and YR1:0. */

XBITEST R1:0 BY R7;;

/* This instruction tests the bit indicated in XR7 of XR1:0 and

sets accordingly the flags XSZ and XSN in XSTAT. */

R9:8 = BTGL R11:10 BY R13;;

/* This instruction toggles the bit indicated in R13 of XR11:10

and YR11:10 and puts the result in xR9:8 and yR9:8. */

XR15 = LD0 R17;;

/* This instruction extracts the leading number of zeros of xR17

and places the result into xR15. */

ADSP-TS101 TigerSHARC Processor Programming Reference 5-19

Shifter

Shifter Instruction Summary
Listing 5-2 shows the shifter instructions’ syntax. The conventions used in
these listings for representing register names, optional items, and choices
are covered in detail in “Register File Registers” on page 2-5. Briefly, these
conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Rmd – the register names in italic represent user selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

In shifter instructions, output register name relates to output operand size
as follows:

• The L prefix on an output operand (register name) indicates long
word (64-bit) output. For example, the following instruction syn-
tax indicates single, long word output:
LRsd = ASHIFT Rmd BY Rnd;

• The absence of a prefix on an output operand (register name) indi-
cates normal word (32-bit) output. For example, the following
instruction syntax indicates single, normal word output:
Rs = ASHIFT Rm BY Rn;

• A dual register name on an output operand (register name) indi-
cates two normal word (32-bit) outputs. For example, the
following instruction syntax indicates two, normal word outputs:
Rsd = ASHIFT Rmd BY Rnd;

Shifter Instruction Summary

5-20 ADSP-TS101 TigerSHARC Processor Programming Reference

• The S prefix on an output operand (register name) indicates two or
four short word (16-bit) outputs. For example, the following
instruction syntax indicates two or four, short word outputs:
SRs = ASHIFT Rm BY Rn /* two outputs */;
SRsd = ASHIFT Rmd BY Rnd; /* four outputs */

• The B prefix on an output operand (register name) indicates four
or eight byte word (8-bit) outputs. For example, the following
instruction syntax indicates four or eight, byte word outputs:
BRs = ASHIFT Rm BY Rn /* four outputs */;
BRsd = ASHIFT Rmd BY Rnd; /* eight outputs */

Each instruction presented here occupies one instruction slot in an
instruction line. For more information about instruction lines and
instruction combination constraints, see “Instruction Line Syntax
and Structure” on page 1-20 and “Instruction Parallelism Rules”
on page 1-24.

ADSP-TS101 TigerSHARC Processor Programming Reference 5-21

Shifter

Listing 5-2. Shifter Instructions

{X|Y|XY}{B|S}Rs = LSHIFT|ASHIFT Rm BY Rn|<Imm> ;1,2

{X|Y|XY}{B|S|L}Rsd = LSHIFT|ASHIFT Rmd BY Rn|<Imm> ;1,2

{X|Y|XY}Rs = ROT Rm BY Rn|<Imm6> ;1

{X|Y|XY}{L}Rsd = ROT Rmd BY Rnd|<Imm> ;1,2

{X|Y|XY}Rs = FEXT Rm BY Rn|Rnd {(SE)} ;3

{X|Y|XY}LRsd = FEXT Rmd BY Rn|Rnd {(SE)} ;3

{X|Y|XY}Rs += FDEP Rm BY Rn|Rnd {(SE|ZF)} ;3

{X|Y|XY}LRsd += FDEP Rmd BY Rn|Rnd {(SE|ZF)} ;3

{X|Y|XY}Rs += MASK Rm BY Rn ;

{X|Y|XY}LRsd += MASK Rmd BY Rnd ;

{X|Y|XY}Rsd = GETBITS Rmq BY Rnd {(SE)} ;

{X|Y|XY}Rsd += PUTBITS Rmd BY Rnd ;

{X|Y|XY}BITEST Rm BY Rn|<Imm5> ;

{X|Y|XY}BITEST Rmd BY Rn|<Imm6> ;

{X|Y|XY}Rs = BCLR|BSET|BTGL Rm BY Rn|<Imm5> ;

{X|Y|XY}Rsd = BCLR|BSET|BTGL Rmd BY Rn|<Imm6> ;

{X|Y|XY}Rs = LD0|LD1 Rm|Rmd ;

{X|Y|XY}Rs = EXP Rm|Rmd ;

{X|Y}STAT = Rm ;

1 The Rn data size (bits) for the shift magnitude varies with the output operand: Byte: 5, Short: 6,
Normal: 7, Long: 8.

2 The size in bits of the Imm data varies with the output operand: Byte: 4, Short: 5, Normal: 6,
Long: 7.

3 The placement of the Pos8 and Len7 fields varies with the Rn/Rnd register, see Figure 5-5 on
page 5-8.

Shifter Instruction Summary

5-22 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y}STATL = Rm ;

{X|Y}Rs = {X|Y}STAT ;

{X|Y|XY}BKFPT Rmd, Rnd ;

{X|Y|XY}Rsd = BFOTMP ;

{X|Y|XY}BFOTMP = Rmd ;

ADSP-TS101 TigerSHARC Processor Programming Reference 6-1

6 IALU

The TigerSHARC processor core contains two integer arithmetic logic
units known as IALUs. Each IALU contains a register file and dedicated
registers for circular buffer addressing. The IALUs can control the Data
Alignment Buffers (DABs) for unaligned memory access operations. The
IALUs and DABs are highlighted in Figure 6-1.

Figure 6-1. IALUs, DABs, and Data Buses

IAB

PC BTB IRQ

ADDR
FETCH

PROGRAM SEQUENCER

DAB

128 128

DAB

128 128

COMPUTE
BLOCK

X 32

128

32

128

32

128

INTEGER
K-IALU

INTEGER
J-IALU

32

DATA ADDRESS GENERATION

32

32X32 32X32

COMPUTE
BLOCK

Y

6-2 ADSP-TS101 TigerSHARC Processor Programming Reference

The TigerSHARC processor’s two independent IALUs are referred to as
the J-IALU and K-IALU. The IALUs support regular ALU operations and
data addressing operations. The arithmetic, logical, and function ALU oper-
ations include:

• Add and subtract, with and without carry/borrow

• Arithmetic right shift, logical right shift, and rotation

• Logical operations: AND, AND NOT, NOT, OR, and XOR

• Functions: absolute value, min, max, compare

The IALUs provide memory addresses when data is transferred between
memory and registers. Dual IALUs enable simultaneous addresses for mul-
tiple operand reads or writes. The IALU’s data addressing and data
movement operations include:

• Direct and indirect memory addressing

• Circular buffer addressing

• Bit reverse addressing

• Universal register (Ureg) moves and loads

• Memory pointer generation

Each move instruction specifies whether a normal, long, or quad word is
accessed from each memory block. Because the DSP has two IALUs, two
memory blocks can be accessed on each cycle. Long word accesses can be
used to supply two aligned normal words to one compute block or one
aligned normal word to each compute block. Quad word accesses may be
used to supply four aligned normal words to one compute block or two
aligned normal words to each compute block. This is useful in applica-
tions that use real/imaginary data, or parallel data sets that can be aligned
in memory—as are typically found in DSP applications. It is also used for
fast save/restore of context during C calls or interrupts.

ADSP-TS101 TigerSHARC Processor Programming Reference 6-3

IALU

The IALU provides flexibility in moving data as single, dual, or quad
words. Every instruction can execute with a throughput of one per cycle.
IALU arithmetic instructions execute with a single cycle of latency while
computation units have two cycles of latency. Normally, there are no
dependency delays between IALU instructions, but if there are, three or
four cycles of latency can occur. For more information, see “Dependency
and Resource Effects on Pipeline” on page 7-55.

The IALUs each contain a 32-register data register file and eight dedicated
registers for circular buffer addressing. All registers in the IALU are 32-bit
wide, memory-mapped, universal registers. Some important points con-
cerning the IALU register files are:

• The J-IALU register file registers are J31–J0, and the K–IALU reg-
ister file registers are K31–K0. Except for J31 and K31, these registers
are general purpose and contain integer data only.

• The J31 and K31 registers are 32-bit status registers and can also be
referred to as JSTAT and KSTAT.

The JSTAT (J31) and KSTAT (K31) registers appear in Figure 6-2 and
Figure 6-3. These registers have special operations:

• When used as an operand in an IALU arithmetic, logical, or func-
tion operation, these registers are referred to as J31 and K31
registers, and the register’s contents are treated as 0. If J31 is used
as an output of an operation, it does not retain the result of the
instruction, but the flags are set.

• When used for an IALU load, store, or move operation, these regis-
ters are referred to as JSTAT and KSTAT, and the operation does not
clear the register contents.

6-4 ADSP-TS101 TigerSHARC Processor Programming Reference

For fast save and restore operations, load and store instructions can access
J31:28 in quad-register format, saving or restoring J30:28 and JSTAT.

The dedicated registers for circular buffer addressing in each IALU select
the base address and buffer length for circular buffers. These dedicated
registers work with the first four general-purpose registers in each IALU’s
register file to manage up to eight circular buffers. Some important points
concerning the IALU dedicated registers for circular buffer addressing are:

• The circular buffer index (current address) is set by a general-pur-
pose register. These are J3–J0 in the J-IALU, and K3–K0 in the
K-IALU.

• The circular buffer base (starting address) is set by a dedicated reg-
ister. These are JB3–JB0 in the J-IALU, and KB3–KB0 in the
K-IALU.

• The circular buffer length (number of memory locations) is set by a
dedicated register. These are JL3–JL0 in the J-IALU, and KL3–KL0
in the K-IALU.

• The circular buffer modifier (step size between memory locations)
is set by either a general-purpose IALU register or an immediate
value.

• The index, base, and length registers for controlling circular buffers
work as a unit (J0 with JB0 and JL0, J1 with JB1 and JL1, and so
on). Any IALU register file register (beside the one serving as
index) in the IALU controlling the circular buffer may serve as the
modifier.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Figure 6-2. JSTAT/KSTAT (Upper Half) Register Bit Descriptions

ADSP-TS101 TigerSHARC Processor Programming Reference 6-5

IALU

The IALUs can use add and subtract instructions to generate memory
pointers with or without circular buffer or bit reverse addressing. The
modified address is stored in an IALU data register and (optionally) can be
written to the program sequencer’s computed jump (CJMP) register.

IALU Operations
The following sections describe the operation of each type of IALU
instruction. These operation descriptions apply to both the J-IALU and
K-IALU. The IALU operations are:

• “IALU Arithmetic, Logical, and Function Operations” on page 6-5

• “IALU Data Addressing and Transfer Operations” on page 6-13

IALU Arithmetic, Logical, and Function Operations
The IALU performs arithmetic and logical operations on fixed-point
(integer) data. The DSP uses IALU register file registers for the input
operands and output result from IALU operations. The IALU register file
registers are J30 through J0 and K30 through K0. The IALUs each have one
special purpose register—the JSTAT/KSTAT register—for status. For more

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JZ J-IALU zero
JN J-IALU negative
JV J-IALU overflow
JC J-IALU carry

Figure 6-3. JSTAT/KSTAT (Lower Half) Register Bit Descriptions

IALU Operations

6-6 ADSP-TS101 TigerSHARC Processor Programming Reference

information on the register files and register naming syntax for selecting
data type and width, see “Register File Registers” on page 2-5. The follow-
ing are IALU instructions that demonstrate arithmetic operations.

J2 = J1 + J0 ;;

/* This is a fixed-point add of the 32-bit input operands J1 and

J0; the DSP places the result in J2. */

K0 = ABS K2 ;;

/* The DSP places the absolute value of fixed-point 32-bit input

operand K2 in the result register K0. */

J2 = (J1 + J0) / 2 ;;

/* This is a fixed-point add and divide by 2 of the 32-bit input

operands J1+J0; the DSP places the result in J2. */

All IALU arithmetic, logical, and function instructions generate status
flags to indicate the status of the result. If for example in the previous
add/divide instruction the input was ((–1 +0) / 2), the operation would
set the JN flag (J-IALU, IALU result negative) because operation resulted
in a negative value. For more information on IALU status, see “IALU Exe-
cution Status” on page 6-10.

IALU Instruction Options

Most of the IALU instructions have options associated with them that
permit flexibility in how the instructions execute. It is important to note
that these options modify the detailed execution of instructions, and
options that are particular to a group of instructions—not all options are
applicable to all instructions. Instruction options appear in parenthesis at

ADSP-TS101 TigerSHARC Processor Programming Reference 6-7

IALU

the end of the instruction’s slot. For a list indicating which options apply
for particular IALU instructions, see “IALU Instruction Summary” on
page 6-39. The IALU instruction options include:

• () signed operation, round-to-infinity, integer mode

• (U) unsigned operation

• (CB) circular buffer operation for result

• (BR) bit reverse operation for result

• (CJMP) load result into result and computed jump (CJMP) registers

The following are IALU instructions that demonstrate arithmetic opera-
tions with options applied.

J2 = J1 - J0 (CJMP);;

/* This is a fixed-point subtract of the 32-bit input operands;

the DSP loads the result into J2 and CJMP register. */

K1 = K3 + K4 (BR) ::

/* This is a fixed-point add of the 32-bit input operands with

bit reverse carry operation for the result. */

COMP(J1, J0) (U) ;;

/* This is a comparison of unsigned 32-bit input operands. */

Integer Data

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. In the IALU, all operations use
32-bit integer format data. For information on the supported numeric for-
mats, see “Numeric Formats” on page 2-16.

IALU Operations

6-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Signed/Unsigned Option

The DSP always represents fixed-point numbers in 8, 16, 32, or 64 bits,
using up to four 32-bit data registers. Fixed-point 32-bit data in the IALU
may be two’s-complement or (for the COMP instruction only) unsigned. For
information on the supported numeric formats, see “Numeric Formats”
on page 2-16.

Circular Buffer Option

The IALU add and subtract instructions support the circular buffer (CB)
option. The instructions take the form:

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

For information on the conventions used in this instruction sum-
mary, see “IALU Instruction Summary” on page 6-39.

To use the CB option, the IALU add and subtract instructions require that
the related J-IALU or K-IALU base and length registers are previously set
up. The IALU add and subtract instructions with the CB option calculate
the modified address from the index plus or minus the modifier and also
performs circular buffer wrap (if needed) as part of the calculation. The
IALU puts the modified value into Js or Ks. (Jm or Km is not modified.)

For information on circular buffer operations, see “Circular Buffer
Addressing” on page 6-27.

ADSP-TS101 TigerSHARC Processor Programming Reference 6-9

IALU

Bit Reverse Option

The IALU add and subtract instructions support the bit reverse carry (BR)
option. The instructions take the form:

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

For information on the conventions used in this instruction sum-
mary, see “IALU Instruction Summary” on page 6-39.

The IALU add and subtract instructions with the BR option use bit reverse
carry to calculate the result of the index plus the modifier (there is no
affect on the subtract operation because there is no carry) and put the
modified value into Js or Ks. (Jm or Km is not modified.)

For information on bit reverse operations, see “Bit Reverse
Addressing” on page 6-31.

Computed Jump Option

The IALU add and subtract instructions support the computed jump
(CJMP) option. The instructions take the form:

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

For information on the conventions used in this instruction sum-
mary, see “IALU Instruction Summary” on page 6-39.

The computed jump (CJMP) option directs the IALU to place the result in
the program sequencer’s CJMP registers as well as the result (Js or Ks)
register.

IALU Operations

6-10 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU Execution Status

IALU operations update status flags in the IALUs’ status (JSTAT and
KSTAT) registers. (See Figure 6-2 on page 6-4 and Figure 6-3 on page 6-5.)
Programs can use status flags to control execution of conditional instruc-
tions and initiate software exception interrupts. For more information, see
“IALU Execution Conditions” on page 6-12.

Table 6-1 shows the flags in JSTAT or KSTAT that indicate IALU status (a 1
indicates the condition) for the most recent IALU operation.

Flag update occurs at the end of each operation and is available on the
next instruction cycle. A program cannot write to an IALU status register
explicitly in the same cycle that the IALU is performing an operation.

Table 6-1. IALU Status Flags

Flag Definition Updated By…

JZ J-IALU zero All J-IALU arithmetic, logical, and function ops

JN J-IALU negative All J-IALU arithmetic, logical, and function ops

JV J-IALU overflow All arithmetic ops

JC J-IALU carry All arithmetic ops

KZ K-IALU zero All K-IALU arithmetic, logical, and function ops

KN K-IALU negative All K-IALU arithmetic, logical, and function ops

KV K-IALU overflow All arithmetic ops

KC K-IALU carry All arithmetic ops

ADSP-TS101 TigerSHARC Processor Programming Reference 6-11

IALU

JN/KN–IALU Negative

The JN or KN flag is set whenever the result of a J-IALU or K-IALU opera-
tion is negative. The JN or KN flag is set to the most significant bit of the
result. An exception is the instructions below, in which the JN or KN flag is
set differently:

• Js = ABS Jm ; JN is Jm (input data) sign

• Ks = ABS Km ; KN is Km (input data) sign

The result sign of the above instructions is not indicated as it is always
positive.

JV/KV–IALU Overflow

The JV or KV flag is an overflow indication. In all J-IALU or K-IALU oper-
ations, the bit is set when the correct result of the operation is too large to
be represented by the result format. The overflow check is done always as
signed operands, unless the instruction defines otherwise.

If in the following example J5 and J6 are 0x70…0 (large positive numbers),
the result of the add instruction (above) will produce a result that is larger
than the maximum at the given format.

J10 = J5 + J6 ;;

JC/KC–IALU Carry

The JC or KC flag is used as carry out of add or subtract instructions that
can be chained. It can also be used as an indication for unsigned overflow
in these operations (JV or KV is set when there is signed overflow). Bit
reverse operations do not overflow and do not set the JC or KC flags.

IALU Operations

6-12 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU Execution Conditions

In a conditional IALU instruction, the execution of the entire instruction
line can depend on the specified condition at the beginning of the instruc-
tion line. Conditional IALU instructions take the form:

IF cond; DO, instr.; DO, instr.; DO, instruct. ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the DO before the instruction makes the instruction
unconditional.

Table 6-2 lists the IALU conditions. For more information on conditional
instructions, see “Conditional Execution” on page 7-12.

Table 6-2. IALU Conditions

Condition Description Flags Set

JEQ J-IALU equal to zero JZ = 1

JLT J-IALU less than zero JN and JZ = 1

JLE J-IALU less than or equal to zero JN or JZ = 1

NJEQ NOT(J-IALU equal to zero) JZ = 0

NJLT NOT(J-IALU less than zero JN and JZ = 0

NJLE NOT(J-IALU less than or equal to zero) JN or JZ = 0

KEQ K-IALU equal to zero KZ = 1

KLT K-IALU less than zero KN and KZ = 1

KLE K-IALU less than or equal to zero KN or KZ = 1

NKEQ NOT(K-IALU equal to zero) KZ = 0

NKLT NOT(K-IALU less than zero) KN and KZ = 0

NKLE NOT(K-IALU less than or equal to zero) KN or KZ = 0

ADSP-TS101 TigerSHARC Processor Programming Reference 6-13

IALU

IALU Static Flags

In the program sequencer, the static flag (SFREG) can store status flag val-
ues for later usage in conditional instructions. With SFREG, the IALU has
two dedicated static flags GSCF0 (condition is SF0) and GSCF1 (condition is
SF1). The following example shows how to load a compute block condi-
tion value into a static flag register.

GSCF0 = JEQ ;; /* Load J-IALU JEQ flag into GSCF0 bit in static

flags (SFREG) register */

IF SF0, J5 = J4 + J3 ;; /* the SF0 condition tests the GSCF0

static flag */

For more information on static flags, see “Conditional Execution” on
page 7-12.

IALU Data Addressing and Transfer Operations
IALU data addressing instructions provide memory read and write access
for loading and storing registers. For memory reads and writes, the IALU
provides two types of addressing—direct addressing and indirect address-
ing. Both types of addressing use an index and a modifier. The index is an
address, and the modifier is a value added to the index either before
(pre-modify) or after (post-modify) the addressing operation. IALU
addressing instruction syntax uses square brackets ([]) to set the address
calculation apart from the rest of the instruction.

IALU Operations

6-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Direct and Indirect Addressing

Direct addressing uses an index that is set to zero and uses an immediate
value for the modifier. The index is pre-modified, and the modified
address is used for the access. The following instruction is a register load
(memory read) that uses direct addressing:

YR1 = [J31 + 0x00015F00] ;;

/* This instruction reads a 32-bit word from memory location

0x00015F00 and loads the word into register YR1. Note that J31

always contains zero when used as an operand. */

Indirect addressing uses a non-zero index and uses either a register or an
immediate value for the modifier. As shown in Figure 6-4, there are two
types of indirect addressing.

Figure 6-4. Pre- and Post-Modify Indirect Addressing

Pre-Modify (without update) Post-Modify (with update)

Rs = [Jm + Jn] ; Rs = [Jm += Jn] ;

Jm

Jn

Jm + Jn

+

Index

Modifier

Address

Input

Input

Output

Jm

Jn

Jm + Jn

+=

Index

Modifier

Address

input

input Output

Index
Update

After this instruction,
Jm retains original value

After this instruction,
Jm = Jm + Jn

ADSP-TS101 TigerSHARC Processor Programming Reference 6-15

IALU

One type of indirect addressing is pre-modify without update (uses the
[+] operator). These instructions provide memory access to the
index + modifier address without changing the content of the index regis-
ter. These instructions load the value into a destination register or store
the value from a source register. For example:

XRO = [J0 + J1] ;;

/* This instruction reads a 32-bit word from memory location

J0 + J1 (index + modifier) and loads the word into register XR0.

J0 (the index) is not updated with the address. */

The other type of indirect addressing is post-modify with update (uses the
[+=] operator). These instructions provide memory access to the
indexed address. These instructions load a value into a destination register
or store the value from a source register. After the access, the index register
is updated by the modifier value. For example:

XRO = [J0 += J1] ;;

/* This instruction reads a 32-bit word from memory location J0

(the index) and loads the word into register XR0. After the

access, J0 is updated with the value J0 + J1 (index + modifier).

*/

Post-modify indirect addressing is used with circular buffer and bit
reversed addressing. For more information, see “Circular Buffer
Addressing” on page 6-27 and “Bit Reverse Addressing” on
page 6-31.

IALU Operations

6-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Normal, Merged, and Broadcast Memory Accesses

The IALU uses direct or indirect addressing to perform read and write
memory accesses, loading or storing data in registers. There are three types
of memory accesses—normal read/write accesses, merged read/write
accesses, and broadcast read accesses. These access types differ as follows:

• Normal Read/Write Accesses –normal read/write memory accesses
load or store data in universal registers. Normal accesses read or
write the number of 32-bit words needed to load or store the desti-
nation or source register indicated in the instruction. Normal
accesses occur when the source or destination register size matches
the IALU access operator. (See Figure 6-6, Figure 6-9, Figure 6-12,
Figure 6-14, Figure 6-16, and Figure 6-18.) Examples of normal
accesses (destination <=> source) are:

• Single register (Rs) <=> no operator

• Dual register (Rsd) <=> L (long) operator

• Quad register (Rsq) <=> Q (quad) operator

• Broadcast Read Access – broadcast read memory accesses load data
in compute block data registers. Broadcast accesses read the num-
ber of 32-bit words needed to load the destination registers in both
compute blocks with the same data as indicated in the instruction.
Broadcast accesses occur when the source register size matches the
IALU access operator and the register name uses XY (or no prefix)
or YX to indicate both compute blocks; XY (or no prefix) and YX
yield the same results. (See Figure 6-7, Figure 6-10, and
Figure 6-13.) Examples of broadcast accesses are (destination <=>
source) are:

• Single register (Rs) <=> no operator

• Dual register (Rsd) <=> L (long) operator

• Quad register (Rsq) <=> Q (quad) operator

ADSP-TS101 TigerSHARC Processor Programming Reference 6-17

IALU

• Merged Read/Write Accesses – merged read/write memory accesses
load or store data in compute block data registers. Merged accesses
read or write the number of 32-bit words needed to load or store
the destination or source registers in both compute blocks with the
different data as indicated in the instruction. Merged accesses
occur when the source or destination register size is one-half the
size indicated by the IALU access operator and the register name
uses XY (or no prefix) or YX to indicate both compute blocks; XY
(or no prefix) and YX syntax yield different results. (See Figure 6-8,
Figure 6-11, Figure 6-15, and Figure 6-17.) Example merged
accesses (destination <=> source) are:

• Single register (Rs) <=> L (long) operator

• Dual register (Rsd) <=> Q (quad) operator.

Figure 6-6 through Figure 6-17 show only a representative sample
of memory access types. These figures only show memory accesses
for data registers, not universal registers. Also, these figures only
show memory accesses for post-modify, indirect addressing. For a
complete list of IALU memory access instruction syntax, see “IALU
Instruction Summary” on page 6-39.

Looking at Figure 6-5 (memory contents) and Figure 6-6 through
Figure 6-17 (example accesses), it is important to note the relationship
between data size and data alignment. For accesses that load or store a sin-
gle register, data alignment in memory is not an issue—the index address
can be to any address.

For accesses that load or store dual or quad registers, data alignment in
memory is important. Dual register-loads or stores must use an index
address that is divisible by two (dual aligned). Quad-register loads or stores

IALU Operations

6-18 ADSP-TS101 TigerSHARC Processor Programming Reference

must use an index address that is divisible by four (quad aligned). Aligning
data in memory is possible with assembler directives and linker description
file syntax.

DAB and SDAB accesses do not have these alignment restrictions.
For more information on DAB and SDAB accesses, see “Data
Alignment Buffer (DAB) Accesses” on page 6-23.

Figure 6-5. Memory Contents for Normal, Broadcast, and Merged
Memory Access Examples

See Figure 6-5 for memory contents.

Figure 6-6. Single Register Normal Read Accesses

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x0C

0x08

0x04

0x00

Quad word
address

XRs = [Jm += Jn] ;; /* Jm = address of word 0.*/

XRs

word 0

ADSP-TS101 TigerSHARC Processor Programming Reference 6-19

IALU

See Figure 6-5 for memory contents.

Figure 6-7. Single Register Broadcast Read Accesses

See Figure 6-5 for memory contents.
Note that XY and YX syntax produce different results.

Figure 6-8. Single Register Merged Read Accesses

See Figure 6-5 for memory contents.

Figure 6-9. Dual Register Normal Read Accesses

XYRs = [Jm += Jn] ;; /* Jm = address of word 0.*/

YRs

word 0

XRs

word 0

XYRs = L [Jm += Jn] ;; /* Jm = address of word 0.*/

XRs

word 1

YRs

word 0

YXRs = L [Jm += Jn] ;; /* Jm = address of word 0.*/

YRs

word 1

XRs

word 0

XRsd = L [Jm += Jn] ;; /* Jm = address of word 0.*/

XRsd_h

word 1

XRsd_l

word 0

IALU Operations

6-20 ADSP-TS101 TigerSHARC Processor Programming Reference

See Figure 6-5 for memory contents.

Figure 6-10. Dual Register Broadcast Read Accesses

See Figure 6-5 for memory contents.
Note that XY and YX syntax produce different results.

Figure 6-11. Dual Register Merged Read Accesses

See Figure 6-5 for memory contents.

Figure 6-12. Quad Register Normal Read Accesses

XYRsd = L [Jm += Jn] ;; /* Jm = address of word 0.*/

YRsd_h

word 1

YRsd_l

word 0

XRsd_h XRsd_l

word 1 word 0

XYRsd = Q [Jm += Jn] ;; /* Jm = address of word 0.*/

XRsd_h

word 3

XRsd_l

word 2

YRsd_h

word 1

YRsd_l

word 0

YXRsd = Q [Jm += Jn] ;; /* Jm = address of word 0.*/

YRsd_h

word 3

YRsd_l

word 2

XRsd_h

word 1

XRsd_l

word 0

XRsq_3 XRsq_2 XRsq_1 XRsq_0

word 3 word 2 word 1 word 0

XRsq = Q [Jm += Jn] ;; /* Jm = address of word 0.*/

ADSP-TS101 TigerSHARC Processor Programming Reference 6-21

IALU

See Figure 6-5 for memory contents.

Figure 6-13. Quad Register Broadcast Read Accesses

See Figure 6-5 for memory contents.

Figure 6-14. Single Register Normal Write Accesses

See Figure 6-5 for memory contents.
Note that XY and YX syntax produce different results.

Figure 6-15. Single Register Merged Write Accesses

XYRsq = Q [Jm += Jn] ;; /* Jm = address of word 0.*/

YRsq_3 YRsq_2 YRsq_1 YRsq_0

word 3 word 2 word 1 word 0

XRsq_3 XRsq_2 XRsq_1 XRsq_0

word 3 word 2 word 1 word 0

[Jm += Jn] = XRs ;; /* Jm = address of word 0.*/

XRs

word 0

L [Jm += Jn] = XYRs ;; /* Jm = address of word 0.*/

XRs

word 1

YRs

word 0

L [Jm += Jn] = YXRs ;; /* Jm = address of word 0.*/

YRs

word 1

XRs

word 0

IALU Operations

6-22 ADSP-TS101 TigerSHARC Processor Programming Reference

See Figure 6-5 for memory contents.

Figure 6-16. Dual Register Normal Write Accesses

See Figure 6-5 for memory contents.
Note that XY and YX syntax produce different results.

Figure 6-17. Dual Register Merged Write Accesses

See Figure 6-5 for memory contents.

Figure 6-18. Quad Register Normal Write Accesses

L [Jm += Jn] = XRsd ;; /* Jm = address of word 0.*/

XRsd_h

word 1

XRsd_l

word 0

Q [Jm += Jn] = XYRsd ;; /* Jm = address of word 0.*/

XRsd_h

word 3

XRsd_l

word 2

YRsd_h YRsd_l

word 1 word 0

Q [Jm += Jn] = YXRsd ;; /* Jm = address of word 0.*/

YRsd_h

word 3

YRsd_l

word 2

XRsd_h XRsd_l

word 1 word 0

XRsq_3 XRsq_2 XRsq_1 XRsq_0

word 3 word 2 word 1 word 0

Q [Jm += Jn] = XRsq ;; /* Jm = address of word 0.*/

ADSP-TS101 TigerSHARC Processor Programming Reference 6-23

IALU

Data Alignment Buffer (DAB) Accesses

Each compute block has an associated data alignment buffer (X-DAB and
Y-DAB) for accessing non-aligned data. Using the DABs, programs can
perform a memory read access of non-aligned quad-word data—either
four normal words or eight short words—to load data into quad data reg-
isters (Rsq).

Without using a DAB or SDAB operator, the data for dual- or
quad-register load instructions must be aligned. For more informa-
tion on data alignment, see “Normal, Merged, and Broadcast
Memory Accesses” on page 6-16.

The DAB is a single quad-word FIFO. Aligned quad words from memory
are input to the DAB, and non-aligned data for the register load is output
from the DAB. The DAB uses its single quad-word buffer to hold data
that crosses a quad-word boundary and uses data from the FIFO and cur-
rent quad-word access to load the registers.

One way to understand DAB operation is to compare aligned versus
non-aligned data access and compare DAB operations. Figure 6-19 shows
how the DAB operates when an IALU instruction reads aligned data from
memory. Compare this to the DAB access of non-aligned data in
Figure 6-20.

Figure 6-20 demonstrates some important points about DAB accesses.
DAB accesses are intended for repeated series of memory accesses, using
circular buffer addressing or linear addressing. It takes one read to prime
the DAB—clear out previous data and load in the first correct data for the
series—before the DAB is ready for repeated access. The DAB automati-
cally determines the nearest quad-word boundary from the index address
and reads the correct quad word from memory to load the DAB.

Because DAB accesses automatically perform circular buffer addressing,
the circular buffer address registers—index, base, length, and modifier—
must be set up before the DAB access begins. For this reason, DAB
instructions must only use the IALU registers that support circular buffer

IALU Operations

6-24 ADSP-TS101 TigerSHARC Processor Programming Reference

addressing (J3–J0, K3–K0). For more information on circular buffer
addressing, see “Circular Buffer Addressing” on page 6-27. If circular
buffer addressing is used, the modifier value (Jn or Kn) must be equal to
four to support correct DAB operation.

If DAB accesses need to use linear addressing, set the circular
buffer length (corresponding JL/KL register) to 0.

Figure 6-19. DAB Operation for Aligned Data

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x0C

0x08

0x04

0x00

Quad-word
address

word 0word 1word 2word 3

xxxx

current memory read

previous memory read

X-DAB input from memory read

XR3:0 = CB Q [J0 += J4] ;; /* J0 = 0, JB0 = 0, JL0 = 0x3C, J4 = 4 */
For this instruction, the DAB does not have to perform data alignment.

XR0XR1XR2XR3

(X-DAB contents)

ADSP-TS101 TigerSHARC Processor Programming Reference 6-25

IALU

Figure 6-20. DAB Operation for Non-Aligned Data

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x0C

0x08

0x04

0x00

Quad-word
address

word 4word 5word 6word 7

word 0word 1word 2word 3

current memory read (2nd)

previous memory read (1st)

X-DAB input from memory read

XR3:0 = DAB Q [J0 += J4] ;; /* J0 = 1, JB0 = 1, JL0 = 0x3C, J4 = 4 */
For this instruction, the DAB performs data alignment. Two reads
are needed to prime the DAB. After that, each repeated read places
the needed data in the DAB.

XR0XR1XR2XR3

(X-DAB contents)

IALU Operations

6-26 ADSP-TS101 TigerSHARC Processor Programming Reference

The DAB also provides access to non-aligned short word data in memory
as shown in Figure 6-21. Short DAB (SDAB) access has the same require-
ments for setup and access as DAB access, with two exceptions. First, for
correct circular buffer addressing operation the modifier value (Jn or Kn)
must be equal to eight.

Figure 6-21. SDAB Operation for Non-Aligned Data

Aligned quad words in memory

sw1sw3sw5sw7

0x0C

0x08

0x04

0x00

Quad-word
address

current memory read (2nd)

previous memory read (1st)

X-DAB input from memory read

XR3:0 = SDAB Q [J0 += J4] ;; /* J0 = 5, JB0 = 5, JL0 = 0x78, J4 = 8 */
For this instruction, the DAB performs short data alignment. Two reads
are needed to prime the DAB. After that, each repeated read places
the needed data in the DAB.

sw0sw2sw4sw6

sw9swBswDswF sw8swAswCswE

sw1sw3sw5sw7 sw0sw2sw4sw6

sw9swBswDswF sw8swAswCswE

57 69B 8AC

XR0XR1XR2XR3

ADSP-TS101 TigerSHARC Processor Programming Reference 6-27

IALU

Second, the index value for SDAB instructions is either 2x (for normal
word aligned short words) or 2x+1 (for non-aligned short words). A com-
parison of these index values for DAB and SDAB instructions appears in
Figure 6-22.

Circular Buffer Addressing

The IALUs support addressing circular buffers—a range of addresses con-
taining data that IALU memory accesses step through repeatedly,
wrapping around to repeat stepping through the range of addresses in a
circular pattern. The memory read or write access instruction uses the
operator CB to select circular buffer addressing.

Figure 6-22. DAB Versus SDAB Index Values

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x0C

0x08

0x04

0x00

Quad-word
address

1 023

01234567

Normal word index

Short word index

(for DAB instruction)

(for SDAB instructions)

2x2x+1

IALU Operations

6-28 ADSP-TS101 TigerSHARC Processor Programming Reference

To address a circular buffer, the IALU steps the index pointer through the
buffer, post-modifying and updating the index on each access with a posi-
tive or negative modify value. If the index pointer falls outside the buffer,
the IALU subtracts or adds the length of the buffer from or to the value,
wrapping the index pointer back to the start of the buffer.

The IALUs use register file and dedicated circular buffering registers for
addressing circular buffers. These registers operate as follows for circular
buffering:

• The index register contains the value that the IALU outputs on the
address bus. In the instruction syntax summary, the index register
is represented with Jm or Km. This register can be J3–J0 in the
J-IALU or K3–K0 in the K-IALU.

• The modify value provides the post-modify amount (positive or
negative) that the IALU adds to the index register at the end of
each memory access. The modify value can be any register file reg-
ister in the same IALU as the index register. The modify value also
can be an immediate value instead of a register. The size of the
modify value, whether from a register or immediate, must be less
than the length of the circular buffer.

• The length register must correspond to the index register; for
example, J0 used with JL0, K0 used with KL0, and so on. The length
register sets the size of the circular buffer and the address range that
the IALU circulates the index register through. If a length register’s
value is zero, its circular buffer operation is disabled.

• The base register must correspond to the index register; for exam-
ple, J0 used with JB0, K0 used with KB0, and so on. The base
register (the buffer’s base address) or the base register plus the

ADSP-TS101 TigerSHARC Processor Programming Reference 6-29

IALU

length register (the buffer’s end address) is the value that the IALU
compares the modified index value with after each access to deter-
mine buffer wraparound.

Circular buffer addressing may only use post-modify addressing.
The IALU cannot support pre-modify addressing for circular buff-
ering, because circular buffering requires the index be updated on
each access.

If the JL/KL register is set to zero, then circular buffering will not be
used.

Example code showing the IALU’s support for circular buffer addressing
appears in Listing 6-1, and a description of the word access pattern for this
example code appears in Figure 6-23.

As shown in Listing 6-1, programs use the following steps to set up a cir-
cular buffer:

1. Load the starting address within the buffer into an index register in
the selected J-IALU or K-IALU. In the J-IALU, J3–J0 can be index
registers. In the K-IALU, K3–K0 can be index registers.

2. Load the buffer’s base address into the base register that corre-
sponds to the index register. For example, JB0 corresponds to J0.

3. Load the buffer’s length into the length register that corresponds to
the index register. For example, JL0 corresponds to J0.

4. Load the modify value (step size) into a register file register in the
same IALU as the index register. The J-IALU register file is J30–J0,
and the K-IALU register file is K30–K0. Alternatively, an immediate
value can supply the modify value.

IALU Operations

6-30 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 6-1. Circular Buffer Addressing Example

.section program ;

JB0 = 0x100000 ;; /* Set base address */

JL0 = 11 ;; /* Set length of buffer */

J0 = 0x100000 ;; /* Set location of first address */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100000 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100004 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100008 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100001 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100005 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100009 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100002 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100006 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x10000A */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100003 */

XR0 = CB [J0 += 4] ;; /* Loads from address 0x100007 */

XR0 = CB [J0 += 4] ;; /* wrap to load from 0x100000 again */

ADSP-TS101 TigerSHARC Processor Programming Reference 6-31

IALU

Figure 6-23 shows the sequence order in which the IALU code in
Listing 6-1 accesses the 11 buffer locations in one pass. On the twelfth
access, the circular buffer wrap around occurs.

Bit Reverse Addressing

The IALUs support bit reverse addressing through the bit reverse carry
operator (BR). When this operator is used with an indirect post-modify
read or write access, the bit wise carry moves to the right (instead of left)
in the post-modify calculation.

Figure 6-23. Circular Buffer Addressing – Word Access Order

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x10000C

0x100008

0x100004

0x100000

Quad-word
address

12 1

2

3

4

5

6

7

8

9

10

11

StartWraparound

End of
Buffer

IALU Operations

6-32 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 6-24 provides an example of the bit reverse carry operation. For a
regular add operation 0xA5A5 + 0x2121, the result is 0xB6B6. For the same
add operation with bit reversed carry, the result is 0x9494.

As with circular buffer operations, bit reverse addressing is only
performed using registers J3–J0 or K3–K0. Unlike circular buffers,
the related base and length registers in the IALU do not need to be
set up for bit reverse addressing.

In bit reverse operations there is no overflow.

Listing 6-2 demonstrates bit reverse addressing. The word access order
resulting from the bit reverse carry on the address appears in Figure 6-25.
Some important points to remember when reading Listing 6-2 include:

• The number of bit reverse locations (length of buffer) must be a
power of 2 (for example, buffer length = 2n), but the start address
for the data buffer to be addressed must be aligned to an address

Figure 6-24. Bit Reverse Carry Operation (BR Option)

0 0 1 0 1 1 0 1 0 0 1 0 11 0 10xA5A5

0x2121 0 0 0 0 1 0 0 1 0 0 0 0 10 0 1

1 0 1 0 0 1 0 0 1 0 1 0 01 0 00x9494

Lost
Carry

++

ADSP-TS101 TigerSHARC Processor Programming Reference 6-33

IALU

that is a multiple of the number of locations in the buffer. In this
case, the length of the buffer is 8, and the buffer start address is
aligned to an address that is a multiple of 8.

• The assembler provides evaluation of expressions. For example,
where N/2 appears in the code, the assembler evaluates the expres-
sion as 4. Also, the assembler ADDRESS() operator calculates the
address of a symbol.

• For the repeated bit reversed accesses in the loop (_my_loop), the
data written to the address pointed to by J4 on each loop iteration
is 0, 4, 2, 6, 1, 5, 3, then 7. Note the bit reverse carry operations on
each repeated read access and note how they affect the address for
each access as shown in Table 6-3.

• Listing 6-2 uses a conditional jump instruction to loop through
repeated memory read and write accesses. For more information on
conditional execution, see “Conditional Execution” on page 7-12.

IALU Operations

6-34 ADSP-TS101 TigerSHARC Processor Programming Reference

Table 6-3. Post-Modify Operations With BR Addition

Loop
Iteration

J0 XR0 BR [J0 += 4] note bit reverse carry (BRC)
“…” indicates 1000 0000 0000

0 0x1000 0000 0x0 b#…0000 + b#0100 = b#…0100

1 0x1000 0004 0x4 b#…0100 + b#0100 = b#…0010 (BRC)

2 0x1000 0002 0x2 b#…0010 + b#0100 = b#…0110

3 0x1000 0006 0x6 b#…0110 + b#0100 = b#…0001 (BRCs)

4 0x1000 0001 0x1 b#…0001 + b#0100 = b#…0101

5 0x1000 0005 0x5 b#…0101 + b#0100 = b#…0011 (BRCs)

6 0x1000 0003 0x3 b#…0011 + b#0100 = b#…0111

7 0x1000 0007 0x7 b#…0111 + b#0100 = b#…0000 (BRCs)

Figure 6-25. Bit Reverse Addressing – Word Access Order

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x10000C

0x100008

0x100004

0x100000

Quad-word
address

1

2

3

4

5

6

7

8

Start

ADSP-TS101 TigerSHARC Processor Programming Reference 6-35

IALU

Listing 6-2. Bit Reverse Addressing Example

#define N 8 /* N = 8; number of bit reverse locations; N must be

a power of 2 */

.section data1;

.align N;

/* align the input buffer’s start to an address that is a multi-

ple of N; assume for this example that the address is

0x1000 0000 0000 0000 */

.var input[N]={0,1,2,3,4,5,6,7};

.var output[N];

.section program;

_main:

j0 = j31 + ADDRESS(input) ;; /* Input pointer */

j4 = j31 + ADDRESS(output) ;; /* Output pointer */

LC0 = N ;; /* Set up loop counter */

_my_loop:

xr0 = BR [J0 += N/2] ;; /* Data read with bit reverse; modi-

fier must be equal to N/2 */

if NLC0E, jump _my_loop ; [j4+=1] = xr0 ;; /* Write linear */

Universal Register Transfer Operations

The IALUs support data transfers between universal registers. Also, the
IALUs support loading universal registers with 15- or 32-bit immediate
data. The Ureg transfer and load instructions supported by the IALUs
include:

Ureg_s = <Imm15>|<Imm32> ; /* load a single Ureg with 15- or

32-bit immediate data */

Ureg_s = Ureg_m ; /* transfer the contents of a single (32-bit)

Ureg to another Ureg */

IALU Operations

6-36 ADSP-TS101 TigerSHARC Processor Programming Reference

Ureg_sd = Ureg_md ; /* transfer the contents of a dual (64-bit)

Ureg to another Ureg */

/* Numbered registers in compute block or IALU register files may

be treated as dual registers */

Ureg_sq = Ureg_mq ; /* transfer the contents of a quad (128-bit)

Ureg to another Ureg */

/* Numbered registers in compute block or IALU register files may

be treated as quad registers */

Immediate Extension Operations

Many IALU instructions permit immediate data as an operand. When the
immediate data is larger that 8 bits for data addressing instructions or
larger than 15 bits for universal register load instructions, the data is too
large to fit within one 32-bit instruction. To hold this large immediate
data, the DSP uses two instruction slots—one for the instruction and one
for the extended data. Looking at the IALU instructions listed in the
“IALU Instruction Summary” on page 6-39, note the number of instruc-
tions that can use 32-bit immediate data (<Imm32>). These instructions all
require an immediate extension.

The DSP automatically supports immediate extensions, but the program-
mer must be aware that an instruction requires an immediate extension
and leave an unused slot for the extension. For example, use three (not
four) slots on a line in which the DSP must automatically use the second
slot for the immediate extension, and place the instruction that needs the
extension in the first slot of the instruction line.

Note that only one immediate extension may be in a single instruc-
tion line.

ADSP-TS101 TigerSHARC Processor Programming Reference 6-37

IALU

IALU Examples
Listing 6-3 and Listing 6-4 provide a number of example IALU arithmetic
and data addressing instructions. The comments with the instructions
identify the key features of the instruction, such as operands, destination
or source addresses, addressing operation, and register usage.

Listing 6-3. IALU Instruction Examples

J1 = J0 + 0x81 ; /* Js = Jm + Imm8 data */

K2 = ROTR K0 ; /* Ks = 1 bit right rotate Km */

XSTAT = [J3 + J5] ; /* Load Ureg from addr. Jm + Jn */

J5:4 = L [J2 += 0x81] ; /* Load Ureg_sd from addr. Jm, and

post-modify Jm with Imm8 */

J31:28 = Q [K2 + K5] ; /* Load Ureg_sq from addr. Km + Jn */

XR2 = CB [J0 += 0x8181] ; /* Load Rs from addr. Jm; post-modify Jm

with Imm32 and circular buffer addressing; uses immediate exten-

sion */

YSTAT = 0x8181 ; /* Load Ureg_s from Imm32; */

KSTAT = JSTAT ; /* Load Ureg_s from Ureg_m */

YR3:0 = XR7:4 ; /* Load Ureg_sq from Ureg_mq */

IALU Examples

6-38 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 6-4. DAB Usage Example

#define N 8

.SECTION data1 ;

.VAR abuff[5] = 0x0, 0x1, 0x2, 0x3, 0x4 ;

.SECTION external ;

.VAR destx[N] = 0x00000000, 0x11111111,

0x22222222, 0x33333333,

0x44444444, 0x55555555,

0x66666666, 0x777777777;

.VAR desty[N] ;

.SECTION program ;

.GLOBAL _main;

_main:

J0 = 0x3 ;;

J1 = J0 + destx ;;

/* The program needs to load in 0x3333333 through

0x666666 with a quad load, which isn’t aligned

correctly. So, it must use DAB. */

/* xR3:0 = Q[J1 += 4];; This command gives a runtime error

(not a compiler error), access to misaligned memory */

XR3:0 = DAB Q[J1 += 4] ;;

/* For quad access, must have modify value of 4 for next

DAB access */

XR3:0 = DAB Q[J1 += 4] ;;

/* DAB access takes two of the same commands. First loads in

nearest quad boundary, and the second loads in correct

value. Now, every access to the same buffer is

aligned. */

JL3 = 0x5 ;; /* Use circular buffers */

JB3 = abuff ;;

J3 = abuff ;; /* Must set pointer and JB3 */

NOP ;;

NOP;;

ADSP-TS101 TigerSHARC Processor Programming Reference 6-39

IALU

/* Need 4-cycle latency between JB and JL setup and

its use */

/* set up loop to count through 12 steps */

LC0 = 12 ;; /*initialize loop counter*/

start_loop:

XR0 = CB[J3 += 0x1] ;;

/* uses CB to institute circular buffer */

/* once the use of J3 is a circular buffer, any use

of J3 is a circular buffer*/

/* To rest, reset JL3 and JB3 */

IF NLC0E, JUMP start_loop ;;

/* execute loop while loop counter doesn’t equal zero */

___lib_prog_term:

jump ___lib_prog_term (NP);;

/* Done. */

IALU Instruction Summary
The following listings show the IALU instructions’ syntax:

• Listing 6-5 “IALU Integer, Logical, and Function Instructions”

• Listing 6-6 “IALU Ureg Register Load (Data Addressing)
Instructions”

• Listing 6-7 “IALU Dreg Register Load Data Addressing (and DAB
Operation) Instructions”

• Listing 6-8 “IALU Ureg Register Store (Data Addressing)
Instructions”

• Listing 6-9 “IALU Dreg Register Store (Data Addressing)
Instructions”

• Listing 6-10 “IALU Universal Register Transfer Instructions”

IALU Instruction Summary

6-40 ADSP-TS101 TigerSHARC Processor Programming Reference

The conventions used in these listings for representing register names,
optional items, and choices are covered in detail in “Register File Regis-
ters” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Jm or Km – the letter J or K in register names in italic indicate selec-
tion of a register in the J-IALU or K-IALU.

• Jm – the register names in italic represent user selectable single (Jm,
Jn, Js, Rs, Ureg_s), double (Rsd, Rmd, Ureg_sd, Ureg_md) or quad
(Rsq, Rmq, Ureg_sq, Ureg_mq) register names.

In IALU data addressing instructions, special operators identify the input
and output operand size as follows:

• The L operator before an input or output operand (indirect or
direct address) indicates a long word (64-bit) memory read or
write. For example, the following instruction syntax indicates long
word memory read: Rsd = L [Km += Kn] ;

• The Q operator before an input or output operand (indirect or
direct address) indicates a quad-word (128-bit) memory read or
write. For example, the following instruction syntax indicates
quad-word memory read: Rsq = Q [Km += Kn] ;

• The absence of an L or Q operator before an input or output oper-
and (indirect or direct address) indicates a normal-word (32-bit)
memory read or write. For example, the following instruction syn-
tax indicates normal-word memory read: Rs = [Km += Kn] ;

Each instruction presented here occupies one instruction slot in an
instruction line, except for those using instructions which require
immediate extensions. For more information about instruction

ADSP-TS101 TigerSHARC Processor Programming Reference 6-41

IALU

lines and instruction combination constraints, see “Immediate
Extension Operations” on page 6-36, “Instruction Line Syntax and
Structure” on page 1-20, and “Instruction Parallelism Rules” on
page 1-24.

IALU Instruction Summary

6-42 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 6-5. IALU Arithmetic, Logical, and Function Instructions

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

JB0|JB1|JB2|JB3|JL0|JL1|JL2|JL3 = Jm +|-Jn|<Imm8>|<Imm32> ;

Js = Jm + Jn|<Imm8>|<Imm32> + JC ;

Js = Jm - Jn|<Imm8>|<Imm32> + JC - 1 ;

Js = (Jm +|- Jn|<Imm8>|<Imm32>)/2 ;

COMP(Jm, Jn|<Imm8>|<Imm32>) {(U)} ;

Js = MAX|MIN (Jm, Jn|<Imm8>|<Imm32>) ;

Js = ABS Jm ;

Js = Jm OR|AND|XOR|AND NOT Jn|<Imm8>|<Imm32> ;

Js = NOT Jm ;

Js = ASHIFTR|LSHIFTR Jm ;

Js = ROTR|ROTL Jm ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

KB0|KB1|KB2|KB3|KL0|KL1|KL2|KL3 = Km +|-Kn|<Imm8>|<Imm32> ;

Ks = Km + Kn|<Imm8>|<Imm32> + KC ;

Ks = Km - Kn|<Imm8>|<Imm32> + KC - 1 ;

Ks = (Km +|- Kn|<Imm8>|<Imm32>)/2 ;

COMP(Km, Kn|<Imm8>|<Imm32>) {(U)} ;

Ks = MAX|MIN (Km, Kn|<Imm8>|<Imm32>) ;

Ks = ABS Km ;

Ks = Km OR|AND|XOR|AND NOT Kn|<Imm8>|<Imm32> ;

Ks = NOT Km ;

Ks = ASHIFTR|LSHIFTR Km ;

Ks = ROTR|ROTL Km ;

ADSP-TS101 TigerSHARC Processor Programming Reference 6-43

IALU

Listing 6-6. IALU Ureg Register Load (Data Addressing) Instructions

Ureg_s = [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_s = [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Km +|+= Kn|<Imm8>|<Imm32>] ;

/* Ureg suffix indicates: _s=single, _sd=double, _sq=quad */

Listing 6-7. IALU Dreg Register Load Data Addressing (and DAB
Operation) Instructions

{X|Y|XY}Rs = {CB|BR} [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rs = {CB|BR} [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m must be 0,1,2, or 3 for bit reverse or circular buffers */

IALU Instruction Summary

6-44 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 6-8. IALU Ureg Register Store (Data Addressing) Instructions

[Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_s ;

L [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sq ;

[Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_s ;

L [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sq ;

Listing 6-9. IALU Dreg Register Store (Data Addressing) Instructions

{CB|BR} [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

{CB|BR} [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m = 0,1,2 or 3 for bit reverse or circular buffers */

Listing 6-10. IALU Universal Register Transfer Instructions

Ureg_s = <Imm15>|<Imm32> ;

Ureg_s = Ureg_m ;

Ureg_sd = Ureg_md ;

Ureg_sq = Ureg_mq ;

ADSP-TS101 TigerSHARC Processor Programming Reference 7-1

7 PROGRAM SEQUENCER

The TigerSHARC processor core contains a program sequencer. The
sequencer contains the instruction alignment buffer (IAB), program
counter (PC), branch target buffer (BTB), interrupt manager, and address
fetch mechanism. Using these features and the instruction pipeline, the
sequencer (highlighted in Figure 7-1) manages program execution.

Figure 7-1. Program Sequencer

IAB

PC BTB IRQ

ADDR
FETCH

PROGRAM SEQUENCER

DAB

128 128

DAB

128 128

COMPUTE
BLOCK

X 32

128

32

128

32

128

INTEGER
K-IALU

INTEGER
J-IALU

32

DATA ADDRESS GENERATION

32

32X32 32X32

COMPUTE
BLOCK

Y

7-2 ADSP-TS101 TigerSHARC Processor Programming Reference

The sequencer fetches instructions from memory and executes program
flow control instructions. The operations that the sequencer supports
include:

• Supply address of next instruction to fetch

• Maintain instruction alignment buffer (IAB) by buffering fetched
instructions

• Maintain branch target buffer (BTB) by reducing branch delays

• Decrement loop counters

• Evaluate conditions (for conditional instructions)

• Respond to interrupts (with changes to program flow)

Figure 7-2 shows a detailed block diagram of the sequencer. Looking at
this diagram, note the following blocks within the sequencer.

• The program counter (PC) increments the fetch address for linear
flow or modifies the fetch address as needed for non-linear flow
(branches, loops, interrupts, or others).

• The branch target buffer (BTB) caches addresses for branches to
reduce pipeline costs on predicted branches. For more information,
see “Branching Execution” on page 7-16.

• The fetch unit puts the address on the bus for the next quad word
to fetch from memory.

• The instruction alignment buffer (IAB) receives the instruction
quad words from memory, buffers them, and distributes the
instructions to the compute blocks, IALUs, and program
sequencer.

With the functional blocks shown in Figure 7-2, the sequencer can sup-
port a number of program flow variations. Program flow in the DSP is
mostly linear with the processor executing program instructions sequen-

ADSP-TS101 TigerSHARC Processor Programming Reference 7-3

Program Sequencer

tially. This linear flow varies occasionally when the program uses
non-sequential program structures, such as those illustrated in Figure 7-3.
Non-sequential structures direct the DSP to execute an instruction that is
not at the next sequential address. These structures include:

• Loops. One sequence of instructions executes several times with
near-zero overhead.

• Subroutines. The processor temporarily redirects sequential flow
to execute instructions from another part of program memory.

• Jumps. Program flow transfers permanently to another part of pro-
gram memory.

• Interrupts. Subroutines in which a runtime event triggers the exe-
cution of the routine.

• Idle. An instruction that causes the processor to cease operations,
holding its current state until an interrupt occurs. Then, the pro-
cessor services the interrupt and continues normal execution.

Figure 7-2. Sequencer Detailed Block Diagram

Program

Increment

Counter
 (PC)

Branch
Target

 Buffer (BTB)

Interrupt
Response

 Unit

Interrupts

Memory Address Fetch Unit

Instruction Alignment Buffer (IAB)

Memory

Compute Blocks IALUs Sequencer

Fetch Address (32-Bit)

Instruction Quad Words (128-Bit)

7-4 ADSP-TS101 TigerSHARC Processor Programming Reference

For information on using each type of program flow, see “Sequencer
Operations” on page 7-7.

To support optimized flow of execution, the TigerSHARC processor uses
an instruction pipeline. The DSP fetches quad words from memory,
parses the quad words into instruction lines (consisting of one to four
instructions), decodes the instructions, and executes them. Figure 7-4

Figure 7-3. Program Flow Variations

N

N+1

N+2

N+3

N+4

N+5

ADDR

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

IF NLC0E,
JUMP LABEL

LINEAR FLOW

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

LC0 = N

LOOP

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

JUMP

JUMP

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

CALL

SUBROUTINE

INSTRUCTION

CJMP

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

RTI

INSTRUCTION

INTERRUPT

IRQ

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

IDLE

INSTRUCTION

INSTRUCTION

IDLE

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

RETI

LABEL

N TIMES

WAIT
FOR
IRQ

VECTOR

ADSP-TS101 TigerSHARC Processor Programming Reference 7-5

Program Sequencer

shows the instruction pipeline stages and shows how the pipeline interacts
with the branch target buffer (BTB) and instruction alignment buffer
(IAB).

From start to finish, an instruction line requires eight cycles to traverse the
pipeline. The execution throughput is one instruction line every DSP core
clock (CCLK) cycle. Due to the execution of IALU instructions at the
integer (I) stage, execution of compute block instructions at the execute 2
(EX2) stage, and memory access effects, the full flow cannot be analyzed as
a single eight-stage pipeline, but must be viewed as sequential unit pipes.

Figure 7-4. Instruction Pipeline, IAB, and BTB

Fetch 1 (F1)

Fetch 2 (F2)

Fetch 3 (F3)

Decode (D)

Integer (I)

Access (A)

Fetch

Compute

Integer

Execute 1 (EX1)

Execute 2 (EX2)

Instruction
Alignment

Buffer
(IAB)

Branch
Target
Buffer
(BTB)

Unit
Pipe

ALU
Pipe

Block
Pipe

7-6 ADSP-TS101 TigerSHARC Processor Programming Reference

The instruction fetch (F1, F2, and F3) pipe stages are common to all
instructions and are driven by memory accesses. The F1 stage interacts
with the BTB to minimize overhead cycles when branching. For more
information, see “Branching Execution” on page 7-16 and “Branch Target
Buffer (BTB)” on page 7-34.

The remaining pipe stages are instruction driven. The execution differs
between the IALU, compute block, and sequencer. The instruction driven
pipe stages are Decode (D), Integer (I), operand Access (A), Execute 1
(EX1), and Execute 2 (EX2).

In the instruction driven pipeline stages, instruction pipe details differ
according to the unit executing the instruction:

Decode The sequencer extracts the next instruction line,
uses the IAB to distribute it to the respective execu-
tion units (compute blocks, IALUs, and sequencer),
and updates the program counter. For more infor-
mation, see “Instruction Alignment Buffer (IAB)”
on page 7-31.

The IALUs decode instructions.

The compute blocks transfer instructions to the
computation units (ALU, multiplier, and shifter).

Integer The IALUs execute arithmetic instruction, return
results, and update flags.

The computational units decode instruction and
check for dependencies.

Access The IALUs begin memory access (for applicable
instructions).

The computational units select source registers in
the register files.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-7

Program Sequencer

Execute 1 and 2 The IALUs complete execution of memory access
instruction.

The computational units complete execution,
return results, and update flags.

These differences in pipe operation between IALUs and computational
units cause different pipeline effects when branching. For more informa-
tion, see “Instruction Pipeline Operations” on page 7-26.

Sequencer Operations
Sequencer operations support linear execution (one sequential address
after another) and non-linear execution (transferring execution to a
non-sequential address). These operations are described in these sections:

• “Conditional Execution” on page 7-12

• “Branching Execution” on page 7-16

• “Looping Execution” on page 7-19

• “Interrupting Execution” on page 7-20

Depending on programming and pipeline effects, some branching
variations require the DSP to automatically insert stall cycles. For
more information on pipeline effects and stalls, see “Instruction
Pipeline Operations” on page 7-26.

Conditional instructions begin with the syntax IF Condition. The Condi-
tion can be any status flag from a compute block or IALU operation (for
example, AZ, JZ, MV, and others), any static flag from the SFREG register, or
a negated status/static flag (prefixed with N).

Sequencer Operations

7-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Almost all TigerSHARC processor instructions can be conditional. The
exceptions are a small set of sequencer instructions that may not be condi-
tional. The always unconditional instructions are NOP, IDLE, BTBINV, TRAP,
and EMUTRAP.

In the sequencer, there are two registers that provide control and status.
The sequencer control (SQCTL) and sequencer status (SQSTAT) registers
appear in Figure 7-5, Figure 7-7, Figure 7-6, and Figure 7-8. These regis-
ters support:

• Normal mode. Using the normal mode (NMOD) bit, programs select
user mode (=0) in which programs can only access the compute
block and IALU registers or supervisor mode (=1) in which pro-
grams have unlimited register access. After booting and when
responding to an interrupt, the DSP automatically goes into super-
visor mode. There is a three-cycle latency on explicitly switching
between these modes.

• Branch target buffer control. Using the BTB enable (BTBEN) and
BTB lock (BTBLK) bits, programs control the BTB operation.

• Timer control. Using the timer run (TMR0RN and TMR1RN) bits, pro-
grams can turn on the two timers independently.

• Flag control and status. Using the flag enable (FLAGx_EN), flag out-
put (FLAGx_OUT), and flag input (FLGx) bits, programs can select
whether a flag pin (FLAG3–0) is an input or an output. If an output,
select 1 or 0 for the output value. If an input, observe the input
value.1

1 The flag pin bit updates the corresponding flag pin after a delay of between 1 and 3 SCLK cycles. Set-
ting and clearing a flag bit might not affect the pin if both operations occur during that delay. The
recommended way to set and clear the flag pin bit is to get an external indication that the bit has been
set before clearing it. Otherwise, insert (2 x LCLKRAT) instruction lines between the set and the clear
to compensate for the delay.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-9

Program Sequencer

• Interrupt sensitivity. Using the interrupt edge (IRQ_EDGE) bit, pro-
grams select edge or level sensitivity for the IRQ3–0 pins
independently.

• Software reset. Using the software reset (SWRST) bit, programs can
reset the DSP core.

Other status information is also available. See Figure 7-5,
Figure 7-7, Figure 7-6, and Figure 7-8.

Sequencer Operations

7-10 ADSP-TS101 TigerSHARC Processor Programming Reference

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
FLAGx_OUT – Selects output value of flag

pins if pin is enabled as an output by its
FLAGx_EN bit; bit 24-FLAG0,
bit 25-FLAG1, bit 26-FLAG2,
bit 27-FLAG3

FLAGx_EN – Enables a flag pin as either
1=output or 0=input; bit 20-FLAG0,
bit 21-FLAG1, bit 22-FLAG2,
bit 23-FLAG3

IRQ_EDGE – Selects sensitivity of IRQ3–0
interrupt pins as 0=edge sensitive or
1=level sensitive; bit 16-IRQ0,
bit 17-IRQ1, bit 18-IRQ2, bit 19-IRQ3

‘

Figure 7-5. SQCTL (Upper) Register Bit Descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
FLGx – Indicates input value of flag pins if pin

is enabled as an input by its FLAGx_EN
bit; bit 16-FLAG0, bit 17-FLAG1,
bit 18-FLAG2, bit 19-FLAG3

Figure 7-6. SQSTAT (Upper) Register Bit Descriptions

ADSP-TS101 TigerSHARC Processor Programming Reference 7-11

Program Sequencer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BTBEN – BTB enable; 1=enable, 0=disable

BTBLK – BTB lock; 1=lock (every new entry
written to BTB is locked), 0=unlocked

Reserved
SWRST – Software reset; write 1 to reset
Reserved
DBGEN – Debug enable; 1=enable, 0=disable
NMOD – Normal mode; 0=User, 1=Supervisor
Reserved

TMR0RN – Timer 0 run

TMR1RN – Timer 0 run

Reserved

Figure 7-7. SQCTL (Lower) Register Bit Descriptions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MODE – Operation mode; 00=User, 01=Super-
visor, 11=Emulation

IDLE – Set when DSP is in idle state
 SPVCMD – Five LSBs of the last executed

supervisor TRAP instruction
EXCAUSE – Exception cause (last exception);

0000=TRAP, 0001=Watchpoint match,
0010=Floating-point exception, 0011=Ille-
gal instruction line, 0100=Non-aligned
access, 0101=Protected register access,
0110=Performance monitor counter wrap,
0111=Illegal IALU access, 1000=Emula-
tion disabled exception, 1111=No excep-
tion has occurred since reset

EMCAUSE – Emulation cause (last
emulation trap); 0000=EMU instruction,
0001=JTAG caused emulation,
0010=Watchpoint match, 1111=No emu-
lation exception has occurred since reset

Figure 7-8. SQSTAT (Lower) Register Bit Descriptions

Sequencer Operations

7-12 ADSP-TS101 TigerSHARC Processor Programming Reference

Conditional Execution
All TigerSHARC processor instructions1 can be executed conditionally (a
mechanism also known as predicated execution). The condition field
exists in one instruction in an instruction line, and all the remaining
instructions in that line either execute or not, depending on the outcome
of the condition.

In a conditional computational instruction, the execution of the entire
instruction line can depend on the specified condition at the beginning of
the instruction line. Conditional computational instructions take the
form:

IF Condition;

DO, Instruction; DO, Instruction; DO, Instruction ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the DO before the instruction makes the instruction
unconditional.

Listing 7-1 shows some example conditional ALU instructions. For a
description of the ALU conditions used in these examples, see “ALU Exe-
cution Conditions” on page 3-14.

Listing 7-1. Conditional Compute and IALU Instructions

IF XALT; DO, R3 = R1 + R2 ;;

/* conditional execution of the add in compute blocks X and Y is

based on the ALT condition in compute block X */

IF YAEQ; DO, XR0 = R1 + R2 ;;

/* conditional execution of the add in compute block X is based

on the AEQ condition in compute block Y */

1 Except for NOP, IDLE, BTBINV, TRAP, and EMUTRAP

ADSP-TS101 TigerSHARC Processor Programming Reference 7-13

Program Sequencer

IF ALE; DO, R0 = R1 + R2 ;;

/* conditional execution of the add in compute blocks X and Y is

based on the ALE condition in compute block X for execution in X

and is based on the ALE condition in compute block Y for execu-

tion in Y */

IF ALE; DO, XR0 = R1 + R2 ;;

/* conditional execution of the add in compute block X is based

on the ALE condition in compute block X */

IF ALE; DO, R0 = [J0 + J1] ;;

/* conditional execution of load is based on ORing the ALE condi-

tion in compute blocks X and Y */

In a conditional program sequencer instruction that is based on an ALU
condition, the execution of the program sequencer instruction line
depends on the specified ALU condition at the beginning of the instruc-
tion line. These conditional program sequencer instructions take the form:

IF Condition, Sequencer_Instruction;

ELSE, Instruction; ELSE, Instruction; ELSE, Instruction ;;

This syntax permits up to three instructions to be controlled by a condi-
tion. Omitting the ELSE before the instruction makes the instruction
unconditional.

This syntax permits program sequencer instructions to be based on com-
putational conditions. Listing 7-2 shows some example conditional
program sequencer instructions based on ALU conditions.

Sequencer Operations

7-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing 7-2. Conditional Sequencer Instructions

IF ALE, JUMP label;;

/* conditional execution of the jump is based on ORing the ALE

condition in compute blocks X and Y */

IF XALE, JUMP label;;

/* conditional execution of the jump is based on ALE condition in

compute block X */

IF AEQ, JUMP label; ELSE, XR0 = R5 + R6; YR8 = R9 - R10;;

/* conditional execution of the jump is based on ORing the AEQ

condition in compute blocks X and Y; the add in compute block X

only executes if the jump does not execute; the subtract in com-

pute block Y is unconditional (always executes) */

Besides the requirement that any sequencer instruction must use the first
instruction slot (each instruction line contains four slots), it is important
to note that the address used in a sequencer branch instruction (for exam-
ple, JUMP Address) determines whether the instruction uses one slot or
two. If a sequencer instruction specifies a relative or absolute address
greater than 16 bits, the DSP automatically uses an immediate extension
(the second instruction slot) to hold the extra address bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved

Figure 7-9. SFREG (Upper) Register Bit Descriptions

ADSP-TS101 TigerSHARC Processor Programming Reference 7-15

Program Sequencer

When a program Label is used instead of an address, the assembler con-
verts the Label to a PC-relative address. When the Label is contained in
the same program .SECTION as the branch instruction, the assembler uses a
16-bit address. When the Label is not contained in the same program
.SECTION as the branch instruction, the assembler uses a 32-bit address.
For more information on PC-relative and absolute addresses and branch-
ing, see “Branching Execution” on page 7-16.

To provide conditional instruction support for static conditions, the
sequencer has a static flag (SFREG) register (appears in Figure 7-9 and
Figure 7-10). The sequencer uses this register to store status flag values
from the compute blocks and IALUs for later usage in conditional instruc-
tions. For examples using the SFREG conditions in the compute blocks and
IALUs, see “ALU Static Flags” on page 3-15, “Multiplier Static Flags” on
page 4-21, “Shifter Static Flags” on page 5-17, “ALU Static Flags” on
page 3-15, and “IALU Static Flags” on page 6-13.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GSCF0 – IALU/global static flag 0
GSCF1 – IALU/global static flag 1
XSCF0 – X compute block static

flag 0
XSCF1 – X compute block static

flag 1
YSCF0 – Y compute block static

flag 0
YSCF1 – Y compute block static

flag 1
Reserved

Figure 7-10. SFREG (Lower) Register Bit Descriptions

Sequencer Operations

7-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Branching Execution
The sequencer supports branching execution with the JUMP, CALL,
CJMP_CALL, CJMP, RETI, RDS, and RTI instructions. Figure 7-3 on page 7-4
provides a high-level comparison between all branch variations. Looking
at Figure 7-11, note some additional details about the JUMP, CALL, and
CJMP_CALL operations.

A CALL instruction transfers execution to address Label (or to an immedi-
ate 16- or 32-bit address). When processing a call, the sequencer writes
the return address (next sequential address after the call) to the CJMP regis-
ter, then jumps to the subroutine address. The CJMP instruction at the end
of the subroutine causes the sequencer to jump to the address in CJMP.

Figure 7-11. Call Versus Computed Jump Call Versus Jump

INSTRUCTION

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

CALL LABEL

CALL

INSTRUCTION

CJMP

INSTRUCTION

INSTRUCTION

…

CJMP_CALL

INSTRUCTION

CJMP

INSTRUCTION

COMPUTED
JUMP CALL

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

JUMP LABEL

INSTRUCTION

INSTRUCTION

JUMP

INSTRUCTION

CJMP
RETURN

ADDRESS

LABEL CJMP

…

LABEL

1

2

1

2

1

1

2

Writes return address
to CJMP register and
jumps to address LABEL.

Jumps to return address
in CJMP register.

1

2

Jumps to address in
CJMP register then writes
return address to CJMP.

Jumps to return address
in CJMP register.

1 Jumps to LABEL.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-17

Program Sequencer

A CJMP_CALL instruction transfers execution to a subroutine using a com-
puted jump address (CJMP register). One way to load the computed jump
address is to use the (CJMP) option on the IALU add/subtract instruction.
The CJMP_CALL transfers execution to the address indicated by the CJMP
register, then loads the return address into CJMP. The CJMP instruction at
the end of the subroutine causes the sequencer to jump to the address in
CJMP.

A JUMP instruction transfers execution to address Label (or an immediate
16- or 32-bit address).

Branching sequencer instructions use PC-relative or absolute addresses.
For relative addressing, the program sequencer bases the address for rela-
tive branch on the 32-bit Program Counter (PC). For absolute addressing
instructions, the branch instruction provides an immediate 32-bit address
value. The PC allows linear addressing of the full 32-bit address range.

If a 32-bit PC-relative or absolute address is used with a CALL or
JUMP instruction (or if the Label is located outside the program
.SECTION containing the CALL or JUMP instruction), the CALL or
JUMP instruction requires the immediate extension instruction slot
to hold the 16-bit address extension.

The default operation of CALL and JUMP instructions is to assume the
address in the instruction is PC-relative. To use an absolute address, branch
instructions use the absolute (ABS) option. The following example shows a
PC-relative address branch instruction and an absolute address branch
instruction.

JUMP fft_routine ;;

/* fft_routine is a program label that appears within this .sec-

tion; the assembler converts the label into a 16-bit PC-relative

address */

Sequencer Operations

7-18 ADSP-TS101 TigerSHARC Processor Programming Reference

CALL far_iir_routine (ABS) ;;

/* far_iir_routine is a program label from outside this .section;

the assembler converts the label into an absolute address

(because the ABS option is used); also the label converts to a

32-bit address (because it is outside this section) */

For more examples of branch instructions, see “Sequencer Examples” on
page 7-72.

Another default operation that applies to all conditional branch instruc-
tions is that the sequencer assumes the conditional test is TRUE and
predicts the branch is taken—a predicted branch. When for programming
reasons the programmer can predict that most of the time the branch is
not taken, the branch is called not predicted and is indicated as such using
the not predicted (NP) option. In the following example, the first condi-
tional branch is a predicted branch and the second is a not predicted
branch:

IF AEQ, JUMP fft_routine ;;

/* this conditional branching instruction is a predicted branch

*/

IF MEQ CALL far_iir_routine (ABS) (NP) ;;

/* this conditional branching instruction is a not predicted

branch */

Unconditional branches are treated as predicted branches by the
sequencer. The sequencer treats unconditional branches as though
they are prefixed with the condition IF TRUE.

Correctly predicting a branch as taken or not taken is extremely important
for pipeline performance. The sequencer writes information about every
predicted branch into BTB. The BTB examines the flow of addresses dur-
ing the pipeline stage Fetch 1. When a BTB hit occurs (the BTB
recognizes the address of an instruction that caused a jump on a previous
pass of the program code), the BTB substitutes the corresponding destina-
tion address as the fetch address for the following instruction. When a

ADSP-TS101 TigerSHARC Processor Programming Reference 7-19

Program Sequencer

branch is currently cached and correctly predicted, the performance loss
due to branching is reduced from either six or three stall cycles to zero.
For more information, see “Branch Target Buffer (BTB)” on page 7-34.

Looping Execution
The sequencer supports zero-overhead and near-zero-overhead looping
execution. As shown in Figure 7-3 on page 7-4, a loop lets a program exe-
cute a group of instructions repetitively, until a particular condition is
met. When the condition is met, execution continues with the next
sequential instruction after the loop.

To set up a loop, a program uses a loop counter register, an instruction to
decrement the counter, and a conditional instruction jump instruction
that tests whether the condition is met and (if not met) jumps to the
beginning of the loop.

For zero-overhead loops (no lost cycles for loop test and counter decre-
ment), the sequencer has two dedicated loop counter (LC0 and LC1)
registers and special loop counter conditions (counter not expired: IF
NLC0E and IF NLC1E, and counter expired: IF LC0E and IF LC1E) for the
conditional jump at the end of the loop. Also, the sequencer automatically
decrements the counter when executing the special loop counter test and
conditional jump. For an example, see Listing 7-3.

Listing 7-3. Zero-Overhead Loop Example

LC0 = N ;; /* N = 10, sets up loop counter */

_start_loop:

NOP ;; /* any instruction */

NOP ;; /* any instruction */

NOP ;; /* any instruction */

IF NLC0E, jump _start_loop ;; /* condition test at loop end */

Sequencer Operations

7-20 ADSP-TS101 TigerSHARC Processor Programming Reference

Beside the two zero-overhead loops, the sequencer supports any number of
near-zero-overhead loops. A near-zero-overhead loop uses an IALU regis-
ter for the loop counter, includes an instruction to decrement the counter,
and uses a condition to test the decrement operation in the conditional
jump at the end of the loop. For an example containing zero-overhead and
near-zero-overhead loops, see Listing 7-8 on page 7-73.

For near-zero-overhead loops, programs get better performance
through using an IALU register (rather than a compute block regis-
ter) for the counter. The reason for this performance difference
stems from the difference between compute block and IALU
instruction execution in the instruction pipeline. For more infor-
mation, see “Instruction Pipeline Operations” on page 7-26.

Interrupting Execution
Interrupts are events that cause the core to pause its current process,
branch, and execute another process. These events can occur at any time
and are:

• Internal to the processor

• External to the processor

Interrupts are intended for:

• Synchronizing core and non-core operation

• Error detection

• Debug features

• Control by applications

ADSP-TS101 TigerSHARC Processor Programming Reference 7-21

Program Sequencer

Each interrupt has a vector register in the Interrupt Vector Table (IVT)
and an assigned bit in the interrupt flags and masks registers (ILAT, IMASK
and PMASK). The vector register contains the user-definable address of the
interrupt routine that services the interrupt. Some important points about
the interrupt vector table include:

• 31 interrupts

• Most interrupts are dedicated

• Four general-purpose interrupts associated with IRQ3–0 pins

In the IMASK register, a “1” means the interrupt is unmasked (DSP
recognizes and services interrupt). A “0” means the interrupts is
masked (DSP does not recognize interrupt). The IMASK, ILAT and
PMASK registers all have the same bit definitions

Interrupts are classified as either edge or level sensitive. Edge sensitive
interrupts are latched when they occur and remain latched until serviced
or reset by an instruction. Level sensitive interrupts differ in that if the
interrupt is not serviced before the request is removed, the interrupt is for-
gotten, and if the request remains after the service routine executes, it is
considered a new interrupt.

The sequencer manages interrupts using the ILAT, IMASK, and PMASK con-
trol registers. These registers appear in Figure 7-12, Figure 7-13,
Figure 7-14, and Figure 7-15 and have the following usage:

• ILAT – Interrupt Latch Register, latches edge sensitive interrupts
(interrupt’s bit =1) and displays active level sensitive interrupts
(interrupt’s =1)

• IMASK – Interrupt Mask Register, masks each individually (inter-
rupt’s bit =0) or all interrupts (GIE bit =0)

• PMASK – Interrupt Mask Pointer Register, indicates each interrupt
being serviced (interrupt’s bit =1)

Sequencer Operations

7-22 ADSP-TS101 TigerSHARC Processor Programming Reference

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EMUL – Emulation debug (highest priority)
EXCEPT – Exception
Reserved
GIE – Global interrupt enable (IMASKH)
Reserved
HW – Hardware error
Reserved
TIMER1H – Timer 1 high priority
TIMER0H – Timer 0 high priority
Reserved
BUSLOCK – Bus lock interrupt
Reserved
VIRPT – Vector interrupt

Figure 7-12. IMASKH, ILATH, PMASKH (Upper) Register Bit
Descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA10 – DMA 10 interrupt
DMA9 – DMA 9 interrupt
DMA8 – DMA 8 interrupt
Reserved
DMA7 – DMA 7 interrupt
DMA6 – DMA 6 interrupt
DMA5 – DMA 5 interrupt
DMA4 – DMA 4 interrupt
Reserved
DMA3 – DMA 3 interrupt
DMA2 – DMA 2 interrupt

Figure 7-13. IMASKL, ILATL, PMASKL (Upper) Register Bit
Descriptions

ADSP-TS101 TigerSHARC Processor Programming Reference 7-23

Program Sequencer

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA11 – DMA 11 interrupt
Reserved
DMA12 – DMA 12 interrupt
DMA13 – DMA 13 interrupt
Reserved
IRQ0 Interrupt pin
IRQ1 Interrupt pin
IRQ2 Interrupt pin
IRQ3 Interrupt pin
Reserved

Figure 7-14. IMASKH, ILATH, PMASKH (Lower) Register Bit
Descriptions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reserved
TIMER0L – Timer 0 low priority
TIMER1L – Timer 1 low priority
Reserved
LINK0 – Link 0 interrupt
LINK1 – Link 1 interrupt
LINK2 – Link 2 interrupt
LINK3 – Link 3 interrupt
Reserved
DMA 0 interrupt
DMA 1 interrupt

Figure 7-15. IMASKL, ILATL, PMASKL (Lower) Register Bit
Descriptions

Sequencer Operations

7-24 ADSP-TS101 TigerSHARC Processor Programming Reference

The priority of interrupts high to low matches their order of appearance in
IMASK, ILAT, and PMASK. For more information on interrupt sensitivity,
interrupt latching, the Interrupt Vector Table, and other interrupt issues,
see the ADSP-TS101 TigerSHARC Processor Hardware Reference.

The sequencer supports interrupting execution through hardware inter-
rupts (external IRQ3–0 pins and internal process conditions) and software
interrupts (program sets an interrupt’s latch bit). Figure 7-3 on page 7-4
provides a high-level comparison of branching variations.

Looking at Figure 7-16, note some additional details about interrupt ser-
vice routines for non-reusable interrupts and reusable interrupts. The
difference between these two types of interrupt service is that a
non-reusable interrupt service routine cannot re-latch the same interrupt
again until it has been serviced, and a reusable interrupt service routine
(because it has been reduced to subroutine status with the RDS instruction)
can re-latch the same interrupt while it is still being serviced. To under-
stand the difference better, note the steps for interrupt processing of these
two types of interrupt service.

For non-reusable interrupt service, the steps are:

1. Sequencer recognizes interrupt when the interrupt’s bit is latched
in the ILAT register, the interrupt is unmasked by the interrupt’s bit
in the IMASK and PMASK registers, and interrupts are globally
enabled by the GIE bit in the IMASK register.

2. Sequencer places the DSP in supervisor mode, jumps execution to
the interrupt’s vector address set in the interrupt’s vector register,
loads the return address (next sequential address after the inter-
rupt) into the RETI register, and sets the interrupt’s PMASK bits.

3. DSP executes interrupt service routine.

4. Sequencer jumps execution to the return address on reaching the
RTI instruction at the end of the interrupt service routine, clears
the interrupt’s ILAT bit, and clears the interrupt’s PMASK bits.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-25

Program Sequencer

For reusable interrupt service, the steps are:

1. Sequencer recognizes interrupt when the interrupt’s bit is latched
in the ILAT register, the interrupt is unmasked by the interrupt’s bit
in the IMASK and PMASK registers, and interrupts are globally
enabled by the GIE bit in the IMASK register.

2. Sequencer places the DSP in supervisor mode, jumps execution to
the interrupt’s vector address set in the interrupt’s vector register,
loads the return address (next sequential address after the inter-
rupt) into the RETI register, and sets the interrupt’s PMASK bits.

Figure 7-16. Non-Reusable Versus Reusable Interrupt Service

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

NON-REUSABLE
INTERRUPT

INSTRUCTION

RTI

INSTRUCTION

RETURN
ADDRESS

VECTOR

1

2

1

2

Writes return address
to RETI register, sets bit
in PMASK, and jumps to
interrupt vector address.

Jumps to return address
and clears PMASK and
ILAT bits.

INTERRUPT

RDS

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

REUSABLE
INTERRUPT

INSTRUCTION

RETI

INSTRUCTION

RETURN
ADDRESS

VECTOR

1

3

1

2

Writes return address
to RETI register, sets bit
in PMASK, and jumps to
interrupt vector address.

Reduces interrupt to sub-
routine by clearing the
PMASK and ILAT bits.

INTERRUPT

2

3 Jumps to return address.

Instruction Pipeline Operations

7-26 ADSP-TS101 TigerSHARC Processor Programming Reference

3. Sequencer reduces the interrupt to a subroutine on reaching the
RDS instruction at the beginning of the interrupt service routine,
clears the interrupt’s ILAT bit, and clears the interrupt’s PMASK bits.

Because the interrupt’s ILAT and PMASK bits are cleared, the inter-
rupt may be latched again before the interrupt service is completed.

4. DSP executes interrupt service routine.

5. Sequencer jumps execution to the return address on reaching the
RETI instruction at the end of the interrupt service routine.

Depending on the instruction that is being executed when the
interrupt is recognized, different pipeline effects may occur. For
more information, see “Instruction Pipeline Operations” on
page 7-26.

Instruction Pipeline Operations
As introduced in the instruction pipeline discussion on page 7-4, the Tig-
erSHARC processor has an eight-stage instruction pipeline. The pipeline
stages and their relationship to the branch target buffer and instruction
alignment buffer appears in Figure 7-4 on page 7-5. To better understand
the flow of instructions through the pipeline and the time required for
each stage, this section uses a series of diagrams similar to Figure 7-17.

Looking at Figure 7-17, note that the instruction pipeline stages appear
on the vertical axis and CCLK (DSP core clock) cycles appear on the hor-
izontal axis. Usually, each pipeline stage requires one cycle to process an
instruction line of up to four instructions. This section describes the situa-
tions in which a pipeline stage may require more time to complete its
operation.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-27

Program Sequencer

Also note from Figure 7-17 the order in which results from an operation
become available. Because IALU arithmetic operations execute at the inte-
ger stage and compute block operations execute at the execute 2 stage,
IALU results may be available before compute block results, depending on
the order and type of instructions.

Figure 7-17. Timing for Stages of Instruction Pipeline

inst
#1

inst
#2

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1

CCLK

F1

F2

F3

D

I

A

EX1

EX2

#1
#2
#3
#4

#1: XR0 = R1 + R2 ;; /* X compute block */
#2: YR3 = R4 * R5 ;; /* Y compute block */
#3: J0 = J1 + J2 ;; /*J-IALU */
#4: K0 = K1 - K2 ;; /* K-IALU */

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1

#1
#2
#3
#4

Available
Results

Fetch 1

Fetch 2

Fetch 3

Fetch
Unit
Pipe

Decode

Integer

Access

Integer
ALU
Pipe

Execute 1

Execute 2

Compute
Block
Pipe

#3

#1
#3
#4

Because IALU instructions execute at I
and compute block instructions execute
at EX2, results are available earlier
for IALU instructions.

Instruction Pipeline Operations

7-28 ADSP-TS101 TigerSHARC Processor Programming Reference

The first three stages of the instruction pipeline (F1, F2, and F3) are
called the fetch unit pipe. The fetch cycles are the first pipeline and are tied
to the memory accesses. The progress in this pipeline is memory driven
and not instruction driven. The fetch unit fills up the instruction align-
ment buffer (IAB) whenever the IAB has less than three quad words. Since
the execution units can pull in instructions in throughput lower or equal
to the fetch throughput of four words every cycle, it is probable that the
fetch unit will fill the IAB faster than the execution units pull the instruc-
tions out of the IAB. The IAB can be filled with up to five quad words of
instructions.

When the fetch is from external memory the flow is similar although
much slower. The maximum fetch throughput is one instruction line to
every two SCLK cycles and the latency is according to the system design
(external memory pipeline depth, wait cycles).

The next three instruction pipeline stages (D, I, and A) are called the inte-
ger ALU pipe. The Decode stage is the first stage in this pipe. In this cycle
the next full instruction line is extracted from the instruction alignment
buffer and the different instructions are distributed to the execution units.
The units include:

• J-IALU or K-IALU – integer instructions, load/store and register
transfers

• Compute block X or Y or both – two instructions (the switching
within the compute block is done by the register file)

• Sequencer – branch and condition instructions, and others

The instruction alignment buffer (IAB) also calculates the program
counter of a sequential line and some of the non-sequential instructions.
The IAB does not perform any decoding.

After the Decode stage, instructions enter the integer stage of the integer
ALU pipe. IALU instructions include address or data calculation and,
optionally, memory access. Figure 7-17 on page 7-27 shows the instruc-

ADSP-TS101 TigerSHARC Processor Programming Reference 7-29

Program Sequencer

tion flow in the IALU pipeline. The IALU instruction’s calculation is
executed at the Integer stage. If the IALU instruction includes a memory
access, the bus is requested on the Integer stage. In this case, the memory
access begins at the Access stage as long as the bus is available for the
IALU.

The result of the address calculation is ready at the Integer stage. Since the
execution of the IALU instruction may be aborted (either because of a
condition or branch prediction), the operand is returned to the destina-
tion register only at the end of EX2. The result is passed through the
pipeline, where it may be extracted by a new instruction should it be
required as a source operand. Dependency between IALU calculations
normally do not cause any delay, but there are some exceptions. The data
that is loaded, however, is only ready in the register at pipe stage EX2.

The final pipeline stages (EX1 and EX2) are called the compute block pipe.
The compute block pipe is relatively simple. At the decode cycle, the com-
pute block gets the instruction and transfers it to the execution unit (ALU,
multiplier or shifter). At the Integer stage, the instruction is decoded in
the execution unit (ALU, multiplier or shifter), and dependency is
checked. At the Access stage, the source registers are selected in the regis-
ter file. At the execution stages EX1 and EX2, the result and flag updates
are calculated by the appropriate compute block. The execution is always
two cycles, and the result is written into the target register on the rising
edge after pipe stage EX2. See Figure 7-17 on page 7-27.

All results are written into the target registers and status flags at pipe stage
EX2. There are two exceptions to this rule:

• External memory access, in which the delay is determined by the
system

• Multiply-accumulate instructions, which write into MR registers and
sticky flags one cycle after EX2 (This write is important to retain
coherency in case of a pipeline break.)

Instruction Pipeline Operations

7-30 ADSP-TS101 TigerSHARC Processor Programming Reference

When executed either at the Integer stage (IALU arithmetic) or execute 2
stage (all other instructions), the instructions in a single line are executed
in parallel. When there are two instructions in the same line which use the
same register (one as operand and the other as result), the operand is
determined as the value of the register prior to the execution of this line.
For example:

/* Initial values are: R0 = 2, R1 = 3, R2 = 3, R3 = 8 */

R2 = R0 + R1 ; R6 = R2 * R3 (I) ;;

In the previous example, R2 is modified by the first instruction, and the
result is 5. Still the second instruction sees input to R2 as 3, and the result
written to R6 is 24. This rule is not guaranteed for memory store instruc-
tions. In this next example with the same initial values, the result of the
first slot is used in the second slot with unpredictable results.

R2 = R0 + R1 ; [Address] = R2 ;;

/* The results of using R2 as input for the memory store instruc-

tion here are unpredictable due to possible memory access stalls.

The assembler flags this instruction as illegal. */

For best results, do not use the results from one instruction as an
operand for another instruction within the same instruction line.

The pipeline creates complications because of the overlap between the exe-
cution time of instructions of different lines. For example, take a sequence
of two instruction lines where the second instruction line uses the result of
the first instruction line as an input operand. Because of the pipeline
length, the result may not be ready when the second instruction fetches its
operands. In such a case, a stall is issued between the first and second
instruction line. Since this may cause performance loss, the programmer
or compiler should strive to create as few of these cases as possible. These
combinations are legal however, and the result will be correct. This type of
problem is discussed in detail in “Dependency and Resource Effects on
Pipeline” on page 7-55.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-31

Program Sequencer

Instruction Alignment Buffer (IAB)
The IAB is a five quad-word FIFO as shown in Figure 7-18. When the
sequencer fetches an instruction quad word from memory, the quad word
is written into the next entry in the IAB. If there is at least one full
instruction line in the IAB, the sequencer can pull it for execution.

The IAB provides these services:

• Buffer the input (fetched instructions) from the fetch unit pipe,
keeping the fetch unit independent from the rest of the instruction
pipeline. This independence lets the fetch unit continue to run
even when other parts of the pipeline stall.

• Align the input (unaligned quad words) to prepare complete
instruction lines for execution. This alignment guarantees that
complete instruction lines with one to four instructions are able to
execute in parallel.

Instructions are 32-bit words that are stored in memory without
regard to quad-word alignment (128-bit) or instruction line length
(1–4 instructions). There is no wasted memory space. Instructions
are executed in parallel as determined by the MSB of the opcode
for each instruction.

• Distribute the instruction lines to the execution units—IALUs,
compute blocks, and sequencer.

Instruction Pipeline Operations

7-32 ADSP-TS101 TigerSHARC Processor Programming Reference

Through these services, the IAB insures execution of an entire instruction
line without inserting additional stall cycles or forcing memory quad-word
alignment on instruction lines.

Figure 7-18. Instruction Alignment Buffer (IAB) Structure

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

0x0C

0x08

0x04

0x00

Quad-word
address

word 8word 9word Aword B

word 4word 5word 6word 7
Three-entry

Quad-word input from memory read

word 0word 1word 2word 3

word 4word 5word 6word 7

word 0word 1word 2word3

Two-entry

To execution units: compute
blocks, IALU, and sequencer

Instruction
Alignment
Buffer

FIFO

alignment buffer

ADSP-TS101 TigerSHARC Processor Programming Reference 7-33

Program Sequencer

To understand the value of the buffer, align, and distribute service that
the IAB provides, see Figure 7-19. This figure provides an example of how
normal (32-bit) instruction words are stored unaligned in memory and
how the IAB buffers, aligns, and distributes these words.

These descriptions of IAB operation apply to internal memory
fetches only. Instruction fetches from external memory result in a

Figure 7-19. IAB Aligns Instruction Lines for Distribution/Execution

Aligned quad words in memory

word Cword Dword Eword F

word 8word 9word Aword B

word 4word 5word 6word 7

word 0word 1word 2word 3

word 8word 9word Aword B

word 4word 5word 6word 7
Three-entry

Quad-word input from memory read

word 0word 1word 2word 3

word 4word 5word 6word 7

word 0word 1word 2word3
Two-entry

IAB uses the MSB to determine the end
of the instruction line and to align the

011

word 0 ; word 1 ;;
word 2 ;;
word 3 ; word4 ; word 5;;
word 6 ;;
word 7 ;;
word 8 ; word 9 ; word A ; word B;;

0

1

1

1 0

0

1 1

0

1 0

0

0

word C ; word D ;;
word E ; word F ;;

The MSB of an instruction word
indicates whether it is an instruction
slot (0) or the end of an instruction
line (1). In code, MSB=0 equates
a ; and MSB=1 equates to a ;;

instructions to distribute.

alignment buffer

FIFO
Instruction
Alignment
Buffer

Instruction Pipeline Operations

7-34 ADSP-TS101 TigerSHARC Processor Programming Reference

much slower instruction flow. Fetch throughput is one instruction
for every SCLK cycle—at best, 25% of the rate for internal mem-
ory fetches. Latency depends on system design (external memory
pipeline depth, wait cycles, and other issues).

Branch Target Buffer (BTB)
The sequencer uses the branch target buffer (BTB) to reduce or eliminate
the branch costs (lost cycles as pipeline accommodates the branch) that
result from branching execution in the instruction pipeline. The BTB has
32 entries of 4-way set-associative cache (total of 128 entries) that store
branch target addresses and has a Least Recently Used (LRU) replacement
policy.

The BTB is active while the BTB enable (BTBEN) bit in sequencer control
(SQCTL) register is set. For more information, see the SQCTL register in
Figure 7-7 on page 7-11.

For permanent buffered program sections, program must lock the BTB
using the BTBLK bit in SQCTL. While the BTBLK bit is set, the BTB puts
every new entry into the BTB in locked status. When this happens the
BTB entry is not replaced until the whole BTB is flushed, in order to keep
performance-critical jumps in BTB.

Whenever program overlays are used to swap program segments into and
out of internal memory, the BTB must be cleared using instruction BTBINV
in order to invalidate the BTB.

The BTB contents can be accessed directly for debug and diagnos-
tic purposes only, but it must be disabled prior to access by clearing
the BTBEN bit in the SQCTL register. Do not directly access BTB con-
tents during normal operations because this access may result in
multi-hit and coherency problems.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-35

Program Sequencer

The BTB structure appears in Figure 7-20. This structure consists of three
types of registers that make up each of the 128 BTB entries. The entries
are divided into 32 sets and within each set there are four ways. The parts
of the BTB include set, way, tag, target, and LRU.

Figure 7-20. Branch Target Buffer (BTB) Structure

Tag

BTB0TG0

Target

BTB0TR0

LRU

BTBLRU0[2:0]
BTB1TG0

BTB2TG0

BTB3TG0

BTB1TR0

BTB2TR0

BTB3TR0

BTBLRU0[5:3]

BTBLRU0[8:6]

BTBLRU0[11:9]

BTB0TG31 BTB0TR31 BTBLRU31[2:0]
BTB1TG31

BTB2TG31

BTB3TG31

BTB1TR31

BTB2TR31

BTB3TR31

BTBLRU31[5:3]

BTBLRU31[8:6]

BTBLRU31[11:9]

32

Bits 6–2
of branch

32-bit register, in which:
bits 31–17 ⇒ unused
bits 16–2 and 1–0 ⇒

32-bit register, in which:
bits 31–24 ⇒ unused
bits 23–2 ⇒ bits 21–0

32-bit register, in which
three bits for each way
identify status as:

Set Way

0
1

2

3

0

0
1

2

3

31

SETS

Registers Registers Registers

instruction
address

bits 21–7 and 1–0 of last
instruction address in
branch instruction line

of branch target address
bit 1 ⇒ CJMP (yes=1)
bit 0 ⇒ RTI (yes=1)

invalid (=0),
least recent (=1–6),
or locked (=7)

Instruction Pipeline Operations

7-36 ADSP-TS101 TigerSHARC Processor Programming Reference

Index The index determines the set for the BTB entry.
The index is bits 6–2 of the branch instruction’s
address. Using five bits provides 32 sets. Each set
contains four ways (branch instruction addresses
with the same 6–2 bits).

Tag The tag determines whether a fetched instruction is
a BTB hit (address is in BTB) or a BTB miss
(address is not in BTB) when comparing the
fetched instruction with contents of ways in the
appropriate set. Tags are recorded in the BTBiTGxx
registers where i represents the way and xx repre-
sents the set. Each register is 32-bits wide, but only
the 17 LSBs are valid. These 17 bits are comprised
of bits 21–7 and 1–0 of the address of the last
instruction in the branch instruction’s instruction
line.

Target The target is the target address of the branch. The
PC begins fetching at the target address on a BTB
hit. Targets are recorded in the BTBiTRxx registers
where i represents the way and xx represents the set.
Each register is 32-bits wide, but only the 24 LSBs
are valid. These 24 bits are comprised of bits 21–0
of the address of the instruction that is the target of
the branch, a CJMP bit (0 = branch is not CJMP,
1 = branch is CJMP), and an RTI bit (0 = branch is
not RTI, 1 = branch is RTI),

LRU The LRU is the Least Recently Used field, which
determines whether a way is locked or valid and
whether a way should be overwritten in the event of
a BTB miss. LRU bits are recorded in the BTBLRUxx
registers where xx represents the set. Each register is
32-bits wide, but only the 12 LSBs are valid. Each

ADSP-TS101 TigerSHARC Processor Programming Reference 7-37

Program Sequencer

set has an LRU register that contains a three-bit
field for the LRU value for each of the ways in the
set. The LRU values represent: 0 = invalid,
1 through 6 = regular LRU value with 6 being most
recently used, and 7 = locked.

Now that the controls for the BTB (bits in the SQCTL register) and the
structure of the BTB (set, way, tag, target, LRU) are understood, it is
important to look at how the BTB and branch prediction relate to the
instruction pipeline. A flow chart of the sequencer’s BTB and branch pre-
diction operations with related branch costs (penalty cycles) appears in
Figure 7-21.

As shown in Figure 7-21, BTB usage and branch prediction are indepen-
dent. The sequencer always compares the fetched instruction against the
BTB contents when the instruction is at pipeline Fetch 1 stage. If there is
a BTB miss, the branch prediction tells the sequencer at later stages what
to assume and when to make its decision. At pipeline Decode stage, the
sequencer knows that the instruction is a branch and whether it is a pre-
dicted branch or a not predicted (NP) branch. This stage is where the
pipeline makes the decision on where to fetch from next. This prediction
also affects whether or not the branch is entered into the BTB, so that a
hit occurs for the next iteration.

By default, all conditional branches are predicted branches (pre-
dicted as taken) and are unconditional branches (treated as though
prefixed with the condition IF TRUE). Only conditional branches
with the (NP) (not predicted) option are predicted a not taken.

Instruction Pipeline Operations

7-38 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 7-21. Branch Prediction Penalty Tree1

1 When the fetched instruction line crosses a quad-word boundary, add one penalty cycle in all cases.

PREDICTED
BRANCH?

YES

NO

BRANCH
TAKEN?

ENTRY
IN BTB?

2-Cycle
Penalty

3- or 6-Cycle
Penalty

No
Penalty

PREDICTED
BRANCH?

YES YES

NO

BRANCH
TAKEN?

BRANCH
TAKEN?

YES

NO

YES

NO

YES

NO

3- or 6-Cycle
Penalty

3- or 6-Cycle
Penalty

No
Penalty

(BTB HIT)

(BTB MISS)

Fetch 1 Stage

Decode Stage

Integer or
Execute 2 Stage

(NP BRANCH)

ADSP-TS101 TigerSHARC Processor Programming Reference 7-39

Program Sequencer

The penalty cycles (stalls) for incorrectly predicted branches include:

• When a branch is predicted and there is a BTB hit, the sequencer
assumes that the branch is taken and begins fetching from the
branch target address when the branch goes from pipeline stage
Fetch 1 to Fetch 2. If predicted correctly, this case has zero penalty
cycles.

• When a branch is predicted but there is a BTB miss (BTB disabled
or no entry match), the sequencer assumes that the branch is taken
and begins fetching from the branch target when the branch goes
from pipeline stage Fetch 3 to Decode. If predicted correctly, this
case has two penalty cycles.

• When a conditional branch is not predicted (NP) and there is a
BTB miss (this is always the case with (NP) branches), the
sequencer assumes that the branch is not taken and does not begin
fetching from the branch target address until the condition is eval-
uated. This evaluation occurs when the branch goes from pipeline
stage Decode to Integer for IALU conditions or from pipeline stage
Execute 1 to Execute 2 for compute conditions. If predicted cor-
rectly, this case has zero penalty cycles.

• When a conditional branch is not correctly predicted (a predicted
branch is not taken or a not predicted (NP) is taken), the sequencer
does not catch the incorrect prediction until the condition is evalu-
ated. This evaluation occurs when the branch goes from pipeline
stage Decode to Integer for IALU conditions or from pipeline stage
Execute 1 to Execute 2 for compute conditions. This case has three
(for IALU condition) or six (for compute condition) penalty cycles.

When the fetched instruction line crosses a quad-word boundary,
add one penalty cycle in all cases. Using the .align_code 4 assem-
bler directive to quad-word align labels for JUMP and CALL
instructions eliminates this penalty cycle for these branch
instructions.

Instruction Pipeline Operations

7-40 ADSP-TS101 TigerSHARC Processor Programming Reference

Even assuming that the BTB were disabled (BTBEN bit =0) which would
always cause a BTB miss, branch prediction still has an effect on the
instruction pipeline’s decision making (see all the BTB miss cases above).

Besides understanding the limit of the BTB’s affect on the pipeline, it is
important to understand the limits of BTB usage regarding branch
instruction placement in memory.

Only internal memory branches are cached in the BTB. The width of the
cached target addresses is 22 bits. The BTB stores only one tag entry per
aligned quad word of program instructions and, consequently, only one
branch may be predicted per aligned quad word. If a programmer requires
more than one adjacent branch be predicted, then one to three NOP
instructions must be inserted between the branches to insure that both
branches do not fall into the same aligned quad word.

To avoid the possibility of placing more than one instruction containing a
predicted branch within the same quad-word boundary in memory and
causing unexpected BTB function, this combination of instructions and
placement causes an assembler warning. The assembler warns that it has
detected two predicted jumps within instruction lines whose line endings
are within four words of each other. Further, the assembler states that
depending on section alignment, this combination of predicted branch
instructions and the instructions placement in memory may violate the
constraint that they cannot end in the same quad word.

It’s useful to examine how different placement of words in memory results
in different contents in the BTB. For example, the code example in
Listing 7-4 contains a predicted branch.

Listing 7-4. Predicted Branches, Aligned Quad Words, and the BTB

nop; nop; nop; nop;;

jump HERE; nop;;

nop; nop; nop; nop;;

ADSP-TS101 TigerSHARC Processor Programming Reference 7-41

Program Sequencer

In memory, each instruction occupies an address, and sets of four loca-
tions make up a quad word. The placement of quad words in memory is
shown in Figure 7-18 on page 7-32 and discussed in “Instruction Align-
ment Buffer (IAB)” on page 7-31.The quad-word address is the address of
the first instruction in the quad word.

Depending on how the code in Listing 7-4 aligns in memory, quad-word
address 0x00000004 could contain:

If so, the BTB entry for the branch would contain:

Tag = 0x00000004, Target Address = HERE

But, the code in Listing 7-4 could align in memory differently. For exam-
ple, this code could align such that quad-word address 0x00000004 (first
line) and 0x00000008 (second line) contain:

Figure 7-22. Quad Words and Jump Instructions (1)

Figure 7-23. Quad Words and Jump Instructions (2)

nop; nop;; jump HERE; nop;;

Quad word starts at 0x4

End of instruction line

containing the jump

nop; nop; nop;; jump HERE;

Quad word starts at 0x4

nop;; nop; nop; nop;
Quad word starts at 0x8
Also, end of instruction line

containing the jump

Instruction Pipeline Operations

7-42 ADSP-TS101 TigerSHARC Processor Programming Reference

If so, the BTB entry for the branch would contain:

Tag = 0x00000008, Target Address = HERE

If prediction is enabled, the current PC is compared to the BTB tag values
at the F1 stage of the pipeline. If there is a match, the DSP modifies the
PC to reflect the branch target address stored in the BTB, and the
sequencer continues to fetch subsequent quad words at the modified PC.
If there is no match, the DSP does not modify the PC, and the sequencer
continues to fetch subsequent quad words at the unmodified PC.

When the same instruction reaches the Decode stage of the pipeline, the
instruction is identified as a branch instruction. If there was a BTB match,
no branch-exception action is taken. The PC has already been modified,
and the sequencer has already fetched from the branch target address. If
there is no BTB match, the sequencer aborts the two instructions fetched
prior to reaching the Decode stage (two stall cycles), and the DSP modi-
fies the PC to reflect the branch target address and begins fetching quad
words at the modified PC. The sequencer updates the BTB with the
branch target address such that the next time the branch instruction is
encountered, it is likely that there will be a BTB match.

The BTB contents vary with the instruction placement in memory,
because:

• The sequencer fetches instructions a full quad word at a time.

• An instruction line may occupy less than a full quad word, occupy
a full quad word, or span two quad words.

• An instruction line may start at a location other than a quad-word
aligned address.

Because the BTB can store only a single branch target address for each
aligned quad word of instruction code, its important to examine coding
techniques that work with this BTB feature. The following code example

ADSP-TS101 TigerSHARC Processor Programming Reference 7-43

Program Sequencer

produces unpredictable results in the hardware, because this code
(depending on memory placement) may attempt to force the BTB to store
multiple branch target addresses from a single aligned quad word.

The situation can be remedied by using NOP instructions to force the
branch instructions to exhibit at least four words of separation.

jump FIRST_JUMP; LC1 = yR16;;

jump SECOND_JUMP; R29 = R27; nop; nop;;

/* Adding NOPs moves the line ending of 2nd instruction */

While adding these NOP instructions increases the size of the code, these
NOP instructions do not affect the performance of the code.

Another way to control the relationship between alignment of code within
quad words and BTB contents is to use the .align_code 4 assembler
directive. This directive forces the immediately subsequent code to be
quad-word aligned as follows:

jump FIRST_JUMP; LC1 = yR16;;

.align_code 4;

/* Forcing quad alignment shifts the line ending of the next

instruction */

jump SECOND_JUMP; R29 = R27;;

Figure 7-24. Quad Words and Jump Instructions (3) Illegal Proximity

jump FIRST_JUMP; LC1 = yR16;;
Illegal, the line ends of instruction

jump SECOND_JUMP; R29 = R27;; lines that contain JUMPs are within
four instructions of each other.

Instruction Pipeline Operations

7-44 ADSP-TS101 TigerSHARC Processor Programming Reference

If the BTB hit is a computed jump, the RETI or CJMP register is used
(according to the instruction) as a target address. In this case, any change
in this register’s value until the jump takes place will cause the Tiger-
SHARC processor to abort the fetched instructions and repeat the flow as
if there were no hit.

Conditional Branch Effects on Pipeline

Correct prediction of conditional branches is critical to pipeline perfor-
mance. Prediction affects, and is affected by, all the pipes (fetch, IALU,
compute) in the pipeline. Each branch flow differs from every other and is
derived by the following criteria:

• Jump prediction (See “Conditional Execution” on page 7-12.)

• BTB hit or miss (See “Branch Target Buffer (BTB)” on page 7-34.)

• Condition pipe stage—pipeline stage Integer or Execute 2—when
is it resolved (See the Branch Prediction Penalty Tree in
Figure 7-21 on page 7-38.)

The prediction is set by the programmer or compiler. The prediction is
normally TRUE or ‘branch taken’. When the programmer uses option (NP)
in a control flow instruction, the prediction is ‘branch not taken’. For
more information, see “Branch Target Buffer (BTB)” on page 7-34. In
general, prediction indicates if the default assumption for this branch will
or will not be taken. Take, for example, a loop that is executed n times,
where the branch is taken n-1 times, and always more than once. Setting
this bit has two consequences:

• The branch goes into BTB.

• At stage Decode, the TigerSHARC processor identifies the instruc-
tion as a jump instruction and continues fetching from the target
of the jump, regardless of the condition.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-45

Program Sequencer

If a branch instruction is a BTB hit, the TigerSHARC processor fetches,
in sequence, the target of the branch after fetching the branch. In this case
there is no overhead for correct prediction. For a detailed description of
BTB behavior see “Branch Target Buffer (BTB)” on page 7-34.

The various condition codes are resolved in different stages. IALU condi-
tions are resolved in stage Integer of the instruction that updates the
condition flags. Compute block flags are updated in pipe stage EX2. The
other flags (BM, FLG0-3, and TRUE) are asynchronous to the pipeline
because they are created by external events. These are used in the same
fashion as IALU conditions and are resolved at pipe stage Integer, except
for the condition BM, which is resolved at pipe stage EX2.

Different situations produce different flows and, as a result, different per-
formance results. The parameters for the branch cost are:

• Prediction – branch is taken or not taken

• Branch on IALU or compute block

• BTB hit – miss

• Branch real result – taken or not

There are 16 combinations. The following combinations are ignored.

• If the prediction is ‘not taken’, the BTB cannot give a hit.

• If the prediction is ‘not taken’ and the branch is not taken, the flow
is as if no branch exists.

• If the prediction is ‘taken’ and the branch is taken, the flow is iden-
tical for IALU and compute block instructions.

Instruction Pipeline Operations

7-46 ADSP-TS101 TigerSHARC Processor Programming Reference

The different flows are shown in Figure 7-25 on page 7-47 through
Figure 7-36 on page 7-65. Each diagram shows the flow of each combina-
tion and its cost. The cost of a branch can be summarized as:

• Prediction not taken, branch not taken – no cost

• BTB hit, branch taken – no cost

• BTB miss, prediction taken, branch taken – two cycles

• Prediction taken, branch not taken (either BTB hit or miss); or
prediction not taken, branch taken: IALU condition (three cycles)
or Compute block (six cycles)

If the prediction is ‘not taken’, there cannot be a BTB hit since the
‘prediction taken’ is a condition for adding an entry to BTB.

One cycle should be added to the above branch costs if one of the follow-
ing applies:

• The jump is taken and the target instruction line crosses a
quad-word boundary.

• The branch was predicted to be taken and was not, and the sequen-
tial instruction line crosses a quad-word boundary.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-47

Program Sequencer

Figure 7-25 shows a predicted branch that is based on an IALU condition.
Because the branch is correctly predicted as taken and the BTB contains
the branch instruction (BTB hit), the pipeline contents are continuously
executable (no pipeline stages voided), and there are no lost cycles (branch
cost). Note that the pipeline evaluates the IALU condition (JEQ flag set by
instruction #1) when the conditional instruction reaches the Integer (I)
pipeline stage.

Figure 7-25. Predicted Branch Based on IALU Condition—
Branch Taken—With BTB Hit

inst
#1

inst
#2

inst
#10

inst
#2

inst
#10

inst
#1

inst
#2

inst
#10

inst
#2

inst
#10

inst
#1

inst
#1

inst
#2

inst
#10

inst
#1

inst
#2

inst
#10

inst
#1

inst
#2

inst
#10

inst
#1

inst
#2

inst
#10

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 predicted branch on IALU with
branch taken and BTB hit

#1: J0 = J1 + J2 ;; /* J0 = 0 */
#2: IF JEQ, JUMP 10 ;; /* addr. inst #10 */

inst
#1

Instruction Pipeline Operations

7-48 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 7-26 shows a predicted branch that is based on an IALU condition.
Because the branch is correctly predicted as taken and the BTB does not
contain the branch instruction (BTB miss), the pipeline contents are not
continuously executable (two pipeline stages voided), and there are two
lost cycles (branch cost). Note that the pipeline evaluates the IALU condi-
tion (JEQ flag set by instruction #1) when the conditional instruction
reaches the Integer (I) pipeline stage. From this evaluation, the pipeline
determines how many pipeline stages to void.

Figure 7-26. Predicted Branch Based on IALU Condition—
Branch Taken—With BTB Miss

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#2

inst
#3

inst
#4

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#2

inst
#3

inst
#4

inst
#10

inst
#1

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#1

inst
#2

inst
#4

inst
#10

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 predicted branch on IALU with
branch taken, but BTB miss

#1: J0 = J1 + J2 ;; /* J0 = 0 */
#2: IF JEQ, JUMP 10 ;; /* addr. inst #10 */

inst
#1

ADSP-TS101 TigerSHARC Processor Programming Reference 7-49

Program Sequencer

Figure 7-27 shows a not predicted (NP) branch that is based on a compute
condition. Because the branch is incorrectly predicted as not taken, the
pipeline contents are not continuously executable (six pipeline stages
voided), and there are six lost cycles (branch cost). Note that the pipeline
evaluates the compute condition (AEQ flag set by instruction #1) when the
conditional instruction reaches the Execute 2 (EX2) pipeline stage. From
this evaluation, the pipeline determines how many pipeline stages to void.

Figure 7-27. Not Predicted (NP) Branch Based on Compute Condition—
Branch Taken

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#6

inst
#7

inst
#8

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 not predicted branch on
compute, but branch taken

inst
#10

#1: R0 = R1 + R2 ;; /* R0 = zero */
#2: IF AEQ, JUMP 10 (NP) ;; /* addr. inst #10 */

Instruction Pipeline Operations

7-50 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 7-28 shows a not predicted (NP) branch that is based on an IALU
condition. Because the branch is incorrectly predicted as not taken, the
pipeline contents are not continuously executable (three pipeline stages
voided), and there are three lost cycles (branch cost). Note that the pipe-
line evaluates the IALU condition (JEQ flag set by instruction #1) when
the conditional instruction reaches the Integer (I) pipeline stage. From
this evaluation, the pipeline determines how many pipeline stages to void.

Figure 7-28. Not Predicted (NP) Branch Based on IALU Condition—
Branch Taken

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#1

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

inst
#1

inst
#2

inst
#3

inst
#4

inst
#5

inst
#10

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 not predicted branch on IALU,
but branch taken

#1: J0 = J1 + J2 ;; /* J0 = 0 */
#2: IF JEQ, JUMP 10 (NP) ;; /* addr. inst #10 */

inst
#1

inst
#10

ADSP-TS101 TigerSHARC Processor Programming Reference 7-51

Program Sequencer

Figure 7-29 shows a predicted branch that is based on a compute condi-
tion. Because the branch is incorrectly predicted as taken and the BTB
contains the branch instruction (BTB hit), the pipeline contents are not
continuously executable (six pipeline stages voided), and there are six lost
cycles (branch cost). Note that the pipeline evaluates the compute condi-
tion (AEQ flag set by instruction #1) when the conditional instruction
reaches the Execute 2 (EX2) pipeline stage. From this evaluation, the
pipeline determines how many pipeline stages to void.

Figure 7-29. Predicted Branch Based on Compute Block Condition—
Branch Not Taken—With BTB Hit

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#13

inst
#14

inst
#15

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 predicted branch on compute,
but branch not taken (BTB hit)

inst
#3

#1: R0 = R1 + R2 ;; /* R0 � zero */
#2: IF AEQ, JUMP 10 ;; /* addr. inst #10 */

Instruction Pipeline Operations

7-52 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 7-30 shows a predicted branch that is based on an IALU condition.
Because the branch is incorrectly predicted as taken and the BTB contains
the branch instruction (BTB hit), the pipeline contents are not continu-
ously executable (three pipeline stages voided), and there are three lost
cycles (branch cost). Note that the pipeline evaluates the compute condi-
tion (JEQ flag set by instruction #1) when the conditional instruction
reaches the Integer (I) pipeline stage. From this evaluation, the pipeline
determines how many pipeline stages to void.

Figure 7-30. Predicted Branch Based on IALU Condition—
Branch Not Taken—With BTB Hit

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#1

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

inst
#1

inst
#2

inst
#10

inst
#11

inst
#12

inst
#3

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 predicted branch on IALU,
but not branch taken (BTB hit)

#1: J0 = J1 + J2 ;; /* J0 � 0 */
#2: IF JEQ, JUMP 10 ;; /* addr. inst #10 */

inst
#1

inst
#3

ADSP-TS101 TigerSHARC Processor Programming Reference 7-53

Program Sequencer

Figure 7-31 shows a predicted branch that is based on a compute condi-
tion. Because the branch is incorrectly predicted as taken and the BTB
does not contain the branch instruction (BTB miss), the pipeline contents
are not continuously executable (six pipeline stages voided), and there are
six lost cycles (branch cost). Note that the pipeline evaluates the compute
condition (AEQ flag set by instruction #1) when the conditional instruction
reaches the Execute 2 (EX2) pipeline stage. From this evaluation, the
pipeline determines how many pipeline stages to void.

Figure 7-31. Predicted Branch Based on Compute Block Condition—
Branch Not Taken—With BTB Miss

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#11

inst
#12

inst
#13

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #2 predicted branch on compute,
but branch not taken (BTB miss)

inst
#3

#1: R0 = R1 + R2 ;; /* R0 � zero */
#2: IF AEQ, JUMP 10 ;; /* addr. inst #10 */

BTB miss
identified

Instruction Pipeline Operations

7-54 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 7-32 shows a predicted branch that is based on an IALU condition.
Because the branch is incorrectly predicted as taken and the BTB does not
contain the branch instruction (BTB miss), the pipeline contents are not
continuously executable (three pipeline stages voided), and there are three
lost cycles (branch cost). Note that the pipeline evaluates the compute
condition (JEQ flag set by instruction #1) when the conditional instruction
reaches the Integer (I) pipeline stage. From this evaluation, the pipeline
determines how many pipeline stages to void.

Figure 7-32. Predicted Branch Based on IALU Condition—
Branch Not Taken—With BTB miss

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#1

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

inst
#1

inst
#2

inst
#3

inst
#4

inst
#10

inst
#3

CCLK

F1

F2

F3

D

I

A

EX1

EX2

#1: J0 = J1 + J2 ;; /* J0 � 0 */
#2: IF JEQ, JUMP 10 ;; /* addr. inst #10 */

inst
#1

inst
#3

Inst #2 predicted branch on IALU,
but branch not taken (BTB miss)

ADSP-TS101 TigerSHARC Processor Programming Reference 7-55

Program Sequencer

Dependency and Resource Effects on Pipeline
The TigerSHARC processor supports any sequence of instruction lines, as
long as each separate line is legal. The pipelined instruction execution
causes overlap between the execution of different lines. Two problems
may arise from this overlap.

• Dependency

• Resource conflict

A dependency condition is caused by any instruction that uses as an input
the result of a previous instruction, if the previous instruction data is not
ready when the current instruction needs the operand.

Resource conflicts only occur in the internal memory. The following
instructions cause a bus request conflicts.

• Load/store – request an internal bus according to internal memory
block. If the address is external, the virtual bus is used.

• Immediate load, move reg to reg, and add or sub with option
CJMP all request the virtual bus.

If any of the above two instructions use the same internal bus, or if
another resource (DMA or bus interface) requests the same bus on the
same cycle that the IALU requests the bus, the bus might not be granted
to the IALU. This in turn could cause a delay in the execution.

This section details the different cases of stalls. A stall is any delay that is
caused by one of the two conditions previously described. Although the
information in this manual is detailed, there may be some cases that are
not defined here or conditions that are not always perceivable to the sys-
tem designer. Exact behavior can only be reproduced through the
TigerSHARC processor simulator.

Instruction Pipeline Operations

7-56 ADSP-TS101 TigerSHARC Processor Programming Reference

Stall From Compute Block Dependency

This is the most common dependency in applications and occurs on com-
pute block operations on the compute block register file. The compute
block accesses the register file for operand fetch on pipe stage Access, uses
the operand on EX1, and writes the result back on EX2. The delay is com-
prised of basically two cycles—however, a bypass transfers the result
(which is written at the end of pipe stage EX2) directly into the compute
unit that is using it in the beginning of pipe stage EX1. As a result, one
stall cycle is inserted in the dependent operation.

There is also a one-cycle stall when the MR is loaded immediately after mul-
tiply-accumulate. Example:

MR2 += R3 * R2;;

MR2 = R4;;

ADSP-TS101 TigerSHARC Processor Programming Reference 7-57

Program Sequencer

Figure 7-33 shows two compute block instructions. Execution of instruc-
tion #2 is dependent on the result from instruction #1. The pipeline
inserts a one-cycle stall at the Integer stage (I) when the register depen-
dency is recognized. Execution of instruction #2 is stalled for one cycle.

As with other ALU instructions, all communications logic unit (CLU)
instructions are executed in the compute pipeline. Similar to other com-
pute instructions, all CLU instructions have a dependency check. Every
use of a result of the previous line causes a stall for one cycle. In some spe-

Figure 7-33. Compute Block Operations—
Result Dependency Stalls Following Instruction

inst
#1

inst
#2

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#2

inst
#4

inst
#1

inst
#1

inst
#3

inst
#4

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst #1 result
ready for Inst #2

#1: R0 = R1 + R2 ;; /* next instruction line */
#2: R5 = R0 * R4 ;; /* uses previous line’s result */

inst
#1

inst
#2

Stall, Dependency

Inst #1 and #2 register
dependency causes stall

inst
#3

inst
#2

inst
#1

inst
#1

inst
#1

Instruction Pipeline Operations

7-58 ADSP-TS101 TigerSHARC Processor Programming Reference

cial cases the stall is eliminated by using special forwarding logic in order
to improve the performance of certain algorithms executions. The for-
warding logic can function (and the stall can be eliminated) only when the
first instruction is not predicated (for example, if <cond>; do,
<inst>;;). The exceptions cases are:

• Load TR or THR register and any instruction that uses it on the next
line.

• Although the THR register is a hidden operand and/or result of the
instructions ACS and DESPREAD, there is no dependency on it.

• The instruction ACS, which can use previous result of ACS instruc-
tion as TRmd with no stall. For example the following sequence will
cause no stall:

TR3:0 = ACS (….);;

TR7:4 = ACS (TR1:0, TR5:4, R8);;

Or the sequence:

TR3:0 = ACS (….);;

TR7:4 = ACS (TR3:2, TR5:4, R8);;

However, there are a few cases that cause stalls.The first case is
when the dependency is on TRN. For example:

TR3:0 = ACS (….);;

TR7:4 = ACS (TR11:10, TR1:0, R8);;

ADSP-TS101 TigerSHARC Processor Programming Reference 7-59

Program Sequencer

The second case is when two different formats are used in the two
instructions. For example:

XTR3:0 = ACS (TR5:4, TR7:6, R1);;

XSTR11:8 = ACS (TR15:14, TR13:12, R2);;

ACS of short operands has the identical flow.

• Data transfer from a CLU register to a compute register file has no
dependency. The data transfer is executed in EX2.

The CLU register load can be executed in parallel to other CLU instruc-
tions. CLU register load code is similar to the code of a shifter instruction,
while the code of the other CLU instructions is similar to the code of ALU
instructions.

No exceptions are caused by the CLU instructions.

Stall from Bus Conflict

The execution of the following instructions uses the internal bus:

• Ureg = [Jm + Jn|imm], Ureg = [Km + Kn|imm]

all data types and options

• [Jm + Jn|imm] = Ureg, [Km + Kn|imm] = Ureg

all data types and options

• Ureg = Ureg

even if both are in the same register file

• Ureg = imm

• Js = Jm +|- Jn (CJ)

Instruction Pipeline Operations

7-60 ADSP-TS101 TigerSHARC Processor Programming Reference

The first two instruction types select a bus according to the memory
block:

• Address 0x00000 – 0xFFFF: bus #0

• Address 0x80000 – 0x8FFFF: bus #1

• Address 0x100000 – 0x10FFFF: bus #2

• Address 0x1C00000 – 0xFFFFFFFF: External address

The other three instructions use the virtual bus. The arbitration between
the masters on the bus is detailed in “Bus Arbitration Protocol” in the
ADSP-TS101 TigerSHARC Processor Hardware Reference.

The IALU always requests the bus on pipe stage Integer. If it doesn’t
receive the bus, the execution of the bus transaction is delayed until the
bus is granted. The rest of the line, however, including the other IALU
operations (for example, post-modify of address), are continued. This is to
prevent deadlock in case of two memory accesses in the same cycle to the
same bus. The following instruction lines are stalled until this line can
continue executing the transaction (or transactions, if more than one of
the transaction’s instructions are in execution).

ADSP-TS101 TigerSHARC Processor Programming Reference 7-61

Program Sequencer

Figure 7-34 shows a load instruction, using an IALU post-modify address-
ing memory access. The memory access stalls for two cycles due to a bus
conflict over access to the memory block containing the address in J0.
Execution of instruction #1 is extended over three cycles—two for the stall
and one for the access.

Figure 7-34. Register Load Using Post-Modify With Update—
Resource Conflict Stalls Bus Access

inst
#1

inst
#2

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

inst
#1

inst
#2

inst
#3

inst
#4

inst
#2

inst
#4

inst
#1

inst
#1

inst
#3

inst
#4

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

inst
#2

inst
#3

inst
#4

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst#1 Bus Transaction

#1: R5 = [J0 += J4] ;; /* bus conflict for addr. J0 */

inst
#1

inst
#2

Inst#1 Bus Request
Stall, Resource Conflict
Inst#1 Bus Grant

Inst#1 memory access delay
from resource conflict stall

inst
#3

inst
#2

inst
#1

inst
#1

inst
#1

Instruction Pipeline Operations

7-62 ADSP-TS101 TigerSHARC Processor Programming Reference

Stall From Compute Block Load Dependency

Data in load instructions is transferred at pipe stage EX2, exactly as in
compute block operations. In case of dependency between a load instruc-
tion and compute operation that uses this data, the behavior is similar to
that of compute block dependency (see Figure 7-35 on page 7-63). For
example, the following sequence:

XR0 = [J31 + memory_access] ;;

XR5 = R0 * R4 ;; /* One-cycle Stall */

This would cause a one-cycle delay, occurring when the load instruction
comes from internal memory and the bus was accepted by the IALU that
executes the transaction.

If the load is from external memory or the bus request was delayed, the
second instruction is executed two cycles after the completion of the
load—that is, after the data is returned.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-63

Program Sequencer

Stall From IALU Load Dependency

The dependency between load instructions and IALU instructions is more
problematic than in the previous cases because data is loaded at pipe stage
EX2 and is used in stage Decode. To overcome this gap, four stalls are
inserted before the instruction that is using the loaded data, as shown in
Figure 7-36 on page 7-65.

Figure 7-35. IALU Operations—
Result Dependency Stalls Following Instruction

inst
#1

inst
#2

inst
#3

inst
#2

inst
#3

inst
#1

inst
#2

inst
#3

inst
#1

inst
#3

inst
#3

inst
#2

inst
#3

inst
#2

inst
#3

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst#1 result
ready for Inst#2

#1: J0 = [J2 + J3] ;; /* next instruction line */
#2: J5 = J0 + J3 ;; /* uses previous line’s result */

inst
#1

inst
#2

Stall, Dependency

Inst#1 and #2 register
dependency causes stall

inst
#3

inst
#2

inst
#2

inst
#1

inst
#1

inst
#1

inst
#1

Instruction Pipeline Operations

7-64 ADSP-TS101 TigerSHARC Processor Programming Reference

Stall From Load (From External Memory) Dependency

The combination of any execution instruction followed by a store instruc-
tion is dependency free, because the data is transferred by the store at pipe
stage EX2. The only exception to this rule is the store of data that has
been loaded from external memory. For example:

XR0 = [J31 + external_address] ;;

[J0+ = 0] = XR0 ;; /* stall until XR0 is ready */

In a case like this, there is a stall until XR0 is actually loaded.

Stall From Conditional IALU Load Dependency

Normally IALU instructions are executed in a single cycle at pipe stage
Integer. The result is pipelined and written into the result register at pipe
stage EX2. If the following instruction uses the result of this instruction
(either the result is used or a condition is used), the sequential instruction
extracts the result from the pipeline. In one exceptional instance the
bypass cannot be used, as shown in Figure 7-36 on page 7-65. This occurs
when the first instruction is conditional, the bypass usage is conditional,
and the condition value is not known yet. The result of inst#1 in the
example cannot be extracted from the bypass and must be taken from the

ADSP-TS101 TigerSHARC Processor Programming Reference 7-65

Program Sequencer

J0 register after the completion of the execution—after pipe stage EX2. In
this case, three stall cycles are inserted if the condition is compute block,
and one cycle is inserted for other types of conditions.

Figure 7-36. IALU Conditional Operations—
Result Dependency Stalls Following Instruction

inst
#1

inst
#2

inst
#3

inst
#2

inst
#3

inst
#1

inst
#2

inst
#3

inst
#1

inst
#3

inst
#3

inst
#2

inst
#3

inst
#2

inst
#3

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Inst#1 result
ready for Inst#2

#1: IF AEQ; DO, J0 = [J2 + J3] ;; /* next instruction line */
#2: J5 = J0 + J3 ;; /* uses previous line’s result */

inst
#1

inst
#2

Stall, Dependency

Inst#1 and #2 register
dependency causes stall

inst
#3

inst
#2

inst
#2

inst
#1

inst
#1

inst
#1

inst
#1

Instruction Pipeline Operations

7-66 ADSP-TS101 TigerSHARC Processor Programming Reference

Interrupt Effects on Pipeline
Interrupts (and exceptions) break the flow of execution and cause pipeline
effects similar to other types of branching execution. The interrupt types
are described in the “Interrupts” chapter of the ADSP-TS101 TigerSHARC
Processor Hardware Reference.

The interrupts in some applications are performance critical, and the Tig-
erSHARC processor executes them (in most cases) in the same pipeline in
the optimal flow. The next sections describe the different flows of
interrupts.

The most common case of a hardware interrupt is shown in Figure 7-37
on page 7-67. When an interrupt is identified by the core (when the inter-
rupt bit in ILAT register is set) or when the interrupt becomes enabled (the
interrupt bit in IMASK register is set), the TigerSHARC processor starts
fetching from the interrupt routine address. The execution of the instruc-

ADSP-TS101 TigerSHARC Processor Programming Reference 7-67

Program Sequencer

tions of the regular flow continues, except for the last instruction before
the interrupt (Inst #2 in the previous example). The return address saved
in RETI would be the address of instruction 2.

Figure 7-37. Interrupting Linear Execution (Interrupts Enabled, Inter-
rupting Unconditional, Non-Branching Instructions)

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#1i

inst
#2i

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Interrupt recognized

#1: /* any unconditional, non-branching instruction */
#2: /* any unconditional, non-branching instruction */

#1i: /* interrupt service routine instruction #1 */
#2i: /* interrupt service routine instruction #2 */

Instruction Pipeline Operations

7-68 ADSP-TS101 TigerSHARC Processor Programming Reference

Interrupt During Conditional Instruction

When a predicted branch or not predicted branch instruction is fetched,
the TigerSHARC processor cannot decide immediately if the branch is to
be taken (as discussed in “Branch Target Buffer (BTB)” on page 7-34).
When an interrupt occurs during a predicted branch or not predicted
branch instruction, if the prediction is found incorrect, the predicted part
is aborted while the interrupt instructions that follow are not aborted.

This case is illustrated in Figure 7-38 on page 7-69. When the interrupt is
inserted into the flow, instructions #3 and #4 are in the pipeline specula-
tively. When the jump instruction is finalized (EX2) and if the speculative
is found wrong, instructions #3 and #4 are aborted (similar to the flow
described in Figure 7-39 on page 7-71). The instructions that belong to
the interrupt flow, however, are not part of the speculative flow, and they
are not aborted. The return address in this case is the correct target of the

ADSP-TS101 TigerSHARC Processor Programming Reference 7-69

Program Sequencer

jump instruction #2. Similar flows happen in all cases of aborted predicted
or not predicted flows, when interrupt routine instructions are already in
the pipeline.

Figure 7-38. Interrupting Conditional Execution (Interrupts Enabled,
Interrupting Conditional Instructions)

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

inst
#1

inst
#2

inst
#3

inst
#4

inst
#1i

inst
#2i

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Interrupt recognized

#1: XR0 = R2 - R1 ;; /* updates flags for inst#2 */
#2: IF NXAEQ, JUMP 100 ;; /* conditional on result from inst#1

#1i: /* interrupt service routine instruction #1 */
#2i: /* interrupt service routine instruction #2 */

Condition evaluated

Instruction Pipeline Operations

7-70 ADSP-TS101 TigerSHARC Processor Programming Reference

Interrupt During Interrupt Disable Instruction

Sometimes the programmer needs a certain part of the code to be executed
free of interrupts. In this case, disabling all hardware interrupts by clearing
the global interrupt enable GIE bit of IMASK is effective immediately (con-
trary to clearing a specific interrupt enable). Be aware that there is a
performance cost to using this feature. If the interrupt is already in the
pipeline when GIE is cleared, it will continue execution until reaching
EX1, and only then will it be aborted and the flow returned to a normal
flow.

An example to this flow is shown in Figure 7-39 on page 7-71. The inter-
rupt is identified by the TigerSHARC processor on the second cycle
(when inst #1 is fetched). Inst #1—which clears GIE—is only completed
five cycles after the interrupt occurs. When the first interrupt routine

ADSP-TS101 TigerSHARC Processor Programming Reference 7-71

Program Sequencer

instruction reaches EX1, GIE is checked again, and if it is cleared, the
whole interrupt flow is aborted and the TigerSHARC processor returns to
its original flow.

Figure 7-39. Interrupting Linear Execution (Interrupts Enabled, Inter-
rupting Unconditional, Non-Branching Instructions)—Interrupt Dis-
abled While In Pipeline

inst
#1

inst
#2

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1

inst
#2

inst
#1

inst
#2

inst
#1

inst
#2

inst
#1

inst
#2

inst
#1

inst
#2

inst
#1

inst
#2

inst
#1

inst
#2

CCLK

F1

F2

F3

D

I

A

EX1

EX2

Interrupt recognized

#_: XR0 = IMASKH ;; /* load XR0 with current interrupt mask */
#_: XR0 = BCLR R0 BY INT_GIE_P;;

/* where INT_GIE_P = 0xEFFFFFFF from defts101.h file;
this clears the GIE bit, but retains other bit values */

#1: IMASKH = XR0 ;; /* load IMASKH with data globally disabling interrupts */
#2: /* any unconditional instruction */

#1i: /* interrupt service routine instruction #1 */
#2i: /* interrupt service routine instruction #2 */

Interrupts globally disabled

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#5i

inst
#6i

inst
#2

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

inst
#1i

inst
#2i

inst
#3i

inst
#4i

Sequencer Examples

7-72 ADSP-TS101 TigerSHARC Processor Programming Reference

Exception Effects on Pipeline
An exception is normally caused by using a specific instruction line. The
exception routine’s first instruction is the next instruction executed after
the instruction that caused it. In order to make this happen, when the
instruction line that caused the exception reaches EX2, all the instructions
in the pipeline are aborted, and the TigerSHARC processor starts fetching
from the exception routine. This flow is similar to the flow of unpredicted
and taken jumps conditioned by an EX2 condition (see Figure 7-27 on
page 7-49).

Sequencer Examples
The listings in this section provide examples of sequencer instruction
usage. The comments with the instructions identify the key features of the
instruction, such as predicted or not predicted branches, loop setup, and
others.

Listing 7-5. Sequencer Instructions, Slots, and Lines

IF XAEQ, JUMP Label_1NP;;

/* This is a single instruction line and occupies one “slot” or

32-bit word */

NOP; NOP; NOP; NOP;;

IF XMEQ; DO, XR3:2 = R5:4 + R7:6;;

/* This is a two instruction line, the first slot is the condi-

tional instruction XMEQ, the second instruction is the addition

in the X computation block */

Listing 7-6. JUMP Instruction Example

.SECTION program ;

CALL test ;; /* Addr:0x0; */

ADSP-TS101 TigerSHARC Processor Programming Reference 7-73

Program Sequencer

/* Jumps to 0x3. Stores 0x1 in CJMP register */

NOP ;; /* Addr: 0x1 */

endhere:

JUMP endhere ;; /* Addr: 0x2 */

test:

NOP ;; /* Addr: 0x3 */

CJMP (ABS) ;; /* Addr: 0x4; */

/* End of subroutine. Jumps back to Addr 0x1. */

Listing 7-7. CJMP_CALL Instruction Example

.SECTION program;

J0 = ADDRESS(endhere) ;; /* Addr:0x0 */

CJMP = ADDRESS(test) ;; /* Addr: 0x1 */

/* Preload cjmp register with 0x6 */

CJMP_CALL (ABS) ;; /* 0x2 */

/* Jumps to value stored in CJMP register (0x6).

/* Puts new value of 0x3 in CJMP register. */

NOP ;; /* Addr: 0x3 */

endhere:

NOP ;; /* Addr: 0x4 */

JUMP endhere ;; /* Addr: 0x5 */

test:

J31 = J0 + J31 (CJMP) ;; /* Addr: 0x6 */

/* Uses IALU add (CJMP) option */

/* Loads result (0x4) into CJMP register. */

CJMP (ABS) ;; /* Addr: 0x7 */

/* End of subroutine. Jumps back to 0x4. */

Listing 7-8. Zero-Overhead and Near-Zero-Overhead Loops Example

J6 = J31 + 10;; /*initialize counter for outermost loop */

Outer_loop:

instr0;;

Sequencer Examples

7-74 ADSP-TS101 TigerSHARC Processor Programming Reference

LC1 = 5; /* Counter for middle loop. */

/* Use zero overhead in loop counter number one */

instr1;;

Middle_loop:

instr2;;

LC0 = 6; instr3;; /* Counter for inner loop. */

/* Use loop counter zero */

Inner_loop:

instr4;;

instr5;;

If NLC0E, JUMP Inner_loop; instr6;; /* End inner loop */

instr7;;

If NLC1E, JUMP Middle_loop; instr8;; /* End middle loop */

instr9; J6 = J6 - 1;; /* Decrement counter for outer loop */

instr10;;

If NJEQ, JUMP Outer_loop; instr11;; /* End outer loop*/

Listing 7-9. Branch Target Buffer (BTB) Usage (No Branch Prediction)

LC0 = 100;; /* Initialize loop count */

instr2;;

instr3;;

_loop:

instr4;;

instr5;;

If NLC0E, JUMP _loop (NP); instr6;; /* End loop */

Some notes on Listing 7-9:

• “NP” denotes no predict

• First 99 times through the loop there is a three cycle penalty

• Last time though the loop there is no penalty

• Total penalty cycles => 297

ADSP-TS101 TigerSHARC Processor Programming Reference 7-75

Program Sequencer

Listing 7-10. Branch Target Buffer (BTB) Usage (Branch Prediction)

SQCTL=0xF0301;; /* Make sure BTB is enabled */

LC0 = 100;; /* Initialize loop count */

instr2;;

instr3;;

_loop:

instr4;;

instr5;;

If NLC0E, JUMP _loop; instr6;; /* End loop */

Some notes on Listing 7-10:

• First time through (and second time through if the branch is not
updated in the BTB) the loop there is a two cycle penalty

• Next 98 times through the loop there is no penalty

• Last time through the loop there is a three cycle penalty

• Total penalty cycles => five (seven if no BTB update)

Sequencer Instruction Summary

7-76 ADSP-TS101 TigerSHARC Processor Programming Reference

Sequencer Instruction Summary
Listing 7-11 shows the sequencer instructions’ syntax. The conventions
used in these listings for representing register names, optional items, and
choices are covered in detail in “Register File Registers” on page 2-5.
Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Label – the program label in italic represents a user-selectable pro-
gram label, a PC-relative 16- or 32-bit address, or a 32-bit absolute
address. When a program Label is used instead of an address, the
assembler converts the Label to an address, using a 16-bit address
when the Label is contained in the same program .SECTION as the
branch instruction and using a 32-bit address when the Label is
not in the same program .SECTION as the branch instruction. For
more information on relative and absolute addresses and branch-
ing, see “Branching Execution” on page 7-16.

Each instruction presented here occupies one instruction slot in an
instruction line. For more information about instruction lines and
instruction combination constraints, see “Instruction Line Syntax
and Structure” on page 1-20 and “Instruction Parallelism Rules”
on page 1-24.

PC-relative addressing and predicted branch for jumps and calls are the
default operation. To use absolute addressing, use the (ABS) option. To
indicate a not predicted branch, use the (NP) option.

ADSP-TS101 TigerSHARC Processor Programming Reference 7-77

Program Sequencer

In conditional instructions, the Condition is one of the following:

• {N}{X|Y|XY} AEQ|ALT|ALE|MEQ|MLT|MLE|SEQ|SLT|SF0|SF1

• {N}{J|K} EQ|LT|LE

• {N}ISF0|ISF1|BM|LC0E|LC1E|FLG0|FLG1|FLG2|FLG3.

The AEQ, ALT, and ALE conditions are the ALU equal, less than, and less
than or equal to zero conditions. The MEQ, MLT, and MLE conditions are the
multiplier equal, less than, and less than or equal to zero conditions. The
SEQ and SLT conditions are the Shifter equal and less than zero conditions.
SF0 and SF1 are the compute block static flag 0 and 1 conditions.

The JEQ, JLT, and JLE conditions are the J-ALU equal, less than, and less
than or equal to zero conditions and, similarly, for K-ALU.

The ISF0 and ISF1 conditions are the general integer static flag condi-
tions. BM is bus master. The LC0E and LC1E conditions are the loop counter
0 and 1 equal to zero conditions. The FLG0 through FLG3 conditions are
the flag pin conditions.

An N prefix on a condition negates the condition in the instruction. Thus,
NJLT is “J-IALU greater than or equal to zero.” For example, see how N as
used in the following instruction:

IF NXMLT, JUMP label_10;;

executes a jump to the address that corresponds to label_10 if the condi-
tion MLT (multiplier less than zero) in compute block X evaluates false.

JUMP|…|CJMP denotes any valid branch instruction. This is a line with
more than one instruction.

Sequencer Instruction Summary

7-78 ADSP-TS101 TigerSHARC Processor Programming Reference

Instructions that follow after a conditional instruction or after a jump/call
in a line can have keyword DO|ELSE or have no prefix. Absence of prefix
indicates execution regardless of the condition value. Keyword DO relates
only to condition instruction, while ELSE relates only to conditional
branch.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal: if aeq; do idle;;

Listing 7-11. Sequencer Instructions

{IF Condition,} JUMP|CALL <Label> {(NP)} {(ABS)} ;

{IF Condition,} CJMP|CJMP_CALL {(NP)} {(ABS)} ;

{IF Condition,} RETI|RTI {(NP)} {(ABS)} ;

{IF Condition,} RDS ;

IF Condition;

DO, instruction; DO, instruction; DO, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the DO before the instruction makes the

instruction unconditional. */

IF Condition, JUMP|CALL|CJMP|CJMP_CALL ;

ELSE, instruction; ELSE, instruction; ELSE, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the ELSE before the instruction makes

the instruction unconditional. */

SF1|SF0 = Condition ;

SF1|SF0 += AND|OR|XOR Condition ;

ADSP-TS101 TigerSHARC Processor Programming Reference 7-79

Program Sequencer

IDLE {(LP)} ;

BTBINV

TRAP (<Imm5>) ;;

EMUTRAP ;;

NOP ;

Sequencer Instruction Summary

7-80 ADSP-TS101 TigerSHARC Processor Programming Reference

ADSP-TS101 TigerSHARC Processor Programming Reference 8-1

8 INSTRUCTION SET

This chapter describes the ADSP-TS101 TigerSHARC processor instruc-
tion set in detail. The instruction set reference pages are split into groups
according to the units that execute the instruction.

• “ALU Instructions” on page 8-2

• “CLU Instructions” on page 8-91

• “Multiplier Instructions” on page 8-121

• “Shifter Instructions” on page 8-175

• “IALU (Integer) Instructions” on page 8-200

• “IALU (Load/Store/Transfer) Instructions” on page 8-218

• “Sequencer Instructions” on page 8-228

For information on these architectural units of the TigerSHARC proces-
sor core, see “ALU” on page 3-1, “Multiplier” on page 4-1, “Shifter” on
page 5-1, “IALU” on page 6-1, and “Program Sequencer” on page 7-1.
For more information on registers (and register naming syntax) used in
the instructions, see “Compute Block Registers” on page 2-1, “ALU
Instruction Summary” on page 3-28, “Multiplier Instruction Summary”
on page 4-23, “Shifter Instruction Summary” on page 5-19, “IALU
Instruction Summary” on page 6-39, and “Sequencer Instruction Sum-
mary” on page 7-76.

The instructions within each group are described in detail in this chapter.
Full details about instruction decoding can be found in “Instruction
Decode” on page C-1.

ALU Instructions

8-2 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU Instructions
The ALU performs all arithmetic operations (addition/subtraction) for the
processor on data in fixed-point and floating-point formats and performs
logical operations for the processor on data in fixed-point formats. The
ALU also executes data conversion operations such as expand/compact on
data in fixed-point formats. For a description of ALU operations, status
flags, conditions, and examples, see “ALU” on page 3-1.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “Register File
Registers” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Rmd – the register names in italic represent user-selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-3

Instruction Set

Add/Subtract

Syntax

{X|Y|XY}{S|B}Rs = Rm +|- Rn {({S|SU})} ;

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd {({S|SU})} ;

Function

These instructions add or subtract the operands in registers Rm and Rn. The
result is placed in register Rs. The L, S, and B prefixes denote the operand
type and d denotes operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

The MAX_SN, MIN_SN, and MAX_UN are the maximum signed, minimum
signed, and maximum unsigned numbers representable in the output for-
mat. For instance, if the output format is 16-bit short words, then
MAX_SN=0x7fff, MIN_SN=0x8000, and MAX_UN=0xffff.

For saturation on add:

• Signed saturation—option (S):

• If Rm+Rn overflows the MAX_SN, then Rs=MAX_SN

• If Rm+Rn underflows the MIN_SN, then Rs=MIN_SN

• Unsigned saturation—option (SU):

• If Rm+Rn overflows the MAX_UN, then Rs=MAX_UN

For saturation on subtract:

• Signed saturation—option (S):

• If Rm-Rn overflows the MAX_SN, then Rs=MAX_SN

• If Rm-Rn underflows the MIN_SN, then Rs=MIN_SN

ALU Instructions

8-4 ADSP-TS101 TigerSHARC Processor Programming Reference

• Unsigned saturation—option (SU):

• If Rm-Rn underflows zero, then Rs=0

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Signed overflow

AC Set to carry out; can be used to indicate unsigned
overflow (inverted on subtract)

Options

() Saturation off

(S) Saturation active, and signed

(SU) Saturation active, and unsigned

Example

YBR9 = R2 + R8 (S);; see Figure 8-1

YSR2 = R1 - R0 (SU);; see Figure 8-2

ADSP-TS101 TigerSHARC Processor Programming Reference 8-5

Instruction Set

Figure 8-1. Quad Byte, Single Register, Signed Saturating Addition in
Compute Block Y

Figure 8-2. Dual Short, Single Register, Unsigned Saturating Subtraction
in Compute Block Y

YR2

YR8

YR9

7F

10

7F

80

FF

80

FF

FF

FE

01

01

02

YSTAT: AOS=1, AC=1, AV=1, AN=1, AZ=0

YR1

YR0

YR2

000AFFFE

YSTAT: AC=1, AV=0, AN=1, AZ=1

009000B1

0000FF4D

ALU Instructions

8-6 ADSP-TS101 TigerSHARC Processor Programming Reference

Add/Subtract With Carry/Borrow

Syntax

{X|Y|XY}Rs = Rm + CI {-1} ;

{X|Y|XY}LRsd = Rmd + CI {-1} ;

{X|Y|XY}{S|B}Rs = Rm +|- Rn + CI {-1} {({S|SU})} ;

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd + CI {-1} {({S|SU})} ;

Function

These instructions add with carry or subtract with borrow the operands in
registers Rm and Rn. The carry (CI) is indicated by the AC flag in X/YSTAT.
The Rn operand may be omitted, performing an add or subtract with carry
or borrow with Rm register and the CI. The result is placed in register Rs.
The prefix L denotes long-word operand type and the suffix d denotes dual
register size.

For add with carry:

• Signed saturation—option (S):

• If Rm+CI>MAX_SNRn, then Rs=MAX_SN

• If Rm+Rn+CI<MIN_SN, then Rs=MIN_SN

• Unsigned saturation—option (SU):

• If Rm+Rn+CI>MAX_UN, then Rs=MAX_UN

For subtract with borrow:

• Signed saturation—option (S):

• If Rm-Rn+CI-1>MAX_SN, then Rs=MAX_SN

• If Rm-Rn+CI-1<MIN_SN, then Rs=MIN_SN

ADSP-TS101 TigerSHARC Processor Programming Reference 8-7

Instruction Set

• Unsigned saturation—option (SU):

• If Rm-Rn+CI-1< 0, then Rs=0

MAX_SN, MIN_SN, and MAX_UN are the maximum signed, minimum signed,
and maximum unsigned numbers representable in the output format.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Signed overflow

AC Set to carry out; can be used to indicate unsigned
overflow (inverted on subtract)

Options

() Saturation off

(S) Saturation active, and signed

(SU) Saturation active, and unsigned

Example

xR2 = 0x00000001;;

xR0 = 0xFFFFFFFF;;

xR1 = R0 + R0;; /* generates carry */

xR3 = R2 + R2 + CI;;

The result in xR3 is 0x00000003, and XSTAT = 0.

R9 = R3 - R10 + CI -1;;

If R3 = 0x17 and R10 = 0x4 and the carry from the previous ALU
operation = 1

then R9 = 0x13

ALU Instructions

8-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Average

Syntax

{X|Y|XY}{S|B}Rs = (Rm +|- Rn)/2 {({T}{U})} ;

{X|Y|XY}{L|S|B}Rsd = (Rmd +|- Rnd)/2 {({T}{U})} ;

Function

These instructions add or subtract the operands in registers Rm and Rn and
divide the result by two. Because the carry resulting from the addition is
right-shifted into the MSB position of the output, no overflow occurs.
Rounding is to nearest even (unbiased round) or by truncation. In case of
negative result in unsigned, the result should be zero, and overflow bit is
set.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) For add, cleared (AOS not changed); for subtract, set
for negative result if option (U) or (TU) is active,
otherwise AV cleared

AC Cleared

Options

() Signed round-to-nearest even

(T) Signed truncate

(U) Unsigned round-to-nearest even

(TU) Unsigned truncate

ADSP-TS101 TigerSHARC Processor Programming Reference 8-9

Instruction Set

The carry resulting from the addition is right-shifted into the MSB posi-
tion according to:

• Signed inputs—options () and (T): If AV=1 then shift cn into
MSB, else arithmetic right-shift result

• Unsigned inputs—options (U) and (TU): For add, shift cn into
MSB; for subtract, shift 0 into MSB

Examples

R9 = (R3 + R5)/2 ;; round to nearest even
If R3 = 0x1 and R5 = 0x2
then R9 = 0x2
If R3 = 0x3 and R5 = 0x2
then R9 = 0x2
If R3 = 0x7FFFFFFF and R5 = 0x1
then , carry shifted inR9 = 0x40000000
If R3 = 0x80000001 and R5 = 0x1
then , arithmetic right-shift R9 = 0xC0000001

ALU Instructions

8-10 ADSP-TS101 TigerSHARC Processor Programming Reference

Absolute Value/Absolute Value of Sum or Difference

Syntax

{X|Y|XY}{S|B}Rs = ABS Rm ;

{X|Y|XY}{L|S|B}Rsd = ABS Rmd ;

{X|Y|XY}{S|B}Rs = ABS (Rm + Rn) {(X)} ;

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd + Rnd) {(X)} ;

{X|Y|XY}{S|B}Rs = ABS (Rm - Rn) {({X}{U})} ;

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd - Rnd) {({X}{U})} ;

Function

These instructions add or subtract the signed operands in registers Rm and
Rn, then place absolute value of the normalized result in register Rs. The
Rn operand may be omitted, performing the absolute value operation on
Rm.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

For add, option X provides an extended output range. The normal range
without option X is from zero to the maximum positive number, or 0x0 to
0x7F…F. All outputs outside of this range are saturated to the maximum
positive number. With option X, the output numbers are unsigned in the
extended range 0x0 to 0xF…F.

For subtract, option X provides an extended output range. The normal
range without option X is from zero to the maximum positive number, or
0x0 to 0x7F…F. Normal range can be either for signed (), or for unsigned
inputs (U). All outputs outside of this range are saturated to the maximum
positive number. With option X, the output numbers are unsigned in the
extended range 0x0 to 0xF…F, and the inputs are assumed to be signed.

Status Flags

AZ Set if all bits in result are zero

ADSP-TS101 TigerSHARC Processor Programming Reference 8-11

Instruction Set

AN Set to the most significant bit of the result prior to
ABS

AV (AOS) For ABS, set when Rm is the most negative number;
otherwise AV cleared

For ABS (add), overflow, when option (X) is not
used, if the result is more than the maximum signed
(0x7F…F), or if option (X) is used, and both operands
are 0x80…0

For ABS (subtract), overflow, when option (X) is
not used, if the result is more than the maximum
signed; otherwise AV cleared

AC Cleared

Options

() Signed outputs in range [0x0, 0x7F…F]

(X) Unsigned outputs in extended range [0x0, 0xF…F]

ALU Instructions

8-12 ADSP-TS101 TigerSHARC Processor Programming Reference

Examples

R5 = ABS R4;;

If R4 = 0x8000 0000
then R5 = 0x7FFF FFFF and AV, AN are set

If R4 = 0x7FFF FFFF
then R5 = 0x7FFF FFFF

If R4 = 0xF000 0000
then R5 = 0x1000 0000 and AN is set

XR3 = ABS (R0 + R1);;

If XR0 = 0x80000001 and XR1 = 0x80000001
then XR3 = 0x7FFFFFFF and XSTAT: AOS=1, AC=0, AV=1, AN=0, AZ=0

XR3 = ABS (R0 + R1) (X);;

If XR0 = 0x80000001 and XR1 = 0x80000001
then XR3 = 0xFFFFFFFE and XSTAT: AOS=0, AC=0, AV=0, AN=0, AZ=0

R5 = ABS (R4 – R3);;

If R4 = 0x6 and R3 = 0xA
then R5 = 0x4

If R4 = 0xA and R3 = 0x6
then R5 = 0x4

If R4 = 0x7FFFFFF8 and R3 = 0xFFFFFFF0
then R5 = 0x7FFFFFFF
If option X is active, then R5 = 0x80000008

ADSP-TS101 TigerSHARC Processor Programming Reference 8-13

Instruction Set

Negate

Syntax

{X|Y|XY}{S|B}Rs = - Rm ;

{X|Y|XY}{L|S|B}Rsd = - Rmd ;

Function

This instruction returns the two’s-complement of the operand in register
Rm. The result is placed in register Rs. If the input is the minimum nega-
tive number representable in the specified format, the result is the
maximum positive number.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of the result

AV (AOS) Set for the maximum negative (0x80…0); otherwise
AV cleared

AC Not cleared

Example

XBR6 = –R3;;

If XR3 = 0x80 81 50 FF
then XR6 = 0x7F 7F B0 01 and XSTAT: AOS=1, AC=0, AV=1, AN=1, AZ=0

ALU Instructions

8-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Maximum/Minimum

Syntax

{X|Y|XY}{S|B}Rs = MAX|MIN (Rm, Rn) {({U}{Z})} ;

{X|Y|XY}{L|S|B}Rsd = MAX|MIN (Rmd, Rnd) {({U}{Z})} ;

Function

These instructions return the maximum (larger of) or minimum (smaller
of) the two operands in registers Rm and Rn. The result is placed in register
Rs. The comparison is performed byte-by-byte, short-by-short, or
word-by-word—depending on the data size, where the maximum or mini-
mum value of each comparison is passed to the corresponding
byte/short/word in the result register.

If the Zero (Z) option is included in the instruction the result register Rs
receives the operand Rm only if Rm>=Rn for maximum or Rm<=Rn for mini-
mum; otherwise Rs=0.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

Options

() Signed

(U) Unsigned

(Z) Signed Zero option

ADSP-TS101 TigerSHARC Processor Programming Reference 8-15

Instruction Set

(UZ) Unsigned Zero option

Example

SR9:8= MAX (R3:2, R1:0);; see Figure 8-3

SR9:8 = MAX (R3:2, R1:0) (Z);; see Figure 8-4

SR9:8 = MIN (R3:2, R1:0) ;; see Figure 8-5

SR9:8 = MIN (R3:2, R1:0) (Z);; see Figure 8-6

Figure 8-3. Example in Quad Short

Figure 8-4. Example in Quad Short

R3:2

R1:0

R9:8

001F

03B0

03B0

FFFF

8000

FFFF

3FFE

021B

3FFE

0156

1080

1080

R3:2

R1:0

R9:8

001F

03B0

0000

FFFF

8000

FFFF

3FFE

021B

3FFE

0156

1080

0000

ALU Instructions

8-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-5. Example in Quad Short

Figure 8-6. Example in Quad Short

R3:2

R1:0

R9:8

001F

03B0

001F

FFFF

8000

8000

3FFE

021B

021B

0156

1080

0156

R3:2

R9:8

001F

001F

FFFF

8000

0000

3FFE

021B

0000

0156

1080

0156

R1:0 03B0

ADSP-TS101 TigerSHARC Processor Programming Reference 8-17

Instruction Set

Viterbi Maximum/Minimum

Syntax

{X|Y|XY}S|BRsd = VMAX|VMIN (Rmd, Rnd) ;

Function

These instructions return the Viterbi maximum (larger of) or Viterbi min-
imum (smaller of) the two operands in registers Rm and Rn. The result is
placed in register Rs. The comparison is performed byte-by-byte or
short-by-short—depending on the data size, where the maximum value of
each comparison is passed to the corresponding byte/short in the result
register. Indication of the selection bits is placed into the top 4 or 8 bits of
PR1:0 after the old content of PR1:0 was shifted right by the same number
of bits.

The algorithm for Viterbi maximum is:

for i = 0 to n-1 (n is 8 for octal byte and 4 for quad short)
if Rm(i) >= Rn(i) then

Rs(i) = Rm(i)

PR1:0 = {1, PR1:0[63:1]}

else

Rs(i) = Rn(i)

PR1:0 = {0, PR1:0[63:1]}

end (if)
end (for)

ALU Instructions

8-18 ADSP-TS101 TigerSHARC Processor Programming Reference

The algorithm for Viterbi minimum is:

for i = 0 to n-1 (n is 8 for octal byte and 4 for quad short)
if Rm(i) < Rn(i) then

Rs(i) = Rm(i)

PR1:0 = {1, PR1:0[63:1]}

else

Rs(i) = Rn(i)

PR1:0 = {0, PR1:0[63:1]}

end (if)
end (for)

The S and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20. The com-
parison is done in signed format always.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

Example

Initial PR1:0 = 0xabc01281 987fed35

SR9:8= VMAX (R3:2, R1:0);; see Figure 8-7

Initial PR1:0 = 0xabc01281 987fed35

SR9:8= VMIN (R1:0, R3:2);; see Figure 8-8

ADSP-TS101 TigerSHARC Processor Programming Reference 8-19

Instruction Set

Figure 8-7. Example in Quad Short

Figure 8-8. Example in Quad Short

R3:2

R1:0

R9:8

001F

03B0

03B0

FFFF

8000

FFFF

3FFE

021B

3FFE

0156

1080

1080

PR1:0 = 0x6abc0128 1987fed3

0110 PR1:0

R3:2

R9:8

R1:0

03B0

001F

001F

FFFF

FFFF

FFFF

3FFE

3FFE

3FFE

1080

0156

0156

1001 PR1:0

PR1:0 = 0x9abc0128 1987fed3

ALU Instructions

8-20 ADSP-TS101 TigerSHARC Processor Programming Reference

Increment/Decrement

Syntax

{X|Y|XY}{S|B}Rs = INC|DEC Rm {({S|SU})} ;

{X|Y|XY}{L|S|B}Rsd = INC|DEC Rmd {({S|SU})} ;

Function

These instructions add one to or subtract one from the operand in register
Rm. The result is placed in register Rs.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Signed saturation—option (S):

• If (Rm+1 or Rm-1)>MAX_SN, then Rs=MAX_SN

• If (Rm+1 or Rm-1)<MIN_SN, then Rs=MIN_SN

Unsigned saturation—option (SU):

• If (Rm+1 or Rm-1)<0, then Rs=0

MAX_SN and MIN_SN are the maximum and minimum signed numbers rep-
resentable in the output format. For instance, if the output format is
16-bit short words, then MAX_SN=0x7fff, MIN_SN=0x8000.

Status Flag

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Signed overflow

AC Set to carry out; can be used to indicate unsigned
overflow (inverted for decrement)

ADSP-TS101 TigerSHARC Processor Programming Reference 8-21

Instruction Set

Options

() Saturation off

(S) Saturation active, and signed

(SU) Saturation active, and unsigned

Example

R6 = INC R3 ;;

If R3 = 0x00…01D
then R6 = 0x00…01E

R6 = DEC R3 ;;

If R3 = 0x00…01D
then R6 = 0x00…01C

ALU Instructions

8-22 ADSP-TS101 TigerSHARC Processor Programming Reference

Compare

Syntax

{X|Y|XY}{S|B}COMP(Rm, Rn) {(U)} ;

{X|Y|XY}{L|S|B}COMP(Rnd,Rnd) {(U)} ;

Function

This instruction compares the operand in register Rm with the operand in
register Rn. The instruction sets the AZ flag if the two operands are equal,
and the AN flag if the operand in register Rm is smaller than the operand in
Rn. The comparison is performed byte-by-byte, short-by-short or
word-by-word, depending on the data size. Note that as in all compute
block instructions, in multiple data elements (for example, the instruction
BCOMP (Rm, Rn); quad byte compare), the flags are determined by ORing
the result flag values from individual results.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if Rm and Rn are equal

AN Set if Rm is less than Rn

AV (AOS) Cleared (not changed)

AC Cleared

Options

() Signed

(U) Unsigned

ADSP-TS101 TigerSHARC Processor Programming Reference 8-23

Instruction Set

Examples

COMP (R3, R5) ;;

If R3 = 0xFFFFFFFF and R5 = 0x0
then AN = 1 and. AZ = 0

COMP (R3, R5) (U) ;;

If R3 = 0xFFFFFFFF and R5 = 0x0
then AN = 0 and .AZ = 0

ALU Instructions

8-24 ADSP-TS101 TigerSHARC Processor Programming Reference

Clip

Syntax

{X|Y|XY}{S|B}Rs = CLIP Rm BY Rn ;

{X|Y|XY}{L|S|B}Rsd = CLIP Rmd BY Rnd ;

Function

This instruction returns the signed operand in register Rm if the absolute
value of the operand in Rm is less than the absolute value of the operand in
Rn. Otherwise, returns |Rn| if Rm is positive, and -|Rn| if Rm is negative.
The result is placed in register Rs.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

Example

XR3:2 = CLIP R9:8 BY R1:0;; see Figure 8-9

ADSP-TS101 TigerSHARC Processor Programming Reference 8-25

Instruction Set

Figure 8-9. Dual Normal Word In Compute Block X

XR9:8

XR1:0

XR3:2

0000077BF0000000

FFFA000000FFABCD

0000077BFF005433

XSTAT: AC=0, AV=0, AN=1, AZ=0

ALU Instructions

8-26 ADSP-TS101 TigerSHARC Processor Programming Reference

Sum

Syntax

{X|Y|XY}Rs = SUM S|B Rm {(U)} ;

{X|Y|XY}Rs = SUM S|B Rmd {(U)} ;

Function

This instruction adds the bytes/shorts in register Rm into the result register
Rs. If the bytes/shorts are signed, they are sign extended before being
added. The result is always right-justified—for example, the binary point
of the result is always to the right of the LSB.

The B and S prefixes denote byte- and short-word operand types respec-
tively, and the d suffix denotes operand size—see “Instruction Line Syntax
and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

Options

() Signed integer

(U) Unsigned integer

Examples

XR4 = SUM SR3:2;; see Figure 8-10

XR4 = SUM SR3:2 (U);; see Figure 8-11

ADSP-TS101 TigerSHARC Processor Programming Reference 8-27

Instruction Set

Figure 8-10. Signed SUM

Figure 8-11. Unsigned SUM

0001 FFFF FFFF 8000

FFFF7FFF

XR3:2

XR4

+

XSTAT: AC=0, AV=0, AN=1, AZ=0

0001 FFFF FFFF 8000

00027FFF

XR3:2

XR4

+

XSTAT: AC=0, AV=0, AN=0, AZ=0

ALU Instructions

8-28 ADSP-TS101 TigerSHARC Processor Programming Reference

Ones Counting

Syntax

{X|Y|XY}Rs = ONES Rm|Rmd ;

Function

This instruction counts the number of ones in the operand in register Rm.
The result is placed in register Rs.

The d suffix denotes operand size—see “Instruction Line Syntax and
Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Cleared

AV (AOS) Cleared (not changed)

AC Cleared

Example

R6 = ONES R3;;

If R3 = b#00…011101
then R6 = 0x00…04

ADSP-TS101 TigerSHARC Processor Programming Reference 8-29

Instruction Set

Parallel Result Register

Syntax

{X|Y|XY}PR1:0 = Rmd ;

{X|Y|XY}Rsd = PR1:0 ;

Function

These instructions load register PR1:0 with the operand in Rmd or load reg-
ister Rsd with the operand in PR1:0.

The d suffix denotes operand size—see “Instruction Line Syntax and
Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

ALU Instructions

8-30 ADSP-TS101 TigerSHARC Processor Programming Reference

Bit FIFO Increment

Syntax

{X|Y|XY}Rs = BFOINC Rmd ;

Function

This instruction adds the seven LSBs in each operand in dual register Rmd,
divides them by 64 and returns the remainder to the six LSBs of the sec-
ond operand, represented here by Rs.

Status Flags

AZ Set if all bits in result are zero

AN Set when addition passes 63

AV (AOS) Cleared (not changed)

AC Cleared

Figure 8-12. BFOINC Remainder

Rs

Rmd2nd operand – 7 bits 1st operand – 7 bits

2nd operand – 6 bits

+

mod 64

ADSP-TS101 TigerSHARC Processor Programming Reference 8-31

Instruction Set

Example

{X|Y|XY}Rs = BFOINC Rmd;

If Rmd = 0x0…030 0…020
then Rs = 0x0…010 and AN is set

ALU Instructions

8-32 ADSP-TS101 TigerSHARC Processor Programming Reference

Parallel Absolute Value of Difference

Syntax

{X|Y|XY}PR0|PR1 += ABS (SRmd - SRnd){(U)} ;

{X|Y|XY}PR0|PR1 += ABS (BRmd - BRnd){(U)} ;

Function

This instruction subtracts the bytes/shorts in register pair Rnd from those
in register pair Rmd; performs a short-/byte-wise absolute value on the
results; sums sideways these positive results and adds this single quantity
to the contents of one of the PR registers. The final result is stored back
into the PR register. The values in the PR registers are always right-justi-
fied—for example, the binary point is always to the right of the LSB. The
values in the PR registers are also signed. Saturation is always active.

The S and B prefixes denote the operand type and the d suffix denotes
operand size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

The following flags are affected by the last addition into PR:

AZ Set if all bits in result are zero

AN Set to the most significant bit of final result

AV (AOS) Set when signed result overflows; otherwise AV
cleared

AC Cleared

Options

() Signed inputs

(U) Unsigned inputs

ADSP-TS101 TigerSHARC Processor Programming Reference 8-33

Instruction Set

Examples

XPR0 += ABS (SR3:2 - SR1:0);; see Figure 8-13

Figure 8-13. Parallel ABS

0000 0001 FFFF 0000

00000003

XR3:2

XPR0 new

–

XSTAT: AC=0, AV=0, AN=0, AZ=0

0001 FFFF 0000 FFFFXR1:0

–––

ABS ABSABSABS

+FFFFFFFEXPR0 old

ALU Instructions

8-34 ADSP-TS101 TigerSHARC Processor Programming Reference

Sideways Sum

Syntax

{X|Y|XY}PR0|PR1 += SUM SRm {(U)} ;

{X|Y|XY}PR0|PR1 += SUM SRmd {(U)} ;

{X|Y|XY}PR0|PR1 += SUM BRm {(U)} ;

{X|Y|XY}PR0|PR1 += SUM BRmd {(U)} ;

Function

This instruction performs a short- or byte-wise addition on the contents
of Rm and adds this quantity to the contents of one of the PR registers. If
the bytes/shorts are signed, they are sign extended before being added.
The final result is stored back into the PR register. The values in the PR
registers are always right-justified—for example, the binary point is always
to the right of the LSB. The values in the PR registers can be signed or
unsigned. The addition into PR is always saturating. The S and B prefixes
denote the operand type and the d suffix denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

The following flags are affected by the last addition into PR:

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Signed overflow for normal, unsigned overflow if
option (U) is set; otherwise AV cleared

AC Cleared

ADSP-TS101 TigerSHARC Processor Programming Reference 8-35

Instruction Set

Options

() Signed inputs

(U) Unsigned inputs and result

ALU Instructions

8-36 ADSP-TS101 TigerSHARC Processor Programming Reference

Add/Subtract (Dual Operation)

Syntax

{X|Y|XY}{S|B}Rs = Rm + Rn, Ra = Rm - Rn ; (dual operation)
{X|Y|XY}{L|S|B}Rsd = Rmd + Rnd, Rad = Rmd - Rnd ; (dual operation)

Function

This instruction simultaneously adds and subtracts the operands in regis-
ters Rm and Rn. The results are placed in registers Rs and Ra. Saturation is
always active and the result is signed.

The L, S, and B prefixes denote the operand type and d denotes operand
size—see “Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in one of the results are zero

AN Set to the or between the most significant bit of two
results

AV (AOS) Signed overflow in one of the results

AC Not cleared

Example

R9 = R4 + R8, R2 = R4 – R8;;

If R4 = 8 and R8 = 2
then R9 = 10 and R2 = 6

ADSP-TS101 TigerSHARC Processor Programming Reference 8-37

Instruction Set

Pass

Syntax

{X|Y|XY}Rs = PASS Rm ;

{X|Y|XY}LRsd = PASS Rmd ;

Function

This instruction passes the operand in register Rm through the ALU to reg-
ister Rs.

The L prefix denotes the operand type and d denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit Rm

AV (AOS) Cleared (not changed)

AC Cleared

Example

XR6 = PASS R3;;

If R3 = 0x80000000
then R6 = 0x80000000 and XSTAT: AC=0, AV=0, AN=1, AZ=0

ALU Instructions

8-38 ADSP-TS101 TigerSHARC Processor Programming Reference

Logical AND/AND NOT/OR/XOR/NOT

Syntax

{X|Y|XY}Rs = Rm AND|AND NOT|OR|XOR Rn ;

{X|Y|XY}LRsd = Rmd AND|AND NOT|OR|XOR Rnd ;

{X|Y|XY}Rs = NOT Rm ;

{X|Y|XY}LRsd = NOT Rmd ;

Function

These instructions logically AND, AND NOT, OR, or XOR the operands in regis-
ters Rm and Rn. The NOT instruction logically complements the operand in
the Rm register. The result is placed in register Rs.

The L prefix denotes the operand type and d denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

ADSP-TS101 TigerSHARC Processor Programming Reference 8-39

Instruction Set

Example

R5 = R4 AND R8;;

If R4 = b#…1001 and R8 = b#…1100
then R5 = b#…1000

R5 = R4 AND NOT R8;;

If R4 = b#…1001 and R8 = b#…1100
then R5 = b#…0001

R5 = R3 OR R4;;

If R3 = b#…1001 and R4 = b#…1100
then R5 = b#…1101

R3 = R2 XOR R7;;

If R2 = b#…1001 and R7 = b#…1100
then R3 = b#…0101

R6 = NOT R3;;

If R3 = b#00…011101
then R6 = b#11…100010

The b# prefix denotes binary.

ALU Instructions

8-40 ADSP-TS101 TigerSHARC Processor Programming Reference

Expand

Syntax

{X|Y|XY}Rsd = EXPAND SRm {+|- SRn} {({I|IU})} ;

{X|Y|XY}Rsq = EXPAND SRmd {+|- SRnd} {({I|IU})} ;

{X|Y|XY}Rsd = EXPAND BRm {+|- BRn} {({I|IU})} ;

{X|Y|XY}Rsq = EXPAND BRmd {+|- BRnd} {({I|IU})} ;

Function

These instructions add or subtract the operands in the Rm and Rn registers
then cast the results, expanding 8-bit values to 16-bit values or 16-bit val-
ues to 32-bit values. The Rn operand may be omitted, performing the
expand on Rm. If the format is fractional, the DSP appends zeros at the
end. If the type is integer, the DSP prepends zeros (or ones if sign-extend-
ing a signed integer) at the beginning. These instructions expand the
result in the following manner:

• Rsd=EXPAND SRm expands two shorts to two normals

• Rsq=EXPAND SRmd expands four shorts to four normals

• RsdS=EXPAND BRm expands four bytes to four shorts

• RsqS=EXPAND BRmd expands eight bytes to eight shorts

The result is placed in the fixed-point register Rs.

The S prefix denotes short-word operand type and the B suffix denotes
byte-word operands. The suffices d and q denote operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

ADSP-TS101 TigerSHARC Processor Programming Reference 8-41

Instruction Set

AV (AOS) Cleared (not changed)

AC Cleared

Options

() Fractional

(I) Signed integer

(IU) Unsigned integer

Examples

{X|Y|XY}Rsd = EXPAND SRm; see Figure 8-14
{X|Y|XY}Rsq = EXPAND SRmd;

Figure 8-14. Fractional, Signed Integer, and Unsigned Integer EXPAND

0x8765

0xFFFF8765

SRm

Rsd

Signed Integer

0x8765

0x87650000

SRm

Rsd

Fraction

0x8765

0x00008765

SRm

Rsd

Unsigned Integer

ALU Instructions

8-42 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}SRsd = EXPAND BRm; see Figure 8-15
{X|Y|XY}SRsq = EXPAND BRmd;

{X|Y|XY}Rsd = EXPAND SRm + SRn;

{X|Y|XY}Rsq = EXPAND SRmd + SRnd; see Figure 8-16

Figure 8-15. Expand Byte Words to Short Words

Figure 8-16. Expand Short Words to Normal Words

BRm

SRsd

Byte to short expand
in fraction, signed int,
and unsigned int modes

01531 16

0x4321

0x55550000

SRn

Rsd

0x1234 SRm

+

16 bits

16 bits

Expand 16 bits+

01631

ADSP-TS101 TigerSHARC Processor Programming Reference 8-43

Instruction Set

{X|Y|XY}SRsd = EXPAND BRm + BRm;

{X|Y|XY}SRsq = EXPAND BRmd + BRmd; see Figure 8-17

{X|Y|XY}Rsd = EXPAND SRm - SRn; see Figure 8-18
{X|Y|XY}Rsq = EXPAND SRmd - SRnd;

Figure 8-17. Add and Expand Byte Words to Short Words

Figure 8-18. Subtract and Expand Short Words to Normal Words

BRn

SRsd

BRm

+

08

01563

0x1234

0x43210000

SRn

Rsd

0x5555 SRm

-

ALU Instructions

8-44 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}SRsd = EXPAND BRm - BRm; see Figure 8-19
{X|Y|XY}SRsq = EXPAND BRmd - BRmd;

Figure 8-19. Subtract and Expand Byte Words to Short Words

BRn

SRsd

BRm

-

ADSP-TS101 TigerSHARC Processor Programming Reference 8-45

Instruction Set

Compact

Syntax

{X|Y|XY}SRs = COMPACT Rmd {+|- Rnd} {({T|I|IS|ISU})} ;

{X|Y|XY}BRs = COMPACT SRmd {+|- SRnd} {({T|I|IS|ISU})} ;

Function

These instructions add or subtract the operands in the Rmd and Rnd regis-
ters, compact the operands in source register pair Rmd into a data type of
lower precision, and place the result in destination register Rs. The Rnd
operand may be omitted, performing the compact on Rm. Compaction is
performed either from two normal words into two shorts, or from four
shorts into four bytes.

Two data types are supported—fractional (default) or integer—using
options (I), (IS) or (ISU).

Fractional compact transfers the upper half of the result into the destina-
tion register, and either rounds it to nearest even (default) or truncates the
lower half—option (T). Overflow may occur only when rounding up the
maximum positive number, and in this case the result is saturated (assum-
ing that the data is signed).

Integer compaction transfers the lower half of the result to the destination
register. When compacting an integer, saturation can be selected as an
option. When saturation is not selected (default), the upper bits of the
input operands are used only for overflow decisions—for signed. If at least
one of the upper bits is different from the result MSB (sign bit), the over-
flow bit is set. If saturation is enabled on signed data—option (IS), in
case of overflow (same detection as in option (I)), the result is 0x7FF…F for
a positive input operand, and 0x800…0 for a negative input operand. If sat-
uration is unsigned—option (ISU) is set—the overflow criteria are that
not all upper bits are zero, and the saturated result is always 0xFF…F.

ALU Instructions

8-46 ADSP-TS101 TigerSHARC Processor Programming Reference

The S and B prefixes denote short-word and byte-word operand types,
respectively, and the d and q suffices denote operand size—see “Instruc-
tion Line Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Set when result is larger than maximum compact
(or for negative results on option (ISU); otherwise
AV cleared

AC Cleared

Options

() Fraction round

(T) Fraction truncated

(I) Integer signed, no saturation

(IS) Signed integer, saturation

(ISU) Unsigned integer, saturation

ADSP-TS101 TigerSHARC Processor Programming Reference 8-47

Instruction Set

Examples

{X|Y|XY}SRs = COMPACT Rmd; see Figure 8-20

Figure 8-20. COMPACT Instruction Options

0.010

0.0011111

SRs

RmdFRACTION
(round)

0.001

0.0011111

SRs

RmdFRACTION
(truncated – T)

0111

010000111

SRs

RmdINTEGER
(no saturation – I)

1000

110000011

SRs

RmdINTEGER
(saturation, signed – IS)

1111

110000011

SRs

RmdINTEGER
(saturation, unsigned – ISU)

ALU Instructions

8-48 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}BRs = COMPACT SRmd; see Figure 8-21

{X|Y|XY}SRs = COMPACT Rmd + Rnd; see Figure 8-22
{X|Y|XY}BRsq = COMPACT SRmd + SRnd;

{X|Y|XY}BRs = COMPACT SRmd + SRnd; see Figure 8-23

Figure 8-21. Compact Short Words to Byte Words

Figure 8-22. Add and Compact Normal Words to Short Words

Figure 8-23. Add and Compact Short Words to Byte Words

BRs

SRmdShort to byte compact
in fraction round,
fraction trunc, int no sat,
signed int and unsigned
int modes

rrrrr

yyyyyyyyy

SRs

Rnd

xxxxxxxxx Rmd

BRs

SRmd

SRmd

ADSP-TS101 TigerSHARC Processor Programming Reference 8-49

Instruction Set

Merge

Syntax

{X|Y|XY}BRsd = MERGE Rm, Rn ;

{X|Y|XY}BRsq = MERGE Rmd, Rnd ;

{X|Y|XY}SRsd = MERGE Rm, Rn ;

{X|Y|XY}SRsq = MERGE Rmd, Rnd ;

Function

This instruction merges (transposes) the operands in registers Rm and Rn.
The result is placed in register Rs.

The B and S prefixes denote byte- and short-word operand types respec-
tively, and the suffices d and q denote operand size—see “Instruction Line
Syntax and Structure” on page 1-20.

Status Flags

AZ Set if all bits in result are zero

AN Set to the most significant bit of result

AV (AOS) Cleared (not changed)

AC Cleared

ALU Instructions

8-50 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

XBR3:2 = MERGE R0, R1;;

Instruction MERGE may be used to transpose shorts and bytes by repeatedly
merging the results.

Figure 8-24. Merge Function Data Flow

a1b1c1d1

a2b2c2d2

a1a2b1b2c1c2d1d2

XR0

XR1

XR3:2

ADSP-TS101 TigerSHARC Processor Programming Reference 8-51

Instruction Set

Add/Subtract (Floating-Point)

Syntax

{X|Y|XY}FRs = Rm +|- Rn {(T)} ;

{X|Y|XY}FRsd = Rmd +|- Rnd {(T)} ;

Function

These instructions add or subtract the floating-point operands in registers
Rm and Rn. The normalized result is placed in register FRs. The d suffix
denotes extended operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

Rounding is to nearest (IEEE), or by truncation, to a 32-bit or 40-bit
boundary as defined by the (T) option. Post-rounded overflow returns
±infinity (round-to-nearest) or ±NORM.MAX1 (round-to-zero). Post-rounded
denormal returns ±zero. Denormal inputs are flushed to ±zero. A NAN
input returns as all ones result.

Status Flags

AZ Set if post-rounded result is denormal (unbiased
exponent <=126) or ±zero

AUS Set if post-rounded result is denormal; otherwise
not cleared2

AN Set if result is negative

AV Set if post-rounded result overflows

1 Maximum normal value — mantissa: all 1 (0x7FFFFFF), exponent: FE Bit 31 is the sign bit; bits
30–23 are the eight exponent bits biased by 127 (thus, 127 must be subtracted from the unsigned
value given by the bits 30–23 to obtain the actual exponent); bits 22–0 are the fractional part of the
mantissa bits (1.0 is always assumed to be the fixed part of the mantissa, thus 1. (Bits 22–0 makes the
actual mantissa). For more information, see “Numeric Formats” on page 2-16.

2 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-52 ADSP-TS101 TigerSHARC Processor Programming Reference

AVS Set if post-rounded result overflows; otherwise not
cleared1

AC Cleared

AI Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract)
infinities

AIS Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract) infini-
ties; otherwise not cleared2

Options

() Round

(T) Truncate

Examples

YFR0 = R1 + R2 (T) ;; /* Y compute block with truncation */

FR0 = R1 + R2 ;; /* SIMD with rounding (by default) */

XFR1:0 = R3:2 + R5:4 ;; /*Extended precision 40-bit float-

ing-point add */

XFR0 = R1 - R2 ;; /* X compute block with rounding (by default) */

FR0 = R1 - R2 (T) ;; /* SIMD with truncation */

XFR1:0 = R3:2 - R5:4 ;; /* Extended precision 40-bit float-

ing-point subtract */

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-53

Instruction Set

Average (Floating-Point)

Syntax

{X|Y|XY}FRs = (Rm +|- Rn)/2 {(T)} ;

{X|Y|XY}FRsd = (Rmd +|- Rnd)/2 {(T)} ;

Function

These instructions add or subtract the floating-point operands in registers
Rm and Rn, then divide the result by two, decrementing the exponent of the
sum before rounding. The normalized result is placed in register FRs. The
d suffix denotes extended operand size—see “Instruction Line Syntax and
Structure” on page 1-20.

Rounding is to nearest (IEEE), or by truncation, to a 32-bit or 40-bit
boundary as defined by the (T) option. Post-rounded overflow returns
±infinity (round-to-nearest) or ±NORM.MAX1 (round-to-zero). Post-rounded
denormal returns ±zero. Denormal inputs are flushed to ±zero. A NAN
input returns as all ones result.

Status Flags

AZ Set if post-rounded result is denormal (unbiased
exponent <=126) or ±zero

AUS Set if post-rounded result is denormal; otherwise
not cleared 2

AN Set if result is negative

AC Cleared

AV Set if post-rounded result overflows

1 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E
2 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E

ALU Instructions

8-54 ADSP-TS101 TigerSHARC Processor Programming Reference

AVS Set if post-rounded result overflows; otherwise not
cleared1

AI Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract)
infinities

AIS Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract) infini-
ties; otherwise not cleared2

Options

() Round

(T) Truncate

Examples

XFR0 = (R1 + R2)/2 ;; /* X compute block with rounding (by

default) */

FR0 = (R1 + R2)/2 (T) ;; /* SIMD with truncation */

XFR1:0 = (R3:2 + R5:4)/2 ;; /* Extended precision 40-bit float-

ing-point add divide by 2 */

YFR0 = (R1 - R2)/2 (T) ;; /* Y compute block with truncation */

FR0 = (R1 - R2)/2 ;; /* SIMD with rounding (by default) */

XFR1:0 = (R3:2 - R5:4)/2;; /* Extended precision 40-bit float-

ing-point subtract divide by 2 */

1 See “ALU Execution Status” on page 3-11
2 See “ALU Execution Status” on page 3-11

ADSP-TS101 TigerSHARC Processor Programming Reference 8-55

Instruction Set

Maximum/Minimum (Floating-Point)

Syntax

{X|Y|XY}FRs = MAX|MIN (Rm +|- Rn) {(T)} ;

{X|Y|XY}FRsd = MAX|MIN (Rmd +|- Rnd) {(T)} ;

Function

These instructions return the maximum (larger of) or minimum (smaller
of) the floating-point operands in registers Rm and Rn. The result is placed
in register FRs. The d suffix denotes extended operand size—see “Instruc-
tion Line Syntax and Structure” on page 1-20.

A NAN input returns a floating-point all ones result. MAX of (+zero and
-zero) returns +zero. MIN of (+zero and -zero) returns -zero. Denormal
inputs are flushed to ±zero.

Status Flags

AZ Set if result is ±zero

AUS Not cleared1

AN Set if result is negative

AV Cleared

AVS Not cleared2; retains value from previous event

AC Cleared

AI Set if either input is a NAN

AIS Set if either input is a NAN; otherwise not cleared3

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-56 ADSP-TS101 TigerSHARC Processor Programming Reference

Options

() Round (MIN only)

(T) Truncate (MIN only)

Examples

XFR0 = MAX (R1, R2) (T) ;; /* x compute with truncate option */

YFR1:0 = MAX (R3:2, R5:4) ;; /* y compute block with extended

40-bit precision with rounding (by default) */

XFR0 = MIN (R1, R2) (T) ;; /* x compute with truncate option */

YFR1:0 = MIN (R3:2, R5:4) ;; /* y compute block with extended

40-bit precision with rounding (by default) */

ADSP-TS101 TigerSHARC Processor Programming Reference 8-57

Instruction Set

Absolute Value (Floating-Point)

Syntax

{X|Y|XY}FRs = ABS (Rm) ;

{X|Y|XY}FRsd = ABS (Rmd) ;

{X|Y|XY}FRs = ABS (Rm +|- Rn) {(T)} ;

{X|Y|XY}FRsd = ABS (Rmd +|- Rnd) {(T)} ;

Function

These instructions add or subtract the floating-point operands in registers
Rm and Rn, then place the absolute value of the normalized result in register
FRs. The Rn operand may be omitted, performing an absolute value on Rm.
The d suffix denotes extended operand size—see “Instruction Line Syntax
and Structure” on page 1-20.

Rounding is to nearest (IEEE), or by truncation, to a 32-bit or 40-bit
boundary as defined by the (T) option. Post-rounded overflow returns
+infinity (round-to-nearest) or +NORM.MAX1 (round-to-zero). Post-rounded
denormal returns +zero. Denormal inputs are flushed to +zero. A NAN
input returns as all ones result.

Status Flags

AZ Set if operand (post-rounded result for add or sub-
tract) is denormal (unbiased exponent <=126) or
±zero

AUS Set if operand (post-rounded result for add or sub-
tract) is denormal; otherwise not cleared2

AN Set if result of addition operation prior to ABS is
negative

1 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E
2 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E

ALU Instructions

8-58 ADSP-TS101 TigerSHARC Processor Programming Reference

AV Set if operand (post-rounded result for add or sub-
tract) overflows

AVS Set if operand (post-rounded result for add or sub-
tract) overflows; otherwise not cleared1

AC Cleared

AI Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract)
infinities

AIS Set if either input operand is a NAN, or if they are
opposite (on add) or same sign (on subtract) infini-
ties; otherwise not cleared2

Options

() Round

(T) Truncate

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-59

Instruction Set

Examples

FR0 = ABS R1 ;; /* SIMD, abs of xr1 and yr1 */

XFR1:0 = ABS R1:0 ;; /* Extended 40 bit precision

XFR0 = ABS(R1 + R2) ;; /* x compute block with rounding (by

default) */

FR0 = ABS(R1 + R2) (T) ;; /* SIMD with truncation */

XFR1:0 = ABS(R3:2 + R5:4) ;; /* Extended precision 40-bit float-

ing-point absolute value of add */

XFR0 = ABS(R1 - R2) ;; /* x compute block with rounding (by

default) */

FR0 = ABS(R1 - R2) (T) ;; /* SIMD with truncation */

XFR1:0 = ABS(R3:2 - R5:4) ;; /* Extended precision 40-bit float-

ing-point absolute value of subtract */

ALU Instructions

8-60 ADSP-TS101 TigerSHARC Processor Programming Reference

Negate (Floating-Point)

Syntax

{X|Y|XY}FRs = - Rm ;

{X|Y|XY}FRsd = - Rmd ;

Function

This instruction complements the sign bit of the floating-point operand in
register Rm. The complemented result is placed in register FRs. The d suffix
denotes extended operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

Denormal inputs are flushed to ±zero (sign is the inverse of Rm’s sign). A
NAN input returns an all ones result.

Status Flags

AZ Set if result is ±zero or denormal

AUS Not cleared1

AN Set if result is negative

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if input is NAN

AIS Set if input is NAN; otherwise not cleared3

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-61

Instruction Set

Examples

XFR0 = -R1 ;; /* x compute block complement */

YFR1:0 = -R3:2;; /* extended 40-bit precision */

ALU Instructions

8-62 ADSP-TS101 TigerSHARC Processor Programming Reference

Compare (Floating-Point)

Syntax

{X|Y|XY}FCOMP (Rm, Rn) ;

{X|Y|XY}FCOMP (Rmd, Rnd) ;

Function

This instruction compares the floating-point operand in register Rm with
the floating-point operand in register Rn. Denormal inputs are flushed to
zero. The d suffix denotes extended operand size—see “Instruction Line
Syntax and Structure” on page 1-20.

This instruction sets the AZ flag if the two operands are equal and the AN
flag if the operand in register Rm is smaller than the operand in register Rn.

Status Flags

AZ Set if Rm = Rn and neither Rm or Rn are NANs

AUS Not cleared1

AN Set if Rm < Rn and neither Rm or Rn are NANs

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if either input is a NAN

AIS Set if either input is a NAN; otherwise not cleared3

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-63

Instruction Set

For IEEE compatibility: After using FCOMP the programmer may use con-
ditions ALT (ALU result is less than) or ALE (ALU result is less than or
equal) – see “ALU Execution Conditions” on page 3-14. In all these cases
the condition will be false if one of the operands is NAN. In some cases
the inverse condition is also expected to give false result if one of the oper-
ands is NAN. In this case the programmer should not use the inverse
condition (NALT or NALE). Instead, the programmer should flip between
the operands, and use the condition ALT instead of NALE or ALE instead of
NALT.

Example

FCOMP (R5,R8) ;;

IF ALT, JUMP my_label ;;

The condition is true if R5<R8. If they are equal, R5>R8 or one of the num-
bers is NAN the condition is false.

Using the condition NALT will give a false result if R5<R8. In any other case,
including the case of NAN input, the condition will be true. To get the
same result, but false results in case of NAN input, switch between the
operands of the FCOMP and change the ALT to ALE (or vice versa):

FCOMP (R8,R5) ;;

IF ALE, JUMP my_other_label ;;

ALU Instructions

8-64 ADSP-TS101 TigerSHARC Processor Programming Reference

Floating- to Fixed-Point Conversion

Syntax

{X|Y|XY}Rs = FIX FRm|FRmd {BY Rn} {(T)} ;

Function

These instructions add the two’s-complement operand in register Rn to the
exponent of floating-point operand in register Rm, then convert the result
to a two’s-complement 32-bit fixed-point integer result. If the Rn operand
is omitted, Rm is converted. The floating-point operand is rounded to the
nearest even integer. The result is placed in register Rs. The d suffix
denotes extended operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

Rounding is to nearest (IEEE) or to zero, as defined by the (T) option. A
NAN input returns a floating-point all ones result. All underflow results,
or input which are zero or denormal, return zero. Overflow result always
returns a signed saturated result—0x7FFFFFFF for positive, and
0x80000000 for negative.

Status Flags

AZ Set if fixed-point result is zero

AUS Set if pre-rounded result absolute value is less than
0.5 and not zero; otherwise not cleared1

AN Set if fixed-point result is negative

AV Set if the exponent of the floating-point result is
larger or equal to 157; unless the operand is nega-
tive, the sum is equal to 157, and the mantissa is all
zero

1 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-65

Instruction Set

AVS Set if the exponent of the floating-point result is
larger or equal to 157; unless the operand is nega-
tive, the sum is equal to 157, and the mantissa is all
zero; otherwise not cleared1

AC Cleared

AI Set if input is a NAN

AIS Set if input is a NAN; otherwise not cleared2

Options

() Round

(T) Truncate

Examples

YR0 = FIX YFR1 (T) ;; /* y compute block, truncated option */

XR0 = FIX XFR3:2 ;; /* Extended 40-bit precision with rounding

(by default) */

YR0 = FIX YFR1 BY R2 (T) ;; /* Y compute block, truncated option

*/

XR0 = FIX XFR3:2 BY R4 ;; /* Extended 40-bit precision with

rounding (by default) */

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-66 ADSP-TS101 TigerSHARC Processor Programming Reference

Fixed- to Floating-Point Conversion

Syntax

{X|Y|XY}FRs|FRsd = FLOAT Rm {BY Rn} {(T)} ;

Function

These instructions convert the fixed-point operand in Rm to a float-
ing-point result. If used, Rn denotes the scaling factor, where the
fixed-point two’s-complement integer in Rn is added to the exponent of
the floating-point result. The final result is placed in register FRs. The d
suffix denotes extended result size—see “Instruction Line Syntax and
Structure” on page 1-20.

Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the (T) option. The exponent scale bias may
cause a floating-point overflow or a floating-point underflow: overflow
returns ±infinity (round-to-nearest) or ±NORM.MAX1 (round-to-zero);
underflow returns ±zero.

Status Flags

AZ For not scaled, set if post-rounded result is ±zero;
for scaled, set if post-rounded result is denormal
(unbiased exponent <=126) or ±zero

AUS For not scaled, not cleared; for scaled, set if
post-rounded result is denormal—otherwise not
cleared2

AN Set if result is negative

AV For not scaled, cleared; for scaled, set if
post-rounded result overflows

1 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E
2 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E

ADSP-TS101 TigerSHARC Processor Programming Reference 8-67

Instruction Set

AVS For not scaled, not cleared; for scaled, set if
post-rounded result overflows; otherwise not
cleared1

AC Cleared

AI Cleared

AIS Not cleared2

Options

() Round

(T) Truncate

Examples

XFR0 = FLOAT R1 (T) ;; /* x compute block, truncated */

YFR1:0 = FLOAT R1 ;; /* Extended 40-bit precision with rounding

(by default) */

XFR0 = FLOAT R1 BY R2 (T) ;; /* x compute block, truncated */

YFR1:0 = FLOAT R1 BY R2 ;; /* Extended 40-bit precision with

rounding (by default) */

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-68 ADSP-TS101 TigerSHARC Processor Programming Reference

Floating-Point Normal to Extended Word Conversion

Syntax

{X|Y|XY}FRsd = EXTD Rm ;

Function

This instruction extends the floating-point operand in register Rm. The
extended result is placed in register FRsd. The d suffix denotes extended
operand size—see “Instruction Line Syntax and Structure” on page 1-20.

Denormal inputs are flushed to ±zero. A NAN input returns an all ones
result.

Status Flags

AZ Set if result is ±zero or denormal

AUS Not cleared1

AN Set if result is negative

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if input is NAN

AIS Set if input is NAN; otherwise not cleared3

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-69

Instruction Set

Examples

XFR1:0 = EXTD R2 ;; /* x compute block extend to 40 bit */

ALU Instructions

8-70 ADSP-TS101 TigerSHARC Processor Programming Reference

Floating-Point Extended to Normal Word Conversion

Syntax

{X|Y|XY}FRs = SNGL Rmd ;

Function

This instruction translates the extended floating-point operand in (dual)
register Rmd into a single floating-point operand. The result is placed in
register FRs. The d suffix denotes dual operand size—see “Instruction Line
Syntax and Structure” on page 1-20.

Rounding is to nearest (IEEE) or by truncation, as defined by the (T)
option. A NAN input returns a floating-point all ones result. Overflow
returns ±NORM.MAX1 if (T) option is set, and ±infinity otherwise.

Status Flags

AZ Set if result is ±zero

AUS Not cleared2

AN Set if result is negative

AV Set if the exponent is 0xFE and the mantissa is more
than 0x7FFFFF80 and option (T) is not used

AVS Set if the exponent is 0xFE and the mantissa is more
than 0x7FFFFF80, otherwise not cleared3

AC Cleared

AI Set if input is a NAN

1 Maximum normal value - mantissa - all 1 (0x7F…0), exponent - 0x1E
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-71

Instruction Set

AIS Set if input is a NAN; otherwise not cleared1

Options

() Round

(T) Truncate

Examples

XFR0 = SNGL R3:2 (T) ;; /* x compute block with truncate option

*/

1 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-72 ADSP-TS101 TigerSHARC Processor Programming Reference

Clip (Floating-Point)

Syntax

{X|Y|XY}FRs = CLIP Rm BY Rn ;

{X|Y|XY}FRsd = CLIP Rmd BY Rnd ;

Function

This instruction returns the floating-point operand in Rm if the absolute
value of the operand in Rm is less than the absolute value of the float-
ing-point operand in Rn. Else, returns |Rn| if Rm is positive, and -|Rn| if
Rm is negative. The result is placed in register FRs. The d suffix denotes
extended operand size—see “Instruction Line Syntax and Structure” on
page 1-20.

A NAN input returns an all ones result. Denormal inputs are flushed to
±zero.

Status Flags

AZ Set if result is ±zero or denormal

AUS Not cleared1

AN Set if result is negative

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if either input operand is a NAN

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-73

Instruction Set

AIS Set if either input operand is a NAN; otherwise not
cleared1

Examples

FR3 = CLIP R9 BY R0;

XFR0 = CLIP R1 BY R2 ;; /* X compute block */

YFR1:0 = CLIP R5:4 BY R3:2 ;; /* Y compute block, extended 40-bit

precision */

1 See “ALU Execution Status” on page 3-11.

Figure 8-25. Dual Normal Word in Compute Blocks X and Y

FR9

FR0

FR3

995

89–57.3

–3557.3

XSTAT: AC=0, AV=0, AN=0, AZ=0

Compute X Compute Y

YSTAT: AC=0, AV=0, AN=1, AZ=0

–35

ALU Instructions

8-74 ADSP-TS101 TigerSHARC Processor Programming Reference

Copysign (Floating-Point)

Syntax

{X|Y|XY}FRs = Rm COPYSIGN Rn ;

{X|Y|XY}FRsd = Rmd COPYSIGN Rnd ;

Function

This instruction copies the sign of the floating-point operand in register
Rn to the floating-point operand from register Rm without changing the
exponent or the mantissa. The result is placed in register FRs. The d suffix
denotes extended operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

A NAN input returns an all ones result. Denormal Rm returns zero, with
the sign copied from Rn.

Status Flags

AZ Set if result is ±zero or denormal

AUS Not cleared1

AN Set if result is negative

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if either input operand is a NAN

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-75

Instruction Set

AIS Set if either input operand is a NAN; otherwise not
cleared1

Examples

YFR0 = R1 COPYSIGN R2 ;; /* Y compute block */

XFR1:0 = R3:2 COPYSIGN R5:4 ;; /* X compute block, extended

40-bit precision */

1 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-76 ADSP-TS101 TigerSHARC Processor Programming Reference

Scale (Floating-Point)

Syntax

{X|Y|XY}FRs = SCALB FRm BY Rn ;

{X|Y|XY}FRsd = SCALB FRmd BY Rn ;

Function

This instruction scales the exponent of the floating-point operand in Rm by
adding to it the fixed-point, two’s-complement integer in Rn. The scaled
floating-point result is placed in register FRs. The d suffix denotes
extended operand size—see “Instruction Line Syntax and Structure” on
page 1-20. If the sum of FRm exponent and Rn is zero, the result is rounded
to nearest: minimum normal if the FRm mantissa is all ones; else zero.

Overflow returns ±infinity. Denormal returns ±zero. Denormal inputs are
flushed to ±zero. A NAN input returns an all ones result.

Status Flags

AZ Set if post-rounded result is denormal (unbiased
exponent <=126) or ±zero

AUS Set if post-rounded result is denormal; otherwise
not cleared1

AN Set if result is negative

AV Set if post-rounded result overflows

AVS Set if post-rounded result overflows; otherwise not
cleared2

AC Cleared

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-77

Instruction Set

AI Set if either input operand is a NAN

AIS Set if either input operand is a NAN; otherwise not
cleared1

Examples

FR5 = scalb R3 by R2

If R3 = 5 (floating-point value; 5=(23×0.625))
and R2 = 2 (fixed-point value)
then R5 = 20 (floating-point value; 20=(2(3+2)×0.625)

YFR1:0 SCALB FR3:R2 BY R5 ;; /* 40-bit extended precision */

1 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-78 ADSP-TS101 TigerSHARC Processor Programming Reference

Pass (Floating-Point)

Syntax

{X|Y|XY}FRs = PASS Rm ;

{X|Y|XY}FRsd = PASS Rmd ;

Function

This instruction passes the floating-point operand in register Rm through
the ALU to the floating-point field in register FRs. The d suffix denotes
extended operand size—see “Instruction Line Syntax and Structure” on
page 1-20.

Denormal inputs are flushed to ±zero. A NAN input returns an all ones
result.

Status Flags

AZ Set if result is ±zero or denormal

AUS Not cleared1

AN Set if result is negative

AV Cleared;

AVS Not cleared; retains value from previous event2

AC Cleared

AI Set if input is NAN

AIS Set if input is NAN; otherwise not cleared3

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-79

Instruction Set

Examples

FR0 = PASS R1 ;; /* SIMD pass */

XFR1:0 = PASS R3:2 ;; /* 40-bit extended precision */

ALU Instructions

8-80 ADSP-TS101 TigerSHARC Processor Programming Reference

Reciprocal (Floating-Point)

Syntax

{X|Y|XY}FRs = RECIPS Rm ;

{X|Y|XY}FRsd = RECIPS Rmd ;

Function

This instruction creates an 8-bit accurate approximation for 1/Rm, the
reciprocal of Rm. The d suffix denotes the operand size—see “Instruction
Line Syntax and Structure” on page 1-20.

The mantissa of the approximation is determined from a table using the
seven MSBs (excluding the hidden bit) of the Rm mantissa as an index. The
unbiased exponent of the seed is calculated as the two’s-complement of
the unbiased Rm exponent, decremented by one. If e is the unbiased expo-
nent of Rm, then the unbiased exponent of FRs=-e-1. The sign of the seed
is the sign of the input. A ±zero returns ±infinity and sets the overflow
flag. If the unbiased exponent of Rm is greater than +125, the result is
±zero. A NAN input returns an all ones result.

Status Flags

AZ Set if result is ±zero or denormal

AUS Set if result is denormal; otherwise not cleared1

AN Set if result is negative

AV Set if input operand is ±zero

AVS Set if input operand is ±zero; otherwise not cleared2

AC Cleared

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-81

Instruction Set

AI Set if input is NAN

AIS Set if input is NAN; otherwise not cleared1

Examples

/* This code provides a floating-point division using an itera-

tive convergence algorithm. The result is accurate to one LSB */

.SECTION program;

_main:

YR0 = 10.0 ;; /* Random Numerator */

YR12 = 3.0 ;; /* Random Denominator */

YR11 = 2.0 ;;

R7 = R0 ;;

YFR0 = RECIPS R12 ;; /* Get 8 bit 1/r12 */

YFR12 = R0 * R12 ;;

YFR7 = R0 * R7 ; YFR0=R11-R12 ;;

YFR12 = R0 * R12 ;;

YFR7 = R0 * R7 ; YFR0=R11-R12 ;;

/* single precision. You can eliminate the three lines below if

only a +/-1 LSB accurate single precision result is necessary */

YFR12 = R0 * R12 ;;

YFR7 = R0 * R7 ;;

YFR0 = R11 - R12 ;;

/* Above three lines are for results accurate to one LSB */

YFR0 = R0 * R7 ;; /* Output is in YR0 */

endhere:

NOP ;;

IDLE ;;

JUMP endhere ;;

1 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-82 ADSP-TS101 TigerSHARC Processor Programming Reference

Reciprocal Square Root (Floating-Point)

Syntax

{X|Y|XY}FRs = RSQRTS Rm ;

{X|Y|XY}FRsd = RSQRTS Rmd ;

Function

This instruction creates an 8-bit accurate approximation for 1/√Rm, the
reciprocal square root of Rm. The d suffix denotes the operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

The mantissa of the approximation is determined from a table using the
LSB of the biased exponent of Rm conjugating with the six MSBs (exclud-
ing the hidden bit) of the mantissa of Rm as an index. The unbiased
exponent of the seed is calculated as the two’s-complement of the unbi-
ased Rm exponent, shifted right by one bit and decremented by one—that
is, if e is the unbiased exponent of Rm, then the unbiased exponent of
FRs=-NT[e/2]-1. The sign of the seed is the sign of the input. A ±zero
returns ±infinity and sets the overflow flag. A +infinity returns +zero. A
NAN input or a negative non-zero (including -infinity) returns an all ones
result.

Status Flags

AZ Set if result is zero

AUS Not cleared1

AN Set if input operand is -zero

AV Set if input operand is ±zero

AVS Set if input operand is ±zero; otherwise not cleared2

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-83

Instruction Set

AC Cleared

AI Set if input is negative and non-zero, or NAN

AIS Set if input is negative and non-zero, or NAN; oth-
erwise not cleared1

Examples

/* This code calculates a floating point reciprocal square root

using a Newton Raphson iteration algorithm. The result is accu-

rate to one LSB */

XR0 = 9.0 ;; // random input ;;

XR8 = 3.0 ;;

XR1 = 0.5 ;;

XFR4 = RSQRTS R0 ;;

XFR12 = R4 * R4 ;;

XFR12 = R12 * R0 ;;

XFR4 = R1 * R4 ; XFR12 = R8 - R12 ;;

XFR4 = R4 * R12 ;;

XFR12 = R4 * R4 ;;

XFR12 = R12 * R0 ;;

XFR4 = R1 * R4 ; XFR12 = R8 - R12 ;;

/* Single precision. You can eliminate the four lines below if

only a +/-1 LSB accurate single precision result is necessary */

XFR4 = R4 * R12 ;;

XFR12 = R4 * R4 ;;

XFR12 = R12 * R0 ;;

XFR4 = R1 * R4 ; XFR12 = R8 - R12 ;;

XFR4 = R4 * R12 ;; /* reciprocal square root of xr0 is output is

in r4 */

endhere:

1 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-84 ADSP-TS101 TigerSHARC Processor Programming Reference

NOP ;;

IDLE ;;

JUMP endhere ;;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-85

Instruction Set

Mantissa (Floating-Point)

Syntax

{X|Y|XY}Rs = MANT FRm|FRmd ;

Function

This instruction extracts the mantissa (fraction bits with explicit hidden
bit, excluding the sign bit) from the floating-point operand in register Rm.
The unsigned-magnitude result is left-adjusted in the fixed-point field and
placed in register Rs. The d suffix denotes extended operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Note that the AN flag is set to the sign bit of the input operand.

Rounding modes are ignored and no rounding is performed, because all
results are inherently exact. Denormal inputs are flushed to zero. A NAN
or an infinity input returns an all ones result.

Status Flags

AZ Set if result is zero

AUS Not cleared1

AN Set if input operand (FRm) is negative

AV Cleared

AVS Not cleared2

AC Cleared

AI Set if input is NAN or infinity

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-86 ADSP-TS101 TigerSHARC Processor Programming Reference

AIS Set if input is NAN or infinity; otherwise not
cleared1

Examples

XR0 = MANT FR1 ;; /* x compute block */

YR0 = MANT FR3:2 ;; /* y compute block, 40-bit double precision

*/

1 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-87

Instruction Set

Logarithm (Floating-Point)

Syntax

{X|Y|XY}Rs = LOGB FRm|FRmd {(S)} ;1

Function

This instruction converts the exponent of the floating-point operand in
register Rm to an unbiased two’s-complement, fixed-point integer result.
The result is placed in register Rs as an integer. The d suffix denotes
extended operand size—see “Instruction Line Syntax and Structure” on
page 1-20.

Unbiasing is performed by subtracting 127 from the floating-point expo-
nent in Rm. If saturation mode is not set, a ±infinity input returns a
floating-point +infinity; otherwise it returns the maximum positive value
(0x7FFF FFFF). A ±zero input returns a floating-point -infinity if satura-
tion is not set, and maximum negative value (0x8000 0000) if saturation is
set. Denormal inputs are flushed to ±zero. A NAN input returns an all
ones result.

Status Flags

AZ Set if fixed-point result is zero

AUS Not cleared2

AN Set if fixed-point result is negative

AV Set if input is ±infinity or ±zero

AVS Set if input is ±infinity or ±zero; otherwise not
cleared3

1 Options include: (): Do not saturate, (S): Saturate
2 See “ALU Execution Status” on page 3-11.
3 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-88 ADSP-TS101 TigerSHARC Processor Programming Reference

AC Cleared

AI Set if input is a NAN

AIS Set if input is a NAN; otherwise not cleared1

Options

() Saturation inactive

(S) Saturation active

Examples

XR0 = LOGB XFR1 (S) ;; /* x compute block with saturate active

option */

YR0 = LOGB YFR3:2 ;; /* y compute blocks 40 bit extended preci-

sion */

1 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-89

Instruction Set

Add/Subtract (Dual Operation, Floating-Point)

Syntax

{X|Y|XY}FRs = Rm + Rn, FRa = Rm - Rn ; (dual instruction)
{X|Y|XY}FRsd = Rmd + Rnd, FRad = Rmd - Rnd ; (dual instruction)

Function

This instruction simultaneously adds and subtracts the floating-point
operands in registers Rm and Rn. The results are placed in registers FRs and
FRa.

The d suffix denotes extended operand size—see “Instruction Line Syntax
and Structure” on page 1-20.

Status Flags

AZ Set if one of the post-rounded results is denormal or
zero (unbiased exponent <= 126) or ±zero

AUS Set if one of the post-rounded results is denormal;
otherwise not cleared1

AN Set if one of the post-rounded results is negative

AV Set if one of the post-rounded results overflows

AVS Set if one of the post-rounded results overflows;
otherwise not cleared2

AC Not cleared

AI Set if either input operand is a NAN, or if both
operands are Infinities

1 See “ALU Execution Status” on page 3-11.
2 See “ALU Execution Status” on page 3-11.

ALU Instructions

8-90 ADSP-TS101 TigerSHARC Processor Programming Reference

AIS Set if either input operand is a NAN, or if both
operands are Infinities; otherwise not cleared1

Examples

XFR0 = R1 + R2 , XFR3 = R1 - R2 ;; /* x compute block add and sub-

tract */

XFR1:0 = R3:2 + R5:4 , XFR7:6 = R3:2 - R5:4 ;; /* extended 40 bit

precision */

1 See “ALU Execution Status” on page 3-11.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-91

Instruction Set

CLU Instructions
The communications logic unit (CLU) performs all communications algo-
rithm specific arithmetic operations (addition/subtraction) and logical
operations. For a description of CLU operations, status flags, conditions,
and examples, see “CLU Data Types and Sizes” on page 3-22, “TMAX
Function” on page 3-23, “Trellis Function” on page 3-24, and “Despread
Function” on page 3-26.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “Register File
Registers” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Rmd – the register names in italic represent user-selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

CLU Instructions

8-92 ADSP-TS101 TigerSHARC Processor Programming Reference

Trellis Maximum (CLU)

Syntax

{X|Y|XY}{S}TRsd = TMAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = TMAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

{X|Y|XY}{S}Rs = TMAX(TRm, TRn) ;

{X|Y|XY}{S}TRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

Function:

STRsd = TMAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

High part of Rmq is added to TRmd, low part of Rmq is added to TRnd, and
TMAX function is executed between both add results, as illustrated in
Figure 8-27 and Figure 8-28.

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It can not be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block. Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

Function:

STRsd = TMAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

The high part of Rmq is subtracted from TRmd, low part of Rmq is subtracted
from TRnd, and TMAX function is executed between both subtract results, as
illustrated in Figure 8-29 and Figure 8-30. For subtraction, the order of
operands appears in Figure 8-26.

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It can not be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block. Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-93

Instruction Set

Function:

SRs = TMAX(TRm, TRn) ;

TMAX function is executed between TRm and TRn, as illustrated in
Figure 8-31 and Figure 8-32.

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It cannot be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block.

Status Flags

TROV Overflow (TROV) is calculated every cycle

TRSOV Set whenever an overflow occurs and cleared only
by X/Ystat load

Figure 8-26. Order of Operands for Subtract Diagrams

-

+ -

B A

This implies out = B - A

OUT

CLU Instructions

8-94 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-27. TRsd = TMAX(TRmd + Rmq_h, TRnd + Rmq_l)

TMAXTMAX

TRsd (2 * 32b)

Rmq (4 * 32b)
TRnd (2 * 32b)TRmd (2 * 32b)

high low high low

+++ +

ADSP-TS101 TigerSHARC Processor Programming Reference 8-95

Instruction Set

Figure 8-28. STRsd=TMAX(TRmd+Rmq_h, TRnd + RMq_l)

+ + ++

TMAXTMAX

TRsd (4 * 16b)

Rmq (8 * 16b)TRnd (4 * 16b)TRmd (4 * 16b)

+ + ++

TMAXTMAX

CLU Instructions

8-96 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-29. TRsd = TMAX(TRmd - Rmq_h, TRnd - Rmq_l)

TMAXTMAX

TRsd (2 * 32b)

Rmq (4 * 32b)
TRnd (2 * 32b)TRmd (2 * 32b)

high low high low

––– –

ADSP-TS101 TigerSHARC Processor Programming Reference 8-97

Instruction Set

Figure 8-30. STRsd = TMAX(TRmd - Rmq_h, TRnd-Rmq_l)

TMAXTMAX

TRsd (4 * 16b)

Rmq (8 * 16b)TRnd (4 * 16b)TRmd (4 * 16b)

TMAXTMAX

––––––––

CLU Instructions

8-98 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-31. Rs = TMAX(TRm, TRn) instruction processing

Figure 8-32. SRs = TMAX(TRm, TRn)

Rs (32b)

TRn

(32b)

TRm

(32b)

TMAX

TMAX

SRs (2 * 16b)

STRn (2 * 16b)

TMAX

STRm (2 * 16b)

ADSP-TS101 TigerSHARC Processor Programming Reference 8-99

Instruction Set

Maximum (CLU)

Syntax

{X|Y|XY}{S}TRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

Function:

STRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

High part of Rmq is added to TRmd, low part of Rmq is added to TRnd, and
selects the MAX between both add results, as illustrated in Figure 8-33
and Figure 8-34.

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It can not be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block. Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

Function:

STRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

High part of Rmq is subtracted from TRmd, low part of Rmq is subtracted
from TRnd, and selects the MAX between both subtract results, as illustrated
in Figure 8-35 and Figure 8-36.

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It can not be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block. Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

CLU Instructions

8-100 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

TROV Overflow (TROV) is calculated every cycle

TRSOV Set whenever an overflow occurs and cleared only
by X/Ystat load

Figure 8-33. TRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l)

high low high low

+ + ++

MAXMAX

TRsd (2 * 32b)

Rmq (4 * 32b)
TRnd (2 * 32b)TRmd (2 * 32b)

ADSP-TS101 TigerSHARC Processor Programming Reference 8-101

Instruction Set

Figure 8-34. STRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l)

+ + ++

MAXMAX

TRsd (4 * 16b)

Rmq (8 * 16b)TRnd (4 * 16b)TRmd (4 * 16b)

+ + ++

MAXMAX

CLU Instructions

8-102 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-35. TRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l)

HIGH LOW HIGH LOW

MAXMAX

TRsd (2 * 32b)

Rmq (4 * 32b)
TRnd (2 * 32b)TRmd (2 * 32b)

––– –

ADSP-TS101 TigerSHARC Processor Programming Reference 8-103

Instruction Set

Figure 8-36. STRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l)

MAXMAX

TRsd (4 * 16b)

Rmq (8 * 16b)TRnd (4 * 16b)TRmd (4 * 16b)

MAXMAX

––––––––

CLU Instructions

8-104 ADSP-TS101 TigerSHARC Processor Programming Reference

Trellis Registers (CLU)

Syntax

{X|Y|XY}Rs = TRm ;

{X|Y|XY}Rsd = TRmd ;

{X|Y|XY}Rsq = TRmq ;

{X|Y|XY}TRs = Rm ;

{X|Y|XY}TRsd = Rmd ;

{X|Y|XY}TRsq = Rmq ;

{X|Y|XY}Rs = THRm ;

{X|Y|XY}Rsd = THRmd ;

{X|Y|XY}Rsq = THRmq ;1

{X|Y|XY}THRs = Rm} ;

{X|Y|XY}THRsd = Rmd {(i)} ;

{X|Y|XY}THRsq = Rmq ;1

Function

The data in the source register (to right of =) are transferred to the desti-
nation register (to left of =). Data are single (32 bits), double (64 bits) or
quad word (128 bits). The register number must be aligned to the data
size.

Data are transferred on EX2.

1 Not implemented, but syntax reserved

ADSP-TS101 TigerSHARC Processor Programming Reference 8-105

Instruction Set

This instruction may be executed together with Shifter or Multiplier
instructions. It can not be executed in parallel to ALU or CLU instruc-
tions in the same compute unit.

The quad option (Rsq = THRmq ; and THRsq = Rmq ;) is not imple-
mented because there are only two registers; it is reserved for future
use.

In case of executing the THRs = Rm ; or THRsd = Rmd {(i)};
instructions in parallel to an instruction that shifts the THr register
(ACS, DESPREAD), the THR load instruction takes priority on the THR
shift in this instruction

Status Flags

None

Options

The interleave option (I) is valid only for double registers. It interleaves
the bits of the low word of Rmd with the bits of the high word of Rmd, and
loads the interleaved data into the THR register, as illustrated in
Figure 8-37.

Figure 8-37. Interleave Option for Double Registers

R
0[0]

R
0[1]

R
0[2]

R
0[3]

R
0[4]

R
0[5]

THrd loaded
by R1:0

R
1[0]

R
1[1]

R
1[2]

R
1[3]

R
1[4]

R
1[5]

R
0[30]

R
0[31]

R
1[30]

R
1[31]

CLU Instructions

8-106 ADSP-TS101 TigerSHARC Processor Programming Reference

Despread (CLU)

Syntax

{X|Y|XY}TRs = DESPREAD (Rmq, THRd) + TRn ;

{X|Y|XY}Rs = TRs, TRs = DESPREAD (Rmq, THRd) ; (dual instruction)
{X|Y|XY}Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ; (dual instruction)

Function

The input register Rmq is composed of 8 complex shorts - D7 to D0, in
which each complex number is composed of 2 bytes. The most significant
byte is the imaginary, and the least significant is the real. Semantics - Dn
is composed of DnI and DnQ, where I denotes the real part and Q
denotes the imaginary part.

Figure 8-38. Bit field in registers for
TRs = DESPREAD (Rmq, THRd) + TRn ;

D
7Q

D
6Q

D
6I

D
7I

D
5Q

D
4Q

D
4I

D
5I

D
3Q

D
2Q

D
2I

D
3I

D
1Q

D
0Q

D
0I

D
1I

96 64 32 0

REMAINDER

B
7Q

B
6Q

B
6I

B
7I

B
5Q

B
4Q

B
4I

B
5I

B
3Q

B
2Q

B
2I

B
3I

B
1Q

B
0Q

B
0I

B
1I

63 1615 0

INPUTS

INPUT/OUTPUT

R
0Q

R
0I

01631

RMq - each field is 8 bits

THRd - each field is 1 bit

Trn & TRs - each field is 16 bits

ADSP-TS101 TigerSHARC Processor Programming Reference 8-107

Instruction Set

The THRd register is composed of 8 complex numbers {B7…B0} and 48
Remainder bits. Each complex number is composed of one real bit (least
significant) and one imaginary bit. Each bit represents the value of +1

Figure 8-39. Bit field in registers for:
Rs = TRs, TRs = DESPREAD (Rmq, THRd) ;

D
7Q

D
6Q

D
6I

D
7I

D
5Q

D
4Q

D
4I

D
5I

D
3Q

D
2Q

D
2I

D
3I

D
1Q

D
0Q D
0I

D
1I

96 64 32 0

REMAINDER

B
7Q

B
6Q

B
6I

B
7I

B
5Q

B
4Q

B
4I

B
5I

B
3Q

B
2Q

B
2I

B
3I

B
1Q

B
0Q

B
0I

B
1I

63 1615 0

INPUTS

OUTPUT

R
0Q

R
0I

01631

RMq - each field is 8 bits

THRd - each field is 1 bit

TRs - each field is 16 bits

CLU Instructions

8-108 ADSP-TS101 TigerSHARC Processor Programming Reference

(when clear) or –1 (when set). THrd is post-shifted right by 16 bits so that
the lowest 16 bits of the remainder may be used for a despread on the next
cycle.

Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

This instruction can be executed in parallel to multiplier instruc-
tions and CLU register load. It can not be executed in parallel to
other CLU instructions and ALU instructions of the same compute
block.

When you execute this instruction in parallel to THR register load
the THR load instruction takes priority on the THR shift in this
instruction.

Function: TRs = DESPREAD (Rmq, THRd) + TRn ;

TRn and TRs are complex words, each composed of two shorts - real (least
significant) and imaginary (most significant).

The function (illustrated in Figure 8-41) is:

TRsI = (sum (n = 0 to 7) (BnI * DnI - BnQ * DnQ)) + TRnI

TRsQ = (sum (n = 0 to 7) (BnI * DnQ + BnQ * DnI)) + TRnQ

The multiplication is by integer (±1) for example the result alignment is to
least significant, and the sum is sign extended.

Function: Rs = TRs, TRs = DESPREAD (Rmq, THRd) ;

TRs is a complex word, composed of two shorts - real (least significant)
and imaginary (most significant).

The function (illustrated in Figure 8-42) is:

TRsI = (sum (n = 0 to 3) (BnI * DnI - BnQ * DnQ))

TRsQ = (sum (n = 0 to 3) (BnI * DnQ + BnQ * DnI))

ADSP-TS101 TigerSHARC Processor Programming Reference 8-109

Instruction Set

The value of TRs before the operation is stored in Rs.

Function: Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ;

The function (illustrated in Figure 8-43) is:

TR0I = (sum (n = 0 to 3) (BnI * DnI - BnQ * DnQ))

TR0Q = (sum (n = 0 to 3) (BnI * DnQ + BnQ * DnI))

TR1I = (sum (n = 4 to 7) (BnI * DnI - BnQ * DnQ))

TR1Q = (sum (n = 4 to 7) (BnI * DnQ + BnQ * DnI))

Status Flags

TROV Overflow (TROV) is calculated every cycle

TRSOV Set whenever an overflow occurs and cleared only
by X/Ystat load

Figure 8-40. Bit fields in registers for:
Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ;

D
7Q

D
6Q

D
6I

D
7I

D
5Q

D
4Q

D
4I

D
5I

D
3Q

D
2Q

D
2I

D
3I

D
1Q

D
0Q

D
0I

D
1I

96 64 32 0

REMAINDER

B
7Q

B
6Q

B
6I

B
7I

B
5Q

B
4Q

B
4I

B
5I

B
3Q

B
2Q

B
2I

B
3I

B
1Q

B
0Q

B
0I

B
1I

63 1615 0

INPUTS

OUTPUT

01632

RMq - each field is 8 bits

THRd - each field is 1 bit

TRs - each field is 16 bits

48

R
0I

R
0Q

R
1I

R
1Q

CLU Instructions

8-110 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-41. TRs = DESPREAD (Rmq, THRd) + TRn ;

Q I

2

B7 B0B1B2B3B4B5B6

Q I Q IQ I Q I Q IQ IQ I Q I

COMPLEX ADDITION

COMPLEX MULTIPLIERS

16

31 0

Post-shifted right by 16 bits

D7 D0D1D2D3D4D5D6

Q I Q I Q I Q I Q IQ IQ I Q I

TRn

TRs

ADSP-TS101 TigerSHARC Processor Programming Reference 8-111

Instruction Set

Figure 8-42. Rs = TRs, TRs = DESPREAD (Rmq, THRd) ;

Q I

2

B7 B0B1B2B3B4B5B6

Q I Q I Q I Q I Q IQ IQ I Q I

COMPLEX ADDITION

COMPLEX MULTIPLIERS

16

31 0

Post-shifted right by 16 bits

D7 D0D1D2D3D4D5D6

Q I Q IQ I Q I Q IQ IQ I Q I

TRn

TRs COMPLEX NUMBER

CLU Instructions

8-112 ADSP-TS101 TigerSHARC Processor Programming Reference

Figure 8-43. Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ;

Q I Q I

63 031

COMPLEX ADDITIONS

2

16

B7 B0B1B2B3B4B5B6

Q I Q I Q I Q I Q IQ IQ I Q I

COMPLEX MULTIPLIERS

Post-shifted right by 16 bits

D7 D0D1D2D3D4D5D6

Q I Q I Q I Q I Q IQ IQ I Q I

TRsd

ADSP-TS101 TigerSHARC Processor Programming Reference 8-113

Instruction Set

Add/Compare/Select (CLU)

Syntax

{X|Y|XY}{S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ;

{X|Y|XY}Rsq = TRaq, {S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ; (dual
instr.)

Function

For TRsq = ACS (TRmd, TRnd, Rm);, each short in Rm is added to and sub-
tracted from the corresponding short word in TRmd and TRnd. The four
results of the add and subtract are compared in trellis order, as illustrated
in Figure 8-44.

Trellis history register THR[1:0] is updated with the selection of the MAX /
TMAX. After every ACS operation the four selection decisions are loaded into
bits 31:28 of register THR1, while the content of THR1:0 is shifted right 4
bits. Decision bit indicates which input the MAX or TMAX has selected. For
selection of TRm +/- Rm the decision bit is 1, and for TRn -/+ Rm the deci-
sion is 0.

For STRsq = ACS (TRmd, TRnd, Rm);, each byte in Rm is added to and sub-
tracted from the corresponding byte word in TRmd and TRnd. The eight
results of the add and subtract are compared in trellis order, as illustrated
in Figure 8-45.

Trellis history register THR[1:0] is updated with the selection of the MAX /
TMAX. After every ACS operation the eight selection decisions are loaded
into bits 31:28 of register THR1, while the content of THR1:0 is shifted right
8 bits. Decision bit indicates which input the MAX or TMAX has selected. For
selection of TRm +/- Rm the decision bit is 1, and for TRn -/+ Rm the deci-
sion is 0.

CLU Instructions

8-114 ADSP-TS101 TigerSHARC Processor Programming Reference

Optionally, a trellis register transfer can be added for dual operation, as in:
Rsq = TRaq, {S}TRsq = ACS (TRmd, TRnd, Rm);.

Saturation is supported in this instruction. For more details, see
“Saturation Option” on page 3-8.

This instruction can be executed in parallel to shifter instructions,
multiplier instructions and CLU register load. It can not be exe-
cuted in parallel to other CLU instructions and ALU instructions
of the same compute block.

Figure 8-44. TRsq = ACS (TRmd, TRnd, Rm);

+ + ++ –––

MAX/
TMAX

MAX/
TMAX

MAX/
TMAX

MAX/
TMAX

TRsq (4 * 32b)

TRnd (2 * 32b) TRmd (2 * 32b)
high low high low

–

high low

Rm (2 * 16b)

THRs [1:0]
Bit Selection

ADSP-TS101 TigerSHARC Processor Programming Reference 8-115

Instruction Set

Status Flags

TROV Overflow (TROV) is calculated every cycle

TRSOV Set whenever an overflow occurs and cleared only
by X/Ystat load

Figure 8-45. STRsq = ACS (TRmd, TRnd, Rm);

TRnd (4 * 16b) TRmd (4 * 16b) Rm (4 * 8b)
S3 S2 S1 S0 S3 S2 S1 S0 B3 B2 B1 B0

MAX MAX MAX MAX MAX MAX MAX MAX
THRs[1:0]

TRsq (8 * 16b)

Bit Selection

CLU Instructions

8-116 ADSP-TS101 TigerSHARC Processor Programming Reference

Options

TMAX replaces the MAX function with TMAX for example
added to the value from table:

Ln(1+ e(-|A - B|)) where A and B are the two compared
values

Example

The way to use the function in a trellis operation is as follows:

Loop: TR11:8 = ACS (TR1:0, TR5:4, R0);;

TR15:12 = ACS (TR3:2, TR7:6, R0);;

TR3:0 = ACS (TR9:8, TR13:12, R1);;

TR15:4 = ACS (TR11:10, TR15:14, R1); if nLC0E. jump Loop;;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-117

Instruction Set

Permute (Byte Word, CLU)

Syntax

{X|Y|XY}Rsd = PERMUTE (Rmd, Rn) ;

Function

The result, Rsd, is composed of bytes from first operand Rmd, which are
selected by the control word Rn.

Rn is broken into 8 nibbles (4 bit fields), and Rmd is broken into 8 bytes.
Each nibble in Rn is the control of the corresponding byte in Rsd. For
example, nibble 2 in Rn (bits 11:8) corresponds to byte 2 in Rsd (bits
23:16). The control word selects which byte in Rmd is written to the corre-
sponding byte in Rsd. The decode of a nibble in Rn is:

b#0000: Select byte 0 - bits 7:0 of low word

b#0001: Select byte 1 - bits 15:8 of low word

b#0010: Select byte 2 - bits 23:16 of low word

b#0011: Select byte 3 - bits 31:24 of low word

b#0100: Select byte 4 - bits 7:0 of high word

b#0101: Select byte 5 - bits 15:8 of high word

b#0110: Select byte 6 - bits 23:16 of high word

b#0111: Select byte 7 - bits 31:24 of high word

b#1XXX: Reserved

Different nibbles in Rn may point to the same byte in Rm. In this case the
same byte in Rmd is duplicated in Rsd.

Status Flags

Affected flags: None

CLU Instructions

8-118 ADSP-TS101 TigerSHARC Processor Programming Reference

This instruction can be executed in parallel to shifter instructions, multi-
plier instructions and CLU register load. It can not be executed in parallel
to other CLU instructions and ALU instructions of the same compute
block.

Example

R1:0 = 0x01234567_89abcdef

R4 = 0x03172454

R7:6 = permute (R1:0, R4)

Result R7:6 is 0xef89cd01_ab674567

ADSP-TS101 TigerSHARC Processor Programming Reference 8-119

Instruction Set

Permute (Short Word, CLU)

Syntax

{X|Y|XY}Rsq = PERMUTE (Rmd, -Rmd, Rn) ;

Function

The result, Rsq, is composed of shorts from first operand Rmd, and the
short-wise two’s complement values: -Rmd. The shorts are selected by the
control word Rn.

Rn is broken into 8 nibbles (4 bit fields), and Rsq is broken into 8 shorts.
Each nibble in Rn is the control of the corresponding short in Rmd (for
example, nibble 2 in Rn, which is bits 11:8, corresponds to short 2 in Rsd,
which is bits 47:32). The control word selects which short in Rmd is writ-
ten to the corresponding short in Rsd. The decode of a nibble in Rn is:

b#0000: Select short 0 - bits 15:0 of Rmd

b#0001: Select short 1 - bits 31:16 of Rmd

b#0010: Select short 2 - bits 47:32 of Rmd

b#0011: Select short 3 - bits 63:48 of Rmd

b#0100: Select short 0 - negated value of bits 15:0 of Rmd

b#0101: Select short 1 - negated value of bits 31:16 of Rmd

b#0110: Select short 2 - negated value of bits 47:32 of Rmd

b#0111: Select short 3 - negated value of bits 63:48 of Rmd

-

b#1XXX: Reserved

Different nibbles in Rn may point to the same short in Rmd. In this case the
same short in Rmd is duplicated in Rsd.

This instruction can not be executed in parallel to shifter instructions
(because a quad result doesn’t work with a shifter instruction) or ALU
instructions. It can be executed in parallel with multiplier instructions or
with load TR or load THR instructions.

CLU Instructions

8-120 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

Affected flags - Overflow (TROV) is calculated every cycle, set if one of the
shorts in Rmd is maximum negative (0x8000) and it is selected at least one
of the nibbles of Rn to the result.

TRSOV is set whenever an overflow occurs and cleared only by X/Ystat
load.

Example

R1:0 = 0x0123456789ABCDEF

-R1:0 = 0xFEDDBA9976553211

R4 = 0x03147623

R11:8 = permute (R1:0, -R1:0, R4)

Result R11:8 is 0xCDEF0123_89AB3211_FEDDBA99_45670123

ADSP-TS101 TigerSHARC Processor Programming Reference 8-121

Instruction Set

Multiplier Instructions
The multiplier performs all multiply operations for the processor on fixed-
and floating-point data and performs all multiply-accumulate operations for
the processor on fixed-point data. This unit also performs all complex mul-
tiply operations for the processor on fixed-point data. The multiplier also
executes data compaction operations on accumulated results when moving
data to the register file in fixed-point formats. For a description of ALU
operations, status flags, conditions, and examples, see “Multiplier” on
page 4-1.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “Register File
Registers” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Rmd – the register names in italic represent user-selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

Multiplier Instructions

8-122 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiply (Normal Word)

Syntax

{X|Y|XY}Rs = Rm * Rn {({U|nU}{I}{T}{S})} ;

{X|Y|XY}Rsd = Rm * Rn {({U|nU}{I})} ;

Function

This is a 32-bit multiplication of the normal-word value in register Rm
with the value in Rn. For fractional operands, if rounding is specified by
the absence of T, the result is rounded. (Note that option T does not apply
to integer data). The result is placed in register Rs.

Status Flags

MZ Set if all bits in result are zero

MN Set if result is negative

MV (MOS) Set according to the data format, under the follow-
ing conditions (MOS unchanged if MV is cleared):

Rsd = Rm * Rn; ⇒ no overflow

Figure 8-46. Multiply (Normal Word) Data Flow

32-bit operand

32-bit operand

32 x 32 mult

32 or 64-bit result

Rm

Rn

Rs

031

or Rsd

ADSP-TS101 TigerSHARC Processor Programming Reference 8-123

Instruction Set

Fractional ⇒ No overflow. 1

Signed integer ⇒ Upper 33 bits of M are not all
zeros or all ones

Unsigned integer ⇒ Upper 32 bits of M are not all
zeros

MU (MUS) Cleared (unchanged)

Options

() Rm, Rn signed fractional, result is rounded (if word)

(U) Rm, Rn unsigned

(nU) Rm signed, Rn unsigned

(I) Operands are integer

(T) Result is truncated (only for fractional if result is
word)

(S) Saturate (only for integer)

Note that not all allowed combinations are meaningful. For instance,
rounding and truncation only apply to fractions, but do not apply to inte-
gers. See “Multiplier Instruction Options” on page 4-8.

Example

XR1 = 0xFF46AC0C ;; /* xR1 = -0xB953F4 */

XR2 = 0xAF305216 ;;

XR0 = R1 * R2 (nUT) ;; /* xR0 = 0xFF812CA1 */

1 Except when multiplying the most negative fraction times itself, in which case MV and MOS are set.

Multiplier Instructions

8-124 ADSP-TS101 TigerSHARC Processor Programming Reference

This multiply instruction specifies a 32-bit multiply of two fractions. R1 is
signed, and R2 is unsigned. The multiplication produces a 32-bit unsigned
and truncated result, and the MN flag is set indicating the result is negative.

XR0 = 0x0046AC0C ;;

XR1 = 0x00005216 ;;

XR3:2 = R0 * R1(UI) ;; /* xR3 = 0x00000016, xR2 = 0xA92EA108 */

This multiply instruction specifies a 32-bit multiply of two unsigned inte-
gers stored in R0 and R1. The result is a 64-bit unsigned integer. The
upper 32 bits are stored in R3, and the lower 32 bits in R2. No flags are set
for this example.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-125

Instruction Set

Multiply-Accumulate (Normal Word)

Syntax

{X|Y|XY}MRa += Rm * Rn {({U}{I}{C|CR})} ;

{X|Y|XY}MRa -= Rm * Rn {({I}{C|CR})} ;

/* where MRa is either MR1:0 or MR3:2 */

Function

These instructions provide a 32-bit multiply-accumulate operation that
multiplies the fields in registers Rm and Rn, then adds the result to (or sub-
tracts the result from) the specified MR register value. The result is 80 bits
and is placed in the MR accumulation register, which must be the same MR
register that provided the input. Since MR1:0 and MR3:2 are only 64 bits,
the extra 16 bits (for the 80-bit accumulation) are stored in the MR4 regis-
ter. MR4[15:0] holds the extra bits when the destination of the
multiply-accumulate is MR1:0, and MR4[31:16] holds the extra bits when
the destination of the multiply-accumulate is MR3:2. Saturation is always
active.

The previous diagram is for MR3:2 += Rm * Rn (I) (U) (C) (CR). If
MR1:0 += Rm * Rn (I) (U) (C) (CR) were used, the additional 16 bits
for the accumulation would be placed in the lower half of the MR4 register.

Status Flags

MZ Unaffected

MN Unaffected

MV Unaffected

MU (MUS) Unaffected

MOS Set according to the final result of the sum and data
type. (see following)

Multiplier Instructions

8-126 ADSP-TS101 TigerSHARC Processor Programming Reference

For result, MOS is set according to:

• Signed fractional – if final result is equal to or larger than 215, or if
less than –215

• Signed integer – if final result is equal to or larger than 279, or if
less than –279

• Unsigned fractional (add only) – if final result is equal to or large
than 216

• Unsigned integer (add only) – if final result is equal to or larger
than 280

Options

(U) Rm, Rn unsigned (add only)

(I) Integer

Figure 8-47. Multiply Accumulate (Normal Word) Data Flow

32-bit operand

32-bit operand

64-bit result

Rm

Rn

031

063

32 x 32
mult

MRd

adder

64-bit result

063

MR4

1632

Previous 80-bit content of MR

64-bit result

063

MR4

1632

ADSP-TS101 TigerSHARC Processor Programming Reference 8-127

Instruction Set

(C) Clear MR prior to accumulation

(CR) Clear and Round

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

/*{X|Y|XY}MRa += Rm * Rn {({U}{I}{C|CR})} ; */

R2 = -2 ;;

R1 = 5 ;;

MR3:2 += R1 * R2 (I) ;;

In this example, if the previous contents of the MR3:2 register was 7, the
new contents would be –3. No flags would be set.

R0 = 0xF0060054 ;;

R1 = 0xF0356820 ;;

R2 = 0xF036AC42 ;;

R3 = 0xD721C843 ;;

MR3:2 += R0 * R2 (UI) ;;

MR3:2 += R0 * R2 (UI) ;;

This example shows how the MR4 register is used to store the extra bits for
the 80 bit accumulation. The contents of the MR4:0 registers after the sec-
ond multiply-accumulate are:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0x76F90B50

MR3 = 0xC271C629

MR4 = 0x00010000

R0 = 0xF0060054 ;;

R1 = 0xF0356820 ;;

R2 = 0xF036AC42 ;;

R3 = 0xD721C843 ;;

Multiplier Instructions

8-128 ADSP-TS101 TigerSHARC Processor Programming Reference

MR1:0 += R0 * R2 (UI) ;;

MR1:0 += R0 * R2 (UI) ;;

This example is identical to the previous, except the MR1:0 registers are
used instead of the MR3:2 registers. The contents of the MR4:0 registers
after the second multiply-accumulate are:

MR0 = 0x76F90B50

MR1 = 0xC271C629

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000001

Notice the difference in placement of the additional 16 bits in the MR4 reg-
ister from the previous example.

/* {X|Y|XY}MRa -= Rm * Rn {({I}{C|CR})} ; */

R0 = 2;;

R1 = 5;;

R2 = -10;;

R3 = 6;;

MR3:2 -= R0 * R1 (I);;

MR3:2 -= R2 * R3 (I);;

The contents of the MR4:0 registers after the first multiply-accumulate
instruction are:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xFFFFFFF6

MR3 = 0xFFFFFFFF

MR4 = 0xFFFF0000

After the second multiply-accumulate, the results are:

MR0 = 0x00000000

MR1 = 0x00000000

ADSP-TS101 TigerSHARC Processor Programming Reference 8-129

Instruction Set

MR2 = 0x00000032

MR3 = 0x00000000

MR4 = 0x00000000

R0 = 2;;

R1 = 5;;

R2 = -10;;

R3 = 6;;

MR1:0 -= R0 * R1 (I);;

MR1:0 -= R2 * R3 (I);;

The contents of the MR4:0 registers after the first multiply-accumulate
instruction are:

MR0 = 0xFFFFFFF6

MR1 = 0xFFFFFFFF

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x0000FFFF

After the second multiply-accumulate, the results are:

MR0 = 0x00000032

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

Multiplier Instructions

8-130 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiply-Accumulate/Move (Dual Operation, Normal Word)

Syntax

{X|Y|XY}Rs = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Function

This is a 32-bit multiply-accumulate that multiplies the 32-bit value in
register Rm with the value in Rn, adds this result to MRa and transfers the
previous contents of MRa to Rs. The clear option (C) clears MRa register
after writing its value to Rs or Rsd, and before adding it to the new multi-
plication result. The MR to register file transfer is always truncated.

When the register that serves as destination in the transfer is a register pair
Rsd, a 64-bit accumulation value is transferred to Rsd (see “Multiplier
Operations” on page 4-4). When the destination register is a single regis-
ter Rs, the portion of the 64-bit accumulation value that is transferred
depends on the data type—when integer, the lower portion of the value is
transferred; when fraction, the upper.

Regarding the multiply-accumulate operation, the extra 16 bits (for the
80-bit accumulation) are stored in the MR4 register. MR4[15:0] holds the
extra bits when the destination of the multiply-accumulate is MR1:0, and
MR4[31:16] holds the extra bits when the destination of the multiply-accu-
mulate is MR3:2.

Status Flags

MUS Unaffected

MZ Unaffected

MN Unaffected

MV Unaffected

ADSP-TS101 TigerSHARC Processor Programming Reference 8-131

Instruction Set

MOS Set according to the final result of the sum and data
type. (see following)

For result, MOS is set according to:

• Signed fractional – if final result is equal to or larger than 215, or if
less than –215

• Signed integer – if final result is equal to or larger than 279, or if
less than –279. Also set for Rs = MRa, MRa += Rm * Rn (Rs single,
MRa double) if the old value of MRa is equal to or larger than 231 or
smaller than –231

• Unsigned fractional – if final result is equal to or larger than 216

• Unsigned integer – if final result is equal to or larger than 280. Also
set for Rs = MRa, MRa += Rm * Rn (Rs single, MRa double) if the old
value of MRa is equal to or larger than 232 or smaller than –231

Other flags are unaffected.

Options

(U) Rm, Rn unsigned

(I) Integer

(C) Clear MR after transfer to register file, and prior to
accumulation

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Multiplier Instructions

8-132 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

Listing 8-1. Example 1

R0 = 2 ;;

R1 = 5 ;;

R2 = 10 ;;

R3 = 6 ;;

R4 = MR1:0, MR1:0 += R0 * R1 (UIC) ;;

R4 = MR1:0, MR1:0 += R2 * R3 (UIC) ;;

With the example in Listing 8-1, after the execution of the first instruc-
tion containing the register move and multiply, the results of the MR4:0
register are (assuming previous contents of MR4:0 were zero):

MR0 = 0x0000000A

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

The R4 register is loaded with the value 0x00000000.

After execution of the second instruction, the MR4:0 registers contain:

MR0 = 0x0000003C

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

The R4 register is loaded with the value 0x0000000A.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-133

Instruction Set

Listing 8-2. Example 2

R0 = 0x12345678 ;;

R1 = 0x87654321 ;;

R2 = 0xA74EF254 ;;

R3 = 0xB4ED9032 ;;

R4 = MR3:2, MR3:2 += R0 * R1 ;;

R4 = MR3:2, MR3:2 += R2 * R3 ;;

With the example in Listing 8-2, after the execution of the first instruc-
tion containing the register move and multiply, the results of the MR4:0
register are (assuming previous contents of MR4:0 were zero):

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xE1711AF0

MR3 = 0xEED8ED1A

MR4 = 0xFFFF0000

The R4 register is loaded with the value 0x00000000.

After execution of the second instruction, the MR4:0 registers contain:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xDC6E43C0

MR3 = 0x22DD717B

MR4 = 0x00000000

The R4 register is loaded with the value 0xEED8ED1A.

Listing 8-3. Example 3

R0 = 2000;;

R1 = 4000;;

R2 = 3000;;

Multiplier Instructions

8-134 ADSP-TS101 TigerSHARC Processor Programming Reference

R3 = -5000;;

R5:4 = MR1:0, MR1:0 += R0 * R1 (I);;

R5:4 = MR1:0, MR1:0 += R2 * R3 (I);;

R5:4 = MR1:0, MR1:0 += R0 * R1 (I);;

With the example in Listing 8-3, after the execution of the first instruc-
tion containing the register move and multiply, the results of the MR4:0
register are (assuming previous contents of MR4:0 were zero):

MR0 = 0x007A1200

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

The R5 and R4 registers are loaded with the value 0x00000000.

After execution of the second instruction, the MR4:0 registers contain:

MR0 = 0xFF953040

MR1 = 0xFFFFFFFF

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x0000FFFF

The R5 register is loaded with the value 0x00000000, and the R4 register is
loaded with 0x007A1200.

After execution of the third instruction, the MR4:0 registers contain:

MR0 = 0x000F4240

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

The R5 register is loaded with the value 0xFFFFFFFF, and the R4 register is
loaded with 0xFF953040.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-135

Instruction Set

Listing 8-4. Example 4

R0 = 100 ;;

R1 = 50 ;;

R2 = 300 ;;

R3 = 70 ;;

R5:4 = MR1:0, MR1:0 += R0 * R1 ;;

R5:4 = MR1:0, MR1:0 += R2 * R3 ;;

Assume the previous contents of the MR4:0 registers are as follows:

MR0 = 0xFFFFF500

MR1 = 0xFFFFFFFF

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000000

With the example in Listing 8-4, after the execution of the first instruc-
tion containing the register move and multiply, the results of the MR4:0
register are:

MR0 = 0x00000888

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000001

The R5 register is loaded with the value 0xFFFFFFFF, and the R4 register is
loaded with the value 0xFFFFF500.

After execution of the second instruction, the MR4:0 registers contain:

MR0 = 0x00005A90

MR1 = 0x00000000

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00000001

Multiplier Instructions

8-136 ADSP-TS101 TigerSHARC Processor Programming Reference

The R5 register is loaded with the value 0xFFFFFFFF, and the R4 register is
loaded with the value 0xFFFFFFFF. As the contents of the MR4 register have
saturated, the maximum 64 bit resolution that can be represented in the
double R5:4 double register. The MOS flag is not set.

Listing 8-5. Example 5

R0 = 0x4236745D ;;

R1 = 0x53ACBE34 ;;

R2 = 0xF38D153C ;;

R3 = 0x4129EDA1 ;;

R5:4 = MR3:2, MR3:2 += R0 * R1 ;;

R5:4 = MR3:2, MR3:2 += R2 * R3 ;;

Assume the previous contents of the MR4:0 registers are as follows:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0x12345678

MR3 = 0xFFFFFFFF

MR4 = 0x7FFF0000

With the example in Listing 8-5, after the execution of the first instruc-
tion containing the register move and multiply, the results of the MR4:0
register are:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xFFFFFFFF

MR3 = 0xFFFFFFFF

MR4 = 0x7FFF0000

The R5 register is loaded with the value 0x7FFFFFFF, and the R4 register is
loaded with the value 0xFFFFFFFF. This is due to the additional 16 bit
overflow bits being set so saturation occurs on the 64 bit result written to
registers R5:4. The MOS bit is also set.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-137

Instruction Set

After execution of the second instruction, the MR4:0 registers contain:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xD5FDCD77

MR3 = 0xF9A990DC

MR4 = 0x7FFF0000

The R5 register is loaded with the value 0x7FFFFFFF, and the R4 register is
loaded with 0xFFFFFFFF. The MOS flag remains set. Although this instruc-
tion did not result in the MOS flag being set, this flag is a sticky flag and
must be explicitly cleared.

Multiplier Instructions

8-138 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiply (Quad-Short Word)

Syntax

{X|Y|XY}Rsd = Rmd * Rnd {({U}{I}{T}{S})} ;

{X|Y|XY}Rsq = Rmd * Rnd {({U}{I})} ;

Function

This is a 16-bit quad fixed-point multiplication of the four shorts in regis-
ter Rm with the four shorts in Rn. For fractional operands, if rounding is
specified by the absence of T, the result is rounded. (Note that option T
does not apply to integer data). The result is placed in register Rs.

Status Flags

MZ Set if all bits in result are zero in one of the results

MN Set if result is negative in one of the results

Figure 8-48. Multiply (Quad Short Word) Data Flow

quad 16-bit operand

quad 16-bit operand

quad 16 or 32-bit result

Rmd

Rnd

Rsd

063

063

16 x 16
mult

16 x 16
mult

16 x 16
mult

16 x 16
mult

or Rsq

ADSP-TS101 TigerSHARC Processor Programming Reference 8-139

Instruction Set

MV (MOS) Set according to the data format, under the follow-
ing conditions (MOS unchanged if MV is cleared):

Rsq = Rmd * Rnd; ⇒ no overflow

Fractional ⇒ No overflow1

Signed integer ⇒ Upper 17 bits of M are not all
zeros or all ones

Unsigned integer ⇒ Upper 16 bits of M are not all
zeros

MU (MUS) Cleared

Options

() Rm, Rn signed fractional, result is rounded (if result
is quad short)

(U) Rm, Rn unsigned

(I) Operands are integer

(T) Result is truncated (only for fractional if result is
quad short)

(S) Saturate (only for integer)

See “Multiplier Instruction Options” on page 4-8 for more details of the
available options.

1 Except when multiplying the most negative fraction times itself, in which case MV and MOS are set.

Multiplier Instructions

8-140 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

XR0 = 0x42861234 ;;

XR1 = 0x782F4217 ;;

XR2 = 0x8AC90FEA ;;

XR3 = 0x724D76EB ;;

XR5:4 = R1:0 * R3:2 (T) ;; /* xR5 = 6B52 3D66 , xR4 = C314 0243 */

This example specifies four 16-bit multiplications of signed fractional data
resulting in four 16-bit truncated signed fractional results. The xMN flag is
set in this example as the 16-bit result stored in the upper 16 bits of the
xR4 register is negative. When flags are set in this manner, there is no indi-
cation as to which operand multiply was the cause of the flag being set.
The flag indicates that at least one of the results produced a negative
result.

XR0 = 0x00060004 ;;

XR1 = 0x00030007 ;;

XR2 = 0x00090000 ;;

XR3 = 0x00050008 ;;

XR7:4 = R1:0 * R3:2 (I) ;;

/* xR7 = 0x0000000F, xR6 = 0x00000038, xR5 = 0x00000036

xR4 = 0x00000000 */

This example specifies four 16-bit multiplies of signed integer 16-bit val-
ues and results in four 32-bit signed integer values. The xMZ flag is set in
this case, as one of the results is equal to zero.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-141

Instruction Set

Multiply-Accumulate (Quad-Short Word)

Syntax

{X|Y|XY}MRb += Rmd * Rnd {({U}{I}{C})} ;

/* where MRb is either MR1:0, MR3:2 */

{X|Y|XY}MR3:0 += Rmd * Rnd {({U}{I}{C|CR})} ;{X|Y|XY}Rsd = MRb,

MRb += Rmd * Rnd {{I}{C})} ; dual operation
/* where MRb is either MR1:0, MR3:2, or MR3:0 */

Function

This is a 16-bit quad fixed-point multiply-accumulate operation that mul-
tiplies the four short words in register pair Rmd with the four shorts in Rnd,
and adds the four results element-wise to the four values in the specified
MR register. The results are placed in the MR accumulation register, which
must be the same MR register that provided the input.

When using MR3:0, the four multiplication results are accumulated in the
four MR registers at full 32-bit precision. When using either MR3:2 or
MR1:0, the four multiplier results are accumulated in two MR registers at
16-bit precision.

The extra bits from the multiplications are stored in MR4. Saturation is
always active. See Figure 8-49.

Refer to “Multiplier Result Overflow (MR4) Register” on page 4-17 for a
description of the fields in MR4.

Status Flags

MZ Unaffected

MN Unaffected

MV Unaffected

MU (MUS) Unaffected

Multiplier Instructions

8-142 ADSP-TS101 TigerSHARC Processor Programming Reference

MOS Set according to the final result of the sum and data
type and size. (see following)

For word result (MR3:0 = Rmd * Rnd), MOS is set according to:

• Signed fractional – if final result is equal to or larger than 27, or if
less than –27

• Signed integer – if final result is equal to or larger than 239, or if
less than –239

• Unsigned fractional – if final result is equal to or larger than 28

• Unsigned integer – if final result is equal to or larger than 240

Figure 8-49. Quad 16-Bit Result

quad 16-bit operand

quad 16-bit operand

quad 16 or 32-bit result

Rmd

Rnd

063

063

16 x 16
mult

16 x 16
mult

16 x 16
mult

16 x 16
mult

quad 16 or 32-bit result MR3:0

MR3:0

4 4 4 4

MR4

ADSP-TS101 TigerSHARC Processor Programming Reference 8-143

Instruction Set

For short result MR1:0/3:2 = Rmd * Rnd, MOS is set according to:

• Signed fractional – if final result is equal to or larger than 23, or if
less than –23

• Signed integer – if final result is equal to or larger than 219, or if
less than –219, or if the multiplication intermediate result is equal
to or larger than 215 or smaller than –215

• Unsigned fractional – if final result is equal to or larger than 24

• Unsigned integer – if final result is equal to or larger than 220 or if
the multiplication intermediate result is equal to or larger than 216

Options

(U) Rm, Rn unsigned

(I) Integer

(C) Clear MR prior to accumulation

(CR) Clear and Round

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

R0 = 0x70000004 ;;

R1 = 0x06000002 ;;

R2 = 0xF0000005 ;;

R3 = 0xD0000006 ;;

MR3:0 += R1:0 * R3:2 (UI) ;;

MR3:0 += R1:0 * R3:2 (UI) ;;

Multiplier Instructions

8-144 ADSP-TS101 TigerSHARC Processor Programming Reference

This example shows a quad 16-bit multiply-accumulate where the result of
each multiply is stored at full 32-bit precision. After execution of the sec-
ond multiply-accumulate, the 32-bit precision is not enough and the MR4
register is used for the overflow.

The results of the MR4:0 registers after the second multiply-accumulate
are:

MR0 = 0x00000028

MR1 = 0x4A000000

MR2 = 0x00000018

MR3 = 0x09C00000

MR4 = 0x00000100

No flags were set during this example.

R0 = 0x70000004 ;;

R1 = 0x06000002 ;;

R2 = 0xF0000005 ;;

R3 = 0xD0000006 ;;

MR3:2 += R1:0 * R3:2 (UI) ;;

MR3:2 += R1:0 * R3:2 (UI) ;;

The results of the MR4:0 registers after the second multiply-accumulate are
as follows:

MR0 = 0x00000000

MR1 = 0x00000000

MR2 = 0xFFFE0028

MR3 = 0xFFFE0018

MR4 = 0x10100000

The MOS flag is set on both multiply-accumulate instructions in this exam-
ple due to the saturation of two of the 16-bit multiplies.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-145

Instruction Set

The next example is identical to the previous, except it uses the MR1:0 reg-
isters for the result instead of MR3:2.

R0 = 0x70000004;;

R1 = 0x06000002;;

R2 = 0xF0000005;;

R3 = 0xD0000006;;

MR1:0 += R1:0 * R3:2 (UI);;

MR1:0 += R1:0 * R3:2 (UI);;

The results of the MR4:0 registers after the second multiply-accumulate are
as follows:

MR0 = 0xFFFE0028

MR1 = 0xFFFE0018

MR2 = 0x00000000

MR3 = 0x00000000

MR4 = 0x00001010

The MOS flag is set on both multiply-accumulate instructions in this exam-
ple due to the saturation of two of the 16-bit multiplies.

Notice this time how the positioning of the set bits in the MR4 register dif-
fers from previous examples due to the MR4 register only containing 4 bits
worth of overflow for the accumulation (20 bits in total).

Multiplier Instructions

8-146 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiply-Accumulate (Dual Operation, Quad-Short Word)

Syntax

{X|Y|XY}Rsd = MRb, MRb += Rmd * Rnd {{I}{C})} ; dual operation
/* where MRb is either MR1:0, MR3:2, or MR3:0 */

Function

This is a 16-bit quad fixed-point multiply-accumulate operation that mul-
tiplies the four short words in register pair Rmd with the four shorts in Rnd,
adds the four results element-wise to the four values in MR, and transfers
the contents of MRa into Rs.

When using MR[3:0], the four multiplication results are accumulated in
the four MR registers at full 32-bit precision. When using either MR[3:2] or
MR[1:0], the four multiplier results are accumulated in two MR registers at
16-bit precision.

The clear option (C) prevents the old value of MRa from being added to the
new multiplication result. The operations are always saturated. The MR to
register file transfer is always truncated.

For the dual result (uses MR3:2, or MR1:0), the extra 4-bit bits are stored in
MR4, according to the specification in “Multiplier Result Overflow (MR4)
Register” on page 4-17. For the quad result (uses MR3:0), the extra 8-bit
bits are stored in MR4, according to the specification in “Multiplier Result
Overflow (MR4) Register” on page 4-17. Saturation is always active.

When the register that serves as destination in the transfer is a register
quad (MR3:0), four 40-bit accumulation values are truncated according to
data type (integer or fractional) and transferred to Rsd.

When the MR registers that serve as a source for the transfer are an MR regis-
ter pair (MR1:0, MR3:2), the four 20-bit accumulation values are transferred
to Rsd.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-147

Instruction Set

Status Flags

MZ Unaffected

MN Unaffected

MV Unaffected

MU Unaffected

MOS Set according to the final result of the sum and data
type and size. (see following)

For word result (MR3:0 += Rmd * Rnd), MOS is set according to:

• Signed fractional – if final result is equal to or larger than 27, or if
less than –27

• Signed integer – if final result is equal to or larger than 239, or if
less than –239

• Unsigned fractional – if final result is equal to or larger than 28

• Unsigned integer – if final result is equal to or larger than 240

For short result (MR1:0/3:2 += Rmd * Rnd), MOS is set according to:

• Signed fractional – if final result is equal to or larger than 23, or if
less than –23

• Signed integer – if final result is equal to or larger than 219, or if
less than –219, or if the multiplication intermediate result is equal
to or larger than 215 or smaller than –215

• Unsigned fractional – if final result is equal to or larger than 24

• Unsigned integer – if final result is equal to or larger than220 or if
the multiplication intermediate result is equal to or larger than 216

Multiplier Instructions

8-148 ADSP-TS101 TigerSHARC Processor Programming Reference

Options

(U) Rm, Rn unsigned

(I) Integer

(C) Clear MR after transfer to register file, and prior to
accumulation

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

R0 = 0x00080007 ;;

R1 = 0x00060005 ;;

R2 = 0x00040003 ;;

R3 = 0x00020001 ;;

R5:4 = MR1:0, MR1:0 += R1:0 * R3:2 (UIC) ;;

R5:4 = MR1:0, MR1:0 += R1:0 * R3:2 (UI) ;;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00300040

MR3 = 0x00500060

MR4 = 0x00000001

After execution of the first register transfer and multiply instruction, the
values of all modified registers are:

R4 = 0x0080FFFF

R5 = 0x01000200

MR0 = 0x00200015

MR1 = 0x000C0005

MR2 = 0x00300040

ADSP-TS101 TigerSHARC Processor Programming Reference 8-149

Instruction Set

MR3 = 0x00500060

MR4 = 0x00000000

After execution of the next instruction, the above registers are set to the
following:

R4 = 0x00200015

R5 = 0x000C0005

MR0 = 0x0040002A

MR1 = 0x0018000A

MR2 = 0x00300040

MR3 = 0x00500060

MR4 = 0x00000000

No flags are set during the process.

R0 = 0x00080007 ;;

R1 = 0x00060005 ;;

R2 = 0x00040003 ;;

R3 = 0x00020001 ;;

R5:4 = MR3:2, MR3:2 += R1:0 * R3:2 (UIC) ;;

R5:4 = MR3:2, MR3:2 += R1:0 * R3:2 (UI) ;;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00300040

MR3 = 0x00500060

MR4 = 0x00000001

After execution of the first register transfer and multiply instruction, the
values of all modified registers are:

R4 = 0x00300040

R5 = 0x00500060

MR0 = 0x00800050

Multiplier Instructions

8-150 ADSP-TS101 TigerSHARC Processor Programming Reference

MR1 = 0x01000200

MR2 = 0x00200015

MR3 = 0x000C0005

MR4 = 0x00000000

After execution of the next instruction, the above registers are set to the
following:

R4 = 0x00200015

R5 = 0x000C0005

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x0040002A

MR3 = 0x0018000A

MR4 = 0x00000000

No flags are set during the process.

R0 = 0x85006300 ;;

R1 = 0x00060005 ;;

R2 = 0x00100020 ;;

R3 = 0x00020001 ;;

R5:4 = MR3:0, MR3:0 += R1:0 * R3:2 (UIC) ;;

R5:4 = MR3:0, MR3:0 += R1:0 * R3:2 (UI) ;;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

ADSP-TS101 TigerSHARC Processor Programming Reference 8-151

Instruction Set

After execution of the first register transfer and multiply instruction, the
values of all modified registers are:

R4 = 0xFFFFFFFF

R5 = 0x00600040

MR0 = 0x00000015

MR1 = 0x00000020

MR2 = 0x00000005

MR3 = 0x0000000C

MR4 = 0x00000000

After execution of the next instruction, the above registers are set to the
following:

R4 = 0x00200015

R5 = 0x000C0005

MR0 = 0x0000002A

MR1 = 0x00000040

MR2 = 0x0000000A

MR3 = 0x00000018

MR4 = 0x00000000

No flags are set during the process.

Multiplier Instructions

8-152 ADSP-TS101 TigerSHARC Processor Programming Reference

Complex Multiply-Accumulate (Short Word)

Syntax

{X|Y|XY}MRa += Rm ** Rn {({I}{C|CR}{J})} ;

/* where MRa is either MR1:0 or MR3:2 */

Function

This is a 16-bit complex multiply-accumulate operation that multiplies
the complex value in register Rm with the complex value in Rn and adds the
result to the specified MR registers. The result is placed in the MR accumula-
tion register, which must be the same MR register that provided the input.
Saturation is always active. See “Complex Conjugate Option” on
page 4-16 and Figure 8-50.

Figure 8-50. Complex Multiply–Accumulate (Short Word) Data Flow

real 1

dual accumulator

Rm

Rn

M1:0

031

16 x 16
mult

16 x 16
mult

16 x 16
mult

16 x 16
mult

imag 1

real 2imag 2

3:2

dual accumulator
M1:0

3:2
real 1imag 1⇒ input

result ⇒ real 1imag 1

-+

ADSP-TS101 TigerSHARC Processor Programming Reference 8-153

Instruction Set

There are eight overflow bits for each accumulated real and imaginary
number. With MR1:0 += Rm ** Rn, bits 7:0 of the MR4 register contain the
overflow bits for the real part of the accumulation, and bits 15:8 contain
the overflow for the imaginary part of the accumulation. With
MR3:2 += Rm ** Rn, bits 23:16 of the MR4 register contain the overflow
bits for the real part of the accumulation, and bits 31:24 contain the over-
flow for the imaginary part of the accumulation.

It is important to note that the conjugate option (J) does not perform the
conjugate of the result. Looking at the complex multiply
(A + jB) * (C + jD), normally the conjugate would be the result of
(A - jB) * (C - jD). On the TigerSHARC processor, the conjugate option
provides (A + jB) * (C - jD). The result of a conjugate complex multiply is
the original first value multiplied by the complex conjugate of the second
value.

Status Flags

MZ Unaffected

MN Unaffected

MU Unaffected

MUS Unaffected

MOS Set according to the final result of the sum and data
type and size. (see following)

For word result (MR3:0 = Rmd * Rnd):

• Signed fractional – if any part of the final result (real or imaginary)
is equal to or larger than 27, or if less than –27

• Signed integer – if any part of the final result (real or imaginary) is
equal to or larger than 239, or if less than –239.

Multiplier Instructions

8-154 ADSP-TS101 TigerSHARC Processor Programming Reference

• Unsigned fractional – if any part of the final result (real or imagi-
nary) is equal to or larger than 28

• Unsigned integer – if any part of the final result (real or imaginary)
is equal to or larger than 240

Options

(I) Integer

(C) Clear MR

(CR) Clear and Round

(J) Multiplication of value in Rm times the complex
conjugate of the value in Rn

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

R0 = 0xFFF50009;;

R1 = 0x00060004;;

MR1:0 += R0 ** R1 (IC);;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

ADSP-TS101 TigerSHARC Processor Programming Reference 8-155

Instruction Set

After execution of the complex multiply-accumulate instruction, the val-
ues of all modified registers are:

MR0 = 0x00000066

MR1 = 0x0000000A

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000000

No flags are set.

R0 = 0xFFF50009;;

R1 = 0x00060004;;

MR3:2 += R0 ** R1 (ICJ);;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

After execution of the complex multiply-accumulate instruction, the val-
ues of all modified registers are:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0xFFFFFFE2

MR3 = 0xFFFFFF9E

MR4 = 0xFFFF0001

No flags are set during the operation.

Multiplier Instructions

8-156 ADSP-TS101 TigerSHARC Processor Programming Reference

Complex Multiply-Accumulate/Move (Dual Operation, Short
Word)

Syntax

{X|Y|XY}Rs = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Function

This is a 16-bit complex multiply-accumulate operation that multiplies
the complex value in register Rm with the complex value in Rn, adds the
result to the specified MR registers, and transfers the previous contents of
MRa in Rs. The Clear option prevents the old value of MRa from being
added to the new multiplication result. The operations are always
truncated.

The MR to register file transfer moves a 64-bit complex value stored in reg-
ister pair MR3:2 or MR1:0 (32-bit real, and 32-bit imaginary components)
into destination register Rs or into register pair Rsd. In the case of destina-
tion register Rs, the 32-bit real component in MR2 or MR0 is transferred to
the 16 LSBs of Rs, and the imaginary component in MR3 or MR1 to the 16
MSBs of Rs. In the case of destination register pair Rsd, the 32-bit real
component in MR2 or MR0 is transferred to the lower register in pair Rsd,
and the imaginary component in MR3 or MR1 to the upper register in pair
Rsd.

M is one of the 40-bit multiplication results that is written into MR3:0.
The extra 8-bit bits of the four results are stored in MR4. Saturation is
always active.

For an integer transfer to the single Rs register, the lower 16 bits of the
real and imaginary parts are transferred to the Rs register. If the 32-bit real
signed integer component stored in MR2 or MR0 exceeds 215 or –216, the
value to be transferred has exceeded the value that can be represented by
16 bits, and saturation occurs. The same saturation rule applies for

ADSP-TS101 TigerSHARC Processor Programming Reference 8-157

Instruction Set

unsigned integer data, signed/unsigned fractional data, and the imaginary
part stored in MR3 and MR1. For fractional data transfers, the upper 16 bits
of both the real and imaginary data are transferred to the register.

Status Flags

MZ Unaffected

MN Unaffected

MV Unaffected

MU Unaffected

Figure 8-51. Complex Multiply-Accumulate With Transfer MR Register
(Dual Operation, Short Word) Data Flow

real 1

dual accumulator

Rm

Rn

M1:0

031

16 x 16
mult

16 x 16
mult

16 x 16
mult

16 x 16
mult

imag 1

real 2imag 2

3:2

dual accumulator
M1:0

3:2
real 1imag 1⇒ input

result ⇒ real 1imag 1

-+

Multiplier Instructions

8-158 ADSP-TS101 TigerSHARC Processor Programming Reference

MUS Unaffected

MV (MOS) Set according to the final result of the sum and data
type and size. (see following)

For word result (MR3:0 = Rmd * Rnd), MOS set according to:

• Signed fractional – if any part of the final result (real or imaginary)
is equal to or larger than 27, or if less than –27

• Signed integer – if any part of the final result (real or imaginary) is
equal to or larger than 239, or if less than –239

• Unsigned fractional – if any part of the final result (real or imagi-
nary) is equal to or larger than 28

• Unsigned integer – if any part of the final result (real or imaginary)
is equal to or larger than 240

Options

(I) Integer

(C) Clear MR after transfer to register file, and prior to
accumulation

(J) Conjugate

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

R0 = 0xFFF50009 ;;

R1 = 0x00060004 ;;

R2 = 0x00100007 ;;

R3 = 0x001AFFF6 ;;

R4 = MR1:0, MR1:0 += R0 ** R1 (IC) ;;

R4 = MR1:0, MR1:0 += R0 ** R1 (I) ;;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-159

Instruction Set

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

After execution of the first register transfer and complex multiply-accu-
mulate instruction, the values of all modified registers are:

R4 = 0x7FFF7FFF

MR0 = 0x00000066

MR1 = 0x0000000A

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000000

No flags are set during the operation.

After the next instruction is executed, the contents become:

R4 = 0x000A0066

MR0 = 0x000000CC

MR1 = 0x00000014

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000000

No flags are set.

R0 = 0xFFF50009;;

R1 = 0x00060004;;

R2 = 0x00100007;;

R3 = 0x001AFFF6;;

R4 = MR3:2, MR3:2 += R0 ** R1 (ICJ);;

R4 = MR3:2, MR3:2 += R0 ** R1 (IJ);;

Multiplier Instructions

8-160 ADSP-TS101 TigerSHARC Processor Programming Reference

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

After execution of the first register transfer and complex multiply-accu-
mulate instruction, the values of all modified registers are:

R4 = 0x00600040

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0xFFFFFFE2

MR3 = 0xFFFFFF9E

MR4 = 0xFFFF0001

No flags are set during the operation.

After the next instruction is executed, the contents become:

R4 = 0xFF9EFFE2

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0xFFFFFFC4

MR3 = 0xFFFFFF3C

MR4 = 0xFFFF0001

No flags are set.

R0 = 0xFFF50009;;

R1 = 0x00060004;;

R2 = 0x00100007;;

R3 = 0x001AFFF6;;

R5:4 = MR1:0, MR1:0 += R0 ** R1 (IC);;

R5:4 = MR1:0, MR1:0 += R0 ** R1 (I);;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-161

Instruction Set

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

After execution of the first register transfer and complex multiply-accu-
mulate instruction, the values of all modified registers are:

R4 = 0x7FFFFFFF

R5 = 0x01000200

MR0 = 0x00000066

MR1 = 0x0000000A

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000000

No flags are set during the operation.

After the next instruction is executed, the contents become:

R4 = 0x00000066

R5 = 0x0000000A

MR0 = 0x000000CC

MR1 = 0x00000014

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000000

No flags are set.

R0 = 0xFFF50009;;

R1 = 0x00060004;;

R2 = 0x00100007;;

R3 = 0x001AFFF6;;

Multiplier Instructions

8-162 ADSP-TS101 TigerSHARC Processor Programming Reference

R5:4 = MR3:2, MR3:2 += R0 ** R1 (ICJ);;

R5:4 = MR3:2, MR3:2 += R0 ** R1 (IJ);;

If the previous contents of the MR register were:

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0x00000040

MR3 = 0x00000060

MR4 = 0x00000001

After execution of the first register transfer and complex multiply-accu-
mulate instruction, the values of all modified registers are:

R4 = 0x00000040

R5 = 0x00000060

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0xFFFFFFE2

MR3 = 0xFFFFFF9E

MR4 = 0xFFFF0001

No flags are set during the operation.

After the next instruction is executed, the contents become:

R4 = 0xFFFFFFE2

R5 = 0xFFFFFF9E

MR0 = 0x00800050

MR1 = 0x01000200

MR2 = 0xFFFFFFC4

MR3 = 0xFFFFFF3C

MR4 = 0xFFFF0001

No flags are set.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-163

Instruction Set

Multiply (Floating-Point, Normal/Extended Word)

Syntax

{X|Y|XY}FRs = Rm * Rn {(T)} ; /* Normal (32-bit) Word */

{X|Y|XY}FRsd = Rmd * Rnd {(T)} ; /* Extended (40-bit) Word */

Function

This is a 32/40-bit floating-point multiplication of the value in register Rm
with the value in Rn. The result is placed in register Rs and rounded unless
the T option is specified. Single-precision multiplication is 32-bit IEEE
floating-point. Dual registers in the instruction denote 40-bit
extended-precision floating-point multiplication.

Status Flags

MZ Set if floating-point result is ±zero

MN Set if result is negative

MV Set if the unbiased exponent of the result is greater
than 127

MOS Set if the unbiased exponent of the result is greater
than 127; otherwise unaffected

MU Set if the unbiased exponent of the result is less
than –126

MUS Set if the unbiased exponent of the result is less
than –126; otherwise unaffected

MI Set if either input is a NAN, or if the inputs are
±infinity and ±zero

MIS Set if either input is a NAN, or if the inputs are
±infinity and ±zero; otherwise unaffected

Multiplier Instructions

8-164 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

R0 = 0x3AF5EC81 ;; /* 0.00187625 */

R1 = 0x3AF58CDF ;; /* 0.0018734 */

FR2 = R0 * R1 ;;

After executing the floating-point multiply, the result stored in R2 is
0x366BE2AB (3.51497E–006).

ADSP-TS101 TigerSHARC Processor Programming Reference 8-165

Instruction Set

Multiplier Result Register

Syntax

{X|Y|XY}MRa = Rmd ;

{X|Y|XY}MR4 = Rm ;

{X|Y|XY}{S}Rsd = MRa {({U}{S})} ;

{X|Y|XY}Rsq = MR3:0 {({U}{S})} ;

{X|Y|XY}Rs = MR4 ;

/* where MRa is either MR1:0 or MR3:2 */

Function

These instructions transfer the value of the source (to right of =) register
to the destination (to left of =) register.

Because the source MR register can hold a saturated result that is larger than
the destination Rs, the DSP has a protocol for handling the data size mis-
match. When the option to saturate is specified, and if the result is too
large for the Rs register, saturation is according to M4.

• Rsd denotes the transfer of one 80-bit result into a 64-bit register

• Rsq denotes the transfer of four 40-bit results into four 32-bit
registers

• SRsd denotes the transfer of four 20-bit results into four 16-bit
shorts

See the illustrations in Figure 8-52, Figure 8-53, and Figure 8-54.

Rsd = MR1:0; see Figure 8-52

SRsd = MR1:0; see Figure 8-53

Rsq = MR3:0; see Figure 8-54

Multiplier Instructions

8-166 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

MZ For Rs=MR, set if result = zero; for MR=Rs, cleared

MN For Rs=MR, set if result is negative; for MR=Rs, cleared

MV For Rs=MR, set if MR and MR4 is extended overflow;
for MR=Rs, cleared

Figure 8-52. Move One 80-bit Result Into One 64-bit Register

Figure 8-53. Move Four 20-bit Results Into Four 16-bit Shorts

Figure 8-54. Move Four 40-bit Results Into Four 32-bit Registers

MR4 MR1:0

80 b

Rsd
80 b 64 b

MR4 MR1:0

SRsd

20 b

16 b

MR4 MR3:0

Rsq

40 b

32 b

ADSP-TS101 TigerSHARC Processor Programming Reference 8-167

Instruction Set

MOS For Rs=MR, set if MR and MR4 is extended overflow—
otherwise unaffected; for MR=Rs, unchanged

MU (MUS) Cleared (unchanged)

Options

(S) Saturate

(U) Unsigned

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

Current contents of MR register are:

MR0 = 0x00000000

MR1 = 0x11111111

MR2 = 0x22222222

MR3 = 0xFFFFFF5

MR4 = 0x0000FF00

After executing the following command:

R1:0 = MR3:2 (S);;

The contents of R1:0 are:

R0 = 0x22222222

R1 = 0x0FFFFFF5

The MV flag and MOS flag are both set.

Multiplier Instructions

8-168 ADSP-TS101 TigerSHARC Processor Programming Reference

If the following instruction was executed:

R3:2 = MR3:2;;

The contents of R3:2 would be:

R2 = 0x22222222

R3 = 0x0FFFFFF5

The MN, MV, and MOS flags would be set.

After executing the following instruction:

R1:0 = MR1:0 (S);;

The contents of R1:0 are:

R0 = 0x00000000

R1 = 0x80000000

The MV, MN, and MOS flag are all set.

If the following instruction was executed:

R3:2 = MR1:0 (U);;

The contents of R3:2 would be:

R2 = 0x00000000

R3 = 0x11111111

The MV and MOS flags would be set.

After executing the following instruction:

SR1:0 = MR3:2 (S);;

The contents of R1:0 are:

R0 = 0x22222222

R1 = 0x0FFF7FFF

ADSP-TS101 TigerSHARC Processor Programming Reference 8-169

Instruction Set

The MV and MOS flags are set.

If the following instruction was executed:

SR3:2 = MR3:2 (U);;

The contents of R3:2 would be :

R2 = 0x22222222

R3 = 0x0FFFFFF5

The MV and MOS flags would be set.

After executing the following instruction:

SR1:0 = MR1:0 (S);;

The contents of R1:0 are:

R0 = 0x00000000

R1 = 0x80008000

The MV, MN, MZ, and MOS flags are all set.

If the following instruction was executed:

SR3:2 = MR1:0 (U);;

The contents of R3:2 would be:

R2 = 0x00000000

R3 = 0x11111111

The MZ, MV, and MOS flags are set.

Multiplier Instructions

8-170 ADSP-TS101 TigerSHARC Processor Programming Reference

After executing the following instruction:

R3:0 = MR3:0 (S);;

The contents of R1:0 are:

R0 = 0x00000000

R1 = 0x80000000

R2 = 0x22222222

R3 = 0x0FFFFFF5

The MV, MN, MZ, and MOS flags are all set.

If the following instruction was executed:

R3:0 = MR3:0 (U);;

The contents of R3:2 would be:

R0 = 0x00000000

R1 = 0x11111111

R2 = 0x22222222

R3 = 0x0FFFFFF5

The MV, MN, MZ, and MOS flags are all set.

R0 = 0x11111111 ;;

R1 = 0x22222222 ;;

R2 = 0x33333333 ;;

R3 = 0x44444444 ;;

R5 = 0x55555555 ;;

MR3:2 = R1:0 ;;

MR1:0 = R3:2 ;;

MR4 = R5 ;;

All set multiplier flags (including sticky) are cleared.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-171

Instruction Set

Compact Multiplier Result

Syntax

{X|Y|XY}Rs = COMPACT MRa {({U}{I}{S})} ;

{X|Y|XY}SRsd = COMPACT MR3:0 {({U}{I}{S}{C})} ;

/* where MRa is either MR1:0 or MR3:2 */

Function

The COMPACT MRa instruction compresses one 80-bit result in MR and MR4
into one 32-bit output. The output is always truncated. The compact MRa
operation appears in Figure 8-55.

The COMPACT MR3:0 instruction compresses four 40-bit results in MR3:0
and MR4 into four 16-bit outputs. The result is always truncated. The com-
pact MR3:0 operation appears in Figure 8-56.

Figure 8-55. Compact MRa

Figure 8-56. Compact MR3:0

MR4 MR1:0
3:2

80 b

32 bRs

MR4 MR3:0

SRsd

32 b 32 b

16 b16 b

8 b8 b

Multiplier Instructions

8-172 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

MZ Set if all bits in result are zero

MN Set if result is negative

MU (MUS) Cleared (unchanged)

MV (MOS) Set according to the data format (see following con-
ditions; (MOS unchanged if MV is cleared)

For word result, MV set according to:

• Signed fractional – Upper 17 bits of M are not all zeros or all ones

• Signed integer – Upper 49 bits of M are not all zeros or all ones

• Unsigned fractional – Upper 16 bits of M are not all zeros

• Unsigned integer – Upper 48 bits of M are not all zeros

Options

(I) Integer

(S) Saturate

(C) Clear MR

(U) Unsigned

See “Multiplier Instruction Options” on page 4-8 for more details about
available options.

Example

Current contents of MR register are:

MR0 = 0x00000000

MR1 = 0x11111111

ADSP-TS101 TigerSHARC Processor Programming Reference 8-173

Instruction Set

MR2 = 0x22222222

MR3 = 0xFFFFFF5

MR4 = 0x0000FF00

After executing:

R0 = COMPACT MR3:2 (UI) ;;

R0 = 0x22222222

The MV and MOS flags are set.

After executing:

R0 = COMPACT MR3:2 (U) ;;

R0 = 0x0FFFFFF5

The MN and MOS flags are set.

Current contents of MR register are:

MR0 = 0x00000000

MR1 = 0x11111111

MR2 = 0x22222222

MR3 = 0xFFFFFF5

MR4 = 0x0000FF00

After executing:

R0 = COMPACT MR3:2 (UI) ;;

R0 = 0xFFFFFFFF

The MN, MV, and MOS flags are set.

After executing:

R0 = COMPACT MR3:2 (U) ;;

R0 = 0x80000000

The MN, MV, and MOS flags are set.

Multiplier Instructions

8-174 ADSP-TS101 TigerSHARC Processor Programming Reference

Current contents of MR register are:

MR0 = 0x00000000

MR1 = 0x11111111

MR2 = 0x22222222

MR3 = 0xFFFFFF5

MR4 = 0x0000FF00

After executing:

SR1:0 = COMPACT MR3:0 (UI) ;;

R0 = 0x11110000

R1 = 0xFFF52222

The MZ, MN, MV, and MOS flags are set.

After executing:

R1:0 = COMPACT MR3:0 (S) ;;

R0 = 0x80000000

R1 = 0x7FFF2222

The MZ, MN, MV, and MOS flags are set.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-175

Instruction Set

Shifter Instructions
The shifter performs bit wise operations (arithmetic and logical shifts) and
performs bit field operations (field extraction and deposition) for the pro-
cessor. The shifter also executes data conversion operations such as
fixed-/floating-point format conversions. For a description of ALU opera-
tions, status flags, conditions, and examples, see “Shifter” on page 5-1.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “Register File
Registers” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Rmd – the register names in italic represent user selectable single
(Rs, Rm, Rn), double (Rsd, Rmd, Rnd) or quad (Rsq, Rmq, Rnq) register
names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

Shifter Instructions

8-176 ADSP-TS101 TigerSHARC Processor Programming Reference

Arithmetic/Logical Shift

Syntax

{X|Y|XY}{B|S}Rs = LSHIFT|ASHIFT Rm BY Rn|<Imm> ;1,2

{X|Y|XY}{B|S|L}Rsd = LSHIFT|ASHIFT Rmd BY Rn|<Imm> ;

Function

These instructions arithmetically shift (extends sign on right shifts) or log-
ically shift (no sign extension) the operand in register Rm by the value in
register Rn or shifts it by the instruction’s immediate value. A positive
value of Rn denotes a shift to the left and a negative value of Rn denotes a
shift to the right. The shifted result is placed in the result register Rs. The
L, S, and B prefixes denote the operand type and d denotes operand size—
see “Instruction Line Syntax and Structure” on page 1-20.

All shift values are two’s-complement numbers. Positive values result in a
left shift, and negative values result in a right shift. Shift magnitudes for
register file-based operations are computed by using the right-most B bits
of Rn, and masking the remaining bits in Rn, where B = 8 for long words, 7
for normals, 6 for shorts, and 5 for bytes—thereby achieving full-scale
right and left shifts. Shift magnitudes for immediate-based shifts only
require B = 7 for long words, 6 for normals, 5 for shorts, and 4 for bytes—
see “Shifter” on page 5-1.

Status Flags

SZ Set if shifter result is zero

SN Equals the MSB of the result; for LSHIFT, cleared
for all right shifts by more than zero

1 The Rn data size (bits) for the shift magnitude varies with the output operand: Byte: 5, Short: 6,
Normal: 7, Long: 8.

2 The size in bits of the Imm data varies with the output operand: Byte: 4, Short: 5, Normal: 6, Long:
7.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-177

Instruction Set

Examples

R5 = lshift R3 by -4;

If R3 = 0x140056A3
then R5 = 0x0140056A

R5 = lshift R3 by 4;

If R3 = 0x140056A3
then R5 = 0x40056A30

R5:4=lshift R3:2 by -4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x0140056A and R4=0x08765432;

R5:4=lshift R3:2 by 4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x40056A0 and R4=0x76543210;

SR5=lshift R3 by -4;

If R3=0x140056A3
then R5=0x01400056A

SR5=lshift R3 by 4;

If R3=0x140056A3
then R5=0x40006A30

BR5=lshift R3 by -4;

If R3=0x140056A3
then R5=0x0100050A

BR5=lshift R3 by 4;

If R3=0x140056A3
then R5=0x40006030

R5 = ashift R3 by -4;

If R3 = 0x840056A3
then R5 = 0xF840056A

Shifter Instructions

8-178 ADSP-TS101 TigerSHARC Processor Programming Reference

R5 = ashift R3 by -4;

If R3 = 0x140056A3
then R5 = 0x0140056A

R5:4=ashift R3:2 by -4;

If R3=0x840056A3 and R2=0x87654321
then R5=0xF840056A and R4=0xF8765432;

R5:4=ashift R3:2 by 4;

If R3=0x840056A3 and R2=0x87654321
then R5=0x40056A0 and R4=0x76543210;

SR5=ashift R3 by -4;

If R3=0x840056A3
then R5=0xF8400056A

SR5=ashift R3 by 4;

If R3=0x840056A3
then R5=0x40006A30

BR5=ashift R3 by -4;

If R3=0x840056A3
then R5=0xF80005FA

BR5=ashift R3 by 4;

If R3=0x840056A3
then R5=0x40006030

ADSP-TS101 TigerSHARC Processor Programming Reference 8-179

Instruction Set

Rotate

Syntax

{X|Y|XY}Rs = ROT Rm BY Rn|<Imm6> ;

{X|Y|XY}{L}Rsd = ROT Rmd BY Rnd|<Imm> ;

Function

This instruction rotates the operand in register Rm by a value determined
by the operand in register Rn or by the bit immediate value in the instruc-
tion. The rotated result is placed in Rs. The L prefix denotes long operand
type and d denotes operand size—see “Instruction Line Syntax and Struc-
ture” on page 1-20.

Rotate values are two’s-complement numbers. Positive values result in a
left rotate, negative values in a right rotate. Rotate magnitudes for register
file-based operations are computed by using the right-most B bits of Rn,
and masking the remaining bits in Rn, where B = 8 for long words, and 7
for normals—thereby achieving full-scale right and left rotates. Rotate
magnitudes for immediate-based rotates only require B = 7 for long words
and 6 for normals—see “Shifter” on page 5-1.

Status Flags

SZ Set if result is zero

SN Equals the MSB of the result

Shifter Instructions

8-180 ADSP-TS101 TigerSHARC Processor Programming Reference

Examples

R5 = rot R3 by -4;

If R3 = 0x140056A3
then R5 = 0x3140056A

R5 = rot R3 by 4;

If R3 = 0x140056A3
then R5 = 0x40056A31

R5:4=rot R3:2 by -4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x3140056A and R4=0x18765432;

R5:4=rot R3:2 by 4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x40056A31 and R4=0x76543218;

LR5:4=rot R3:2 by -4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x1140056A and R4=0x38765432;

LR5:4=rot R3:2 by 4;

If R3=0x140056A3 and R2=0x87654321
then R5=0x40056A38 and R4=0x76543211;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-181

Instruction Set

Field Extract

Syntax

{X|Y|XY}Rs = FEXT Rm BY Rn|Rnd {(SE)} ;

{X|Y|XY}LRsd = FEXT Rmd BY Rn|Rnd {(SE)} ;

Function

This instruction extracts a field from register Rm into register Rs that is
specified by the control information in register Rn.

There are two versions of this instruction. One takes the control informa-
tion (field’s target position and length) from a register pair—Rnd. The
other takes the control information from a single register—Rn.

The length field is right-justified in Rn and its length is 7 bits, allowing
lengths of 64 bits and 0 bits inclusive. The position field is 8 bits, allowing
off-scale left extracts.

If the SE option is set, the bits to the left of the extracted field in the desti-
nation register Rs are set equal to the MSB of the extracted field; otherwise
the bits to the left of the extracted field in Rs are set to zero.

The L prefix denotes long operand type and d denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Figure 8-57. Len7 and Pos8 Fields for Dual- and Single-Word Registers

0313263

<len7><pos8>Rnd

0151631

<len7><pos8>Rn

68

Shifter Instructions

8-182 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

SZ Set if result is zero

SN Equals the MSB of the result

Example

FEXT extracts the field specified in Rn from Rm and places it in Rs:

Figure 8-58. FEXT Instruction Performed on Single-Word Registers

xx…xx sa…aa xx…xx

xx…xx Pos8 xx…xx Len7

sa…aasssssssss…

Rm

Rn

Rs (SE)

sa…aa000000… Rs

(no option)

len 7 pos 8

ADSP-TS101 TigerSHARC Processor Programming Reference 8-183

Instruction Set

Field Deposit

Syntax

{X|Y|XY}Rs += FDEP Rm BY Rn|Rnd {(SE|ZF)} ;

{X|Y|XY}LRsd += FDEP Rmd BY Rn|Rnd {(SE|ZF)} ;

Function

This instruction deposits a right-justified field from register Rm into regis-
ter Rs, where the position and length in the destination register Rs are
determined by the control information in register Rn.

If the SE option is set, the bits to the left of the deposited field in the des-
tination register Rs are set equal to the MSB of the deposited field;
otherwise the original bits in Rs are unaffected. If the ZF option is set, the
bits to the left of the deposited field in Rs are set to zero; otherwise the
original bits in Rs are unaffected.

There are two versions of this instruction. One takes the control informa-
tion (field’s target position and length) from a register pair—Rnd. The
other takes the control information from a single register—Rn.

The length field is right-justified in Rn and its length is 7 bits, allowing
lengths of 64 bits and 0 bits inclusive. The position field is 8 bits, allowing
off-scale left deposits.

Figure 8-59. Len7 and Pos8 Fields for Dual- and Single-Word Registers

0313263

<len7><pos8>Rnd

0151631

<len7><pos8>Rn

68

Shifter Instructions

8-184 ADSP-TS101 TigerSHARC Processor Programming Reference

The L prefix denotes long operand type and d denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

SZ Set if result is zero

SN Equals the MSB of the result

Examples

Figure 8-60. FDEP Instruction Performed on Single-Word Registers

xx…xx sa…aa

xx…xx Pos8 xx…xx Len7

saaa bb…ss…ss

Rn

Rm

Rs (SE)
(bs unchanged)

FDEP deposits the field from Rn that is specified by Rm

bb… Original Rs

saaa Rs (no options)

…bb

bb…bb

saaa bb… Rs (ZF)00…00 …bb

bb

bb… bb

len7 pos8

ADSP-TS101 TigerSHARC Processor Programming Reference 8-185

Instruction Set

Field/Bit Mask

Syntax

{X|Y|XY}Rs += MASK Rm BY Rn ;

{X|Y|XY}LRsd += MASK Rmd BY Rnd ;

Function

This instruction substitutes the field in register Rs by a 32-bit (or 64-bit,
for long words) field in register Rm, which is determined by the set bits in
register Rn. Rs is a read-modify-write register. Logically, the operation is:

Rs = (Rs AND NOT(Rn)) OR (Rm AND Rn)

AND, OR, and NOT are bit-wise logical operators.

The L prefix denotes long operand type and d denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

SZ Set if result is zero

SN Equals the MSB of the result

Shifter Instructions

8-186 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

Rs += MASK Rm BY Rn;;

XR0 = IMASKH ;; /* load upper half of IMASK into R0 */

XR1 = 0xEFFF ;; /* load mask value (GIE bit cleared) into R1 */

XR2 += MASK XR0 BY XR1 ;;

/* use MASK to clear bit, but retain other values */

IMASKH = XR2 ;;

/* load IMASKH with data globally disabling interrupts */

Figure 8-61. Field/Bit Mask Data Flow

0000 1111 0000

xxxx aaaa xxxx

bbbb xxxx bbbb

bbbb aaaa bbbb

mask
Rn

Rm

Rs before the

Rs+, b bits are
unchanged

The ‘1’ mask bits determine which bits in Rn are to be
copied—the bits need not be contiguous

 operation

ADSP-TS101 TigerSHARC Processor Programming Reference 8-187

Instruction Set

Get Bits

Syntax

{X|Y|XY}Rsd = GETBITS Rmq BY Rnd {(SE)} ;

Function

This instruction extracts a bit field from a contiguous bit stream held in
the quad register Rmq and stores the extracted field in Rsd, according to the
control information in Rnd. This instruction (in conjunction with shifter
instructions PUTBITS and BFOTMP, and ALU instruction BFOINC) is used to
implement a bit FIFO.

If the SE option is set, the bits to the left of the deposited field in the des-
tination register pair Rsd are set equal to the MSB of the deposited field;
otherwise those bits in Rsd are set to zero.

The control information (current bit FIFO pointer, or BFP, and length of
extracted field) form a register pair—Rnd. Instruction GETBITS uses the BFP
and length information (stored in Rnd) to perform the bit field extraction,
but does not update the BFP. Update to the BFP should be performed by
the ALU with instruction BFOINC. See example below for a suggested code
sequence.

The q suffix denotes operand size—see “Instruction Line Syntax and
Structure” on page 1-20.

Status Flags

SZ Set if bits in extracted field are all zero

SN MSB of extracted field

Shifter Instructions

8-188 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

R1:0 = GETBITS R7:4 BY R17:16;;

R17 = BFOINC R17:16;;

Figure 8-62. Get Bits Data Flow

BFP
[6:0]
len

[6:0]

R4R5R6R7

empty
(previously extracted)data left in bit FIFO

Len BFP

R0R1

zero or sign
extension

R17

R16

data to be
 extracted

 extracted
data

ADSP-TS101 TigerSHARC Processor Programming Reference 8-189

Instruction Set

Put Bits

Syntax

{X|Y|XY}Rsd += PUTBITS Rmd BY Rnd ;

Function

This instruction deposits the 64 bits in Rmd into a contiguous bit stream
held in the quad register composed of BFOTMP in the top and Rsd in the
bottom. The data is inserted, beginning from the bit pointed to by BFP
field in Rnd. The LEN field of Rnd is ignored. This instruction (in conjunc-
tion with shifter instructions GETBITS and BFOTMP, and ALU instruction
BFOINC) is used to implement a bit FIFO.

The control information (current bit FIFO pointer, or BFP, and length of
extracted field) form a register pair—Rnd. Instruction PUTBITS uses only
the pointer field BFP (stored in Rnd) to perform the bit insertion; it does
not use the length field in Rnd. PUTBITS also does not update the BFP.
Update to the BFP should be performed by the ALU with instruction
BFOINC.

Whenever a bit insertion is performed, the entire contents of register pair
Rmd is placed in the register quad formed by BFOTMP and Rsd. Generally,
the bit field to be inserted into the bit FIFO is less than 64 bits long and, in
this case the field of interest, should be placed right-justified in Rmd.

Note that the remaining bits to the left of the field of interest are irrele-
vant. When the BFP overflows past bit 64 (an event performed by the ALU
and recorded in flag AN), the contents of Rsd should be moved out, and the
BFOTMP register should be moved into Rsd. See Figure 8-63 for a suggested
code sequence used to implement a bit FIFO insertion.

The d suffix denotes operand size—see “Instruction Line Syntax and
Structure” on page 1-20.

Shifter Instructions

8-190 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

SZ Cleared

SN Cleared

Example

R1:0 += PUTBITS R5:4 BY R7:6;;

Figure 8-63. Data Flow for Instruction:
R1:0 += PUTBITS R5:4 BY R7:6;;

BFP
[5:0]
len

[5:0]

R0R1BFOTMP[63:0]

previously
inserted data

old data

BFP

R5:4

R7

R6

bit field
to be inserted

inserted data (64 bits)

ADSP-TS101 TigerSHARC Processor Programming Reference 8-191

Instruction Set

Bit Test

Syntax

{X|Y|XY}BITEST Rm BY Rn|<Imm5> ;

{X|Y|XY}BITEST Rmd BY Rn|<Imm6> ;

Function

This instruction tests bit #n in register Rm, as indicated by the operand in
Rn or by the bit immediate value in the instruction. The SZ flag is set if the
bit is a zero and cleared if the bit is one. SZ is also set when the tested bit
position is greater than 31 and 63 for normal and long operands, respec-
tively. The position of the bit is the 6- or 5-bit value in register Rn (for
long- or normal-words respectively) or the bit immediate value in the
instruction. For instance, in a normal word operation the value
0x00000000 in Rn tests the LSB of Rm, and the value 0x0000001F tests the
MSB of Rm. Different from the normal concept, the d suffix denotes a
64-bit (long) single operand.

Status Flags

SZ Cleared if tested bit is 1 Set if tested bit is zero, or if
bit position is greater than 31

SN Equals the MSB of the input

Shifter Instructions

8-192 ADSP-TS101 TigerSHARC Processor Programming Reference

Bit Clear/Set/Toggle

Syntax

{X|Y|XY}Rs = BCLR|BSET|BTGL Rm BY Rn|<Imm5> ;

{X|Y|XY}Rsd = BCLR|BSET|BTGL Rmd BY Rn|<Imm6> ;

Function

These instructions clear, set, or toggle bit #n in register Rm as indicated by
the operand in Rn or by the bit immediate value in the instruction. The
result is placed in register Rs. The position of the bit is the 6- or 5-bit
value in register Rn (for long- or normal-words respectively), or the bit
immediate value in the instruction. For example, in a normal word BCLR
operation the value 0x00000000 in Rn clears the LSB of Rm and the value
0x0000001F clears the MSB of Rm. The d suffix denotes operand size—see
“Instruction Line Syntax and Structure” on page 1-20.

Status Flags

SZ Set if result is zero

SN Equals the MSB of the result

ADSP-TS101 TigerSHARC Processor Programming Reference 8-193

Instruction Set

Example

R5 = bclr R3 by 5;

If R3=0x140056A3
then R5=0x14005683

R5:4=bclr R3:2 by 5;

If R3=0x140056A3 and R2=0x87654321
then R5=0x140056A3 and R4=0x87654301;

R5 = bset R3 by 6;

If R3=0x140056A3
then R5=0x140056E3

R5:4=bset R3:2 by 6;

If R3=0x140056A3 and R2=0x87654321
then R5=0x140056A3 and R4=0x87654361

R5 = btgl R3 by 6;

If R3=0x140056A3
then R5=0x140056E3

R5:4=btgl R3:2 by 6;

If R3=0x140056A3 and R2=0x87654321
then R5=0x140056A3 and R4=0x87654361;

Shifter Instructions

8-194 ADSP-TS101 TigerSHARC Processor Programming Reference

Extract Leading Zeros

Syntax

{X|Y|XY}Rs = LD0|LD1 Rm|Rmd ;

Function

This instruction extracts the number of leading zeros or leading ones from
the operand in register Rm. The extracted number is placed in the six LSBs
of Rs.

Status Flags

SZ Set if the most significant bit of Rm is one with
option of leading zeros (LD0); also set if the MSB of
Rm is zero with option of leading ones (LD1)

SN Cleared

Example

R5=ld0 R3;

If R3=0x140056A3
then R5=0x3;

R5=ld1 R3:2;

If R3=0xE40056A3 and R2=0x87654321
then R5=3;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-195

Instruction Set

Extract Exponent

Syntax

{X|Y|XY}Rs = EXP Rm|Rmd ;

Function

This instruction extracts the exponent of the operand in register Rm. The
exponent is calculated as the two’s-complement of the leading sign bits in
Rm –1.

Status Flags

SZ Set if extracted exponent is zero

SN Set if fixed-point operand in Rm is negative (MSB is
a one)

SN is used to return the sign of the input. This is required for
non-IEEE floating-point and for double precision float.

Examples

R5 = EXP R3;

If R3 = b#111010…
then R5 = -2

If R3 = 0x0000101
then R5 = -3

R5=exp R3:2;

If R3=0x140056A3 and R2=0x87654321
then R5=-2 (in hexadecimal, R5=0xFFFFFFFE)

Shifter Instructions

8-196 ADSP-TS101 TigerSHARC Processor Programming Reference

XSTAT/YSTAT Register

Syntax

{X|Y}STAT = Rm ;

{X|Y}STATL = Rm ;

{X|Y}Rs = {X|Y}STAT ;

Function

These instructions load the operand in register Rm into the X/Y status reg-
ister or store the operand in the X/Y status register into Rs. There are two
X/YSTAT load instructions. One loads the entire register Rm into X/YSTAT,
while the other only loads the 15 LSBs of Rm into X/YSTAT. The latter form
of this instruction is used when restoring only the dynamic status flags,
without affecting the sticky flags and mode bits.

Status Flags

For X/YSTAT=Rm, the status flags register (X/YSTAT) receives the value of Rm
and updates the status flags according to the Rm value.

For Rm=X/YSTAT, the status flags are unaffected.

Example

XSTATL = R6;;

If R6 = 0x910
then XSTAT = 0x910

If R6 = 0x90010
then XSTAT = 0x10

XR6 = STAT;;

If XSTAT = 0x10
then R6 = 0x10

ADSP-TS101 TigerSHARC Processor Programming Reference 8-197

Instruction Set

Block Floating-Point

Syntax

{X|Y|XY}BKFPT Rmd, Rnd ;

Function

This instruction is used for determining the scaling factor used in 16-bit
block floating-point. The two input registers, Rmd and Rnd, hold eight
short words and, after execution, the two block floating-point flags BF1:0
in X/YSTAT are set according to the largest of (a) the number of redundant
sign bits in the eight input short words and (b) the previous state of BF1:0.

The BKFPT instruction maps each one of the eight input short words into
two bits, which are equal to three minus the number of sign bits. The
value depends on the three MSBs of the input short:

• If the three MSBs of operand are 000 or 111 – value is 00

• If the three MSBs of operand are 001 or 110 – value is 01

• If the two MSBs of operand are 01 or 10 – value is 10

After computing these two bits for each short word, the final output is
determined by finding the maximum among the set eight values plus the
current value of BF1:0. Finally, BF1:0 is updated with the result. This
instruction records up to two redundant sign bits.

For example, if BF1:0 = b#00, and if the three MSBs of all eight input
numbers are either all 0s or all 1s, then BF1:0 = b#00.

If at least one of the eight input numbers has the three LSBs as b#001 or
b#110, then BF1:0 = b#01.

If at least one of the eight input numbers has the three LSBs as b#011 or
b#100, then BF1:0 = b#10.

Shifter Instructions

8-198 ADSP-TS101 TigerSHARC Processor Programming Reference

Status Flags

Updates flags BF0 and BF1. Status flags are unaffected.

Examples

Assume that initially BF1:0 = b#00:
XR0 = b#0010 0000 … 0000

XR1 = 0

Execution of XBKFPT R1:0, R1:0;; causes the flags to be set to BF1:0 = b#01

XR0=0

XR1=0

With these inputs, second execution of XBKFPT R1:0, R1:0;;
results in BF1:0 = b#01

ADSP-TS101 TigerSHARC Processor Programming Reference 8-199

Instruction Set

BFOTMP Register

Syntax

{X|Y|XY}Rsd = BFOTMP ;

{X|Y|XY}BFOTMP = Rmd ;

Function

These instructions load the value of the BFOTMP register into the Rsd regis-
ter or loads the operand in register Rmd into the BFOTMP register. BFOTMP is a
register internal to the shifter. This function is used to temporarily hold
the overflow bits after a PUTBITS instruction.

Status Flags

The status flags are unaffected by this operation

Example

R9:8 = BFOTMP;;

If BFOTMP = 0x17000016
then R9:8 = 0x17000016

BFOTMP = R9:8;;

If R9:8 = 0x40000005
then BFOTMP = 0x40000005

IALU (Integer) Instructions

8-200 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU (Integer) Instructions
The TigerSHARC processor’s two independent IALUs are referred to as
the J-IALU and K-IALU. The IALUs support regular ALU operations and
data addressing operations. The arithmetic, logical, and function ALU oper-
ations include:

• Add and subtract, with and without carry/borrow

• Arithmetic right shift, logical right shift, and rotation

• Logical operations: AND, AND NOT, NOT, OR, and XOR

• Functions: absolute value, min, max, compare

For a description of IALU operations, status flags, conditions, and exam-
ples, see “IALU” on page 6-1. The IALUs also provide data addressing
support instructions. For instruction reference pages on IALU data
addressing instructions, see “IALU (Load/Store/Transfer) Instructions” on
page 8-218.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “IALU” on
page 6-1. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-201

Instruction Set

• Jm or Km – the letter J or K in register names in italic indicate selec-
tion of a register in the J-IALU or K-IALU.

• Jm – the register names in italic represent user selectable single (Jm,
Jn, Js, Rs, Ureg_s), double (Rsd, Rmd, Ureg_sd, Ureg_md) or quad
(Rsq, Rmq, Ureg_sq, Ureg_mq) register names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

IALU (Integer) Instructions

8-202 ADSP-TS101 TigerSHARC Processor Programming Reference

Add/Subtract (Integer)

Syntax

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

JB0|JB1|JB2|JB3|JL0|JL1|JL2|JL3 = Jm +|-Jn|<Imm8>|<Imm32> ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

KB0|KB1|KB2|KB3|KL0|KL1|KL2|KL3 = Km +|-Kn|<Imm8>|<Imm32> ;

Function

These instructions add or subtract the operands in registers Jm/Km and
Jn/Kn. The result is placed in register Js/Ks. This operation operates on
dual registers or single registers plus an immediate value. The Imm can be 8
or 32 bits (using immediate extension—see “Immediate Extension Opera-
tions” on page 6-36). J denotes J-IALU registers; K denotes K-IALU
registers.

If the CJMP option is used, the result is placed in the CJMP register as well as
in Js/Ks. The CB option can only be used when Jm/Km is 0, 1, 2 or 3 and
causes the operation to be executed by the circular buffer. If the BR option
is used, the bit reverse adder is used. Only one of the options above may
be used.

The alternative format to the instruction Js = Jm + Jn is
JBi/JLi = Jm + Jn. The instructions are identical except that the result is
placed in the JB or JL circular buffer register files instead of Js.

When options CB or BR are selected, there is no overflow.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Set if overflow; else cleared

ADSP-TS101 TigerSHARC Processor Programming Reference 8-203

Instruction Set

JC/KC Set to the carry out of the operation;

Cleared if CB or BR options are used

Options

CJMP Computed Jump – the CJMP register is loaded with
the result

CB Circular Buffer – use circular buffer operation for
the result; this only applies when Jm/Km = J/K[3:0]

BR Bit Reverse – user bit reversed address

Examples

J3 = J5 + J29;;

K2 = K2 + 0x25;;

K6 = K1 + K8 (CB);;

J1 = J5 + J10 (BR);;

JB0 = J31 + 0x5;;

J4 = J2 + J3 (CJMP);;

J3 = J5 - J29;;

K2 = K2 - 0x25;;

K6 = K1 - K8 (CB);;

J1 = J5 - J10 (BR);;

JB0 = J31 - 0x5;;

J4 = J2 - J3 (CJMP);;

IALU (Integer) Instructions

8-204 ADSP-TS101 TigerSHARC Processor Programming Reference

Add/Subtract With Carry/Borrow (Integer)

Syntax

Js = Jm + Jn|<Imm8>|<Imm32> + JC ;

Js = Jm - Jn|<Imm8>|<Imm32> + JC - 1 ;

Ks = Km + Kn|<Imm8>|<Imm32> + KC ;

Ks = Km - Kn|<Imm8>|<Imm32> + KC - 1 ;

Function

These instructions add with carry or subtract with borrow the operands in
registers Jm/Km and Jn/Kn in J-IALU with the carry flag from the J/KSTAT
register in the J-/K-IALU. The result is placed in register Js/Ks. This oper-
ation operates on dual registers or single registers plus an immediate value.
The Imm can be 8 or 32 bits (using immediate extension—see “Immediate
Extension Operations” on page 6-36). J denotes J-IALU and JSTAT regis-
ters; K denotes K-IALU and KSTAT registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Set overflow bit

JC/KC Set to carry out the add operation

ADSP-TS101 TigerSHARC Processor Programming Reference 8-205

Instruction Set

Examples

J4 = J2 + J8 + JC;;

K8 = K1 + K4 + KC;;

K3 = K1 + 0x2 + KC;;

J4 = J2 - J8 + JC-1;;

K8 = K1 - K4 + KC-1;;

K3 = K1 - 0x2 + KC-1;;

IALU (Integer) Instructions

8-206 ADSP-TS101 TigerSHARC Processor Programming Reference

Average (Integer)

Syntax

Js = (Jm +|- Jn|<Imm8>|<Imm32>)/2 ;

Ks = (Km +|- Kn|<Imm8>|<Imm32>)/2 ;

Function

These instructions add or subtract the operands in registers Jm/Km and
Jn/Kn, then divide the result by two. The result is placed in register Js/Ks.
This operation operates on dual registers or single registers plus an imme-
diate value. The Imm can be 8 or 32 bits (using immediate extension—see
“Immediate Extension Operations” on page 6-36).

This instruction uses an arithmetic right shift for division. Therefore,
rounding is toward infinity, not zero—if the result is negative, it will
round down. For example, the result of (–1 – 2)/2 would be –2 and
(–1 + 0)/2 would be –1, while the result of (1 + 2)/2 would be 1 and
(1 + 0)/2 would be 0.

A J denotes J-IALU registers; K denotes K-IALU registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Cleared

JC/KC Cleared

ADSP-TS101 TigerSHARC Processor Programming Reference 8-207

Instruction Set

Examples

J4 = (J2 + J8) / 2;;

K9 = (K2 + 0x2) /2 ;;

J4 = (J2 - J8) / 2;;

K9 = (K2 - 0x2) /2 ;;

IALU (Integer) Instructions

8-208 ADSP-TS101 TigerSHARC Processor Programming Reference

Compare (Integer)

Syntax

COMP(Jm, Jn|<Imm8>|<Imm32>) {(U)} ;

COMP(Km, Kn|<Imm8>|<Imm32>) {(U)} ;

Function

This instruction compares the operand in register Jm/Km with the operand
in register Jn/Kn. This instruction sets the JZ/KZ flag if the two operands
are equal, and the JN/KN flag if the operand in register Jm/Km is smaller than
the operand in Jn/Kn. A K denotes K-IALU registers as opposed to J-IALU
registers.

This operation operates on dual registers or single registers plus an imme-
diate value. The Imm can be 8 or 32 bits (using immediate extension—see
“Immediate Extension Operations” on page 6-36). The unsigned option is
only relevant for compare operations and indicates if the comparison is to
be made on unsigned numbers (positive only) or two’s-complements
(signed).

Status Flags

JZ/KZ Set if input operands are equal

JN/KN Set if Jm/Km is less than Jn/Kn

JV/KV Cleared

JC/KC Cleared

Options

() Signed

(U) Unsigned comparison

ADSP-TS101 TigerSHARC Processor Programming Reference 8-209

Instruction Set

Examples

COMP (J4,J8) (U) ;;

If J4 = 0xFFFF FFFC and J8 = 0x0000 0003
then the status flags are set as follows:
JZ = 0

JN = 0

COMP (J4,J8) ;;

If J4 = 0xFFFF FFFC and J8 = 0x0000 0003
then the status flags are set as follows:
JZ = 0

JN = 1

COMP (J4, 0x0000 0003) (U);;

If J4 = FFFF FFFC
Then the status flags are set as follows:
JZ = 0

JN = 0

IALU (Integer) Instructions

8-210 ADSP-TS101 TigerSHARC Processor Programming Reference

Maximum/Minimum (Integer)

Syntax

Js = MAX|MIN (Jm, Jn|<Imm8>|<Imm32>) ;

Ks = MAX|MIN (Km, Kn|<Imm8>|<Imm32>) ;

Function

These instructions return maximum (larger of) or minimum (smaller of)
the two operands in the registers Jm/Km and Jn/Kn. The result is placed in
register Js/Ks. MAX operations are always signed. This operation operates
on dual registers or single registers plus an immediate value. The Imm can
be 8 or 32 bits (using immediate extension—see “Immediate Extension
Operations” on page 6-36). J denotes J-IALU registers; K denotes K-IALU
registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Cleared

JC/KC Cleared

ADSP-TS101 TigerSHARC Processor Programming Reference 8-211

Instruction Set

Example

K4 = MAX (K2,K9) ;;

If K2 = 5 and K9 = 1
then K4 = 5

K4 = MAX (K2,0x1);;

If K2=5
then K4=5

J2 = MIN(J7,J8) ;;

If J7 = 4 and J8 = 3
then J2 = 3

J2 = MIN(J7,0x3);;

If J7=4
then J2=3

IALU (Integer) Instructions

8-212 ADSP-TS101 TigerSHARC Processor Programming Reference

Absolute Value (Integer)

Syntax

Js = ABS Jm ;

Ks = ABS Km ;

Function

This instruction determines the absolute value of the operand in register
Jm/Km. The result is placed in register Js/Ks. K denotes K-IALU registers as
opposed to J-IALU registers.

The ABS of the most negative number (0x8000 0000) causes the maximum
positive number (0x7FFF FFFF) to be returned and sets the overflow flag.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of the input

JV/KV Set when input is the most negative number

JC/KC Cleared

Examples

J5 = ABS J4 ;;

If J4 = 0x8000 0000
then J5 = 0x7FFF FFFF and both JV and JN are set
If J4 = 0x7FFF FFFF
then J5 = 0x7FFF FFFF
If J4 = 0xF000 0000
then J5 = 0x1000 0000 and JN is set

ADSP-TS101 TigerSHARC Processor Programming Reference 8-213

Instruction Set

Logical AND/AND NOT/OR/XOR/NOT (Integer)

Syntax

Js = Jm OR|AND|XOR|AND NOT Jn|<Imm8>|<Imm32> ;

Js = NOT Jm ;

Ks = Km OR|AND|XOR|AND NOT Kn|<Imm8>|<Imm32> ;

Ks = NOT Km ;

Function

These instructions logically AND, AND NOT, OR, or XOR the operands, bit by
bit, in registers Jm/Km and Jn/Jn. The NOT instruction logically comple-
ments the operand in Jm/Km. The result is placed in register Js/Ks. This
operation operates on dual registers or single registers plus an immediate
value. The Imm can be 8 or 32 bits (using immediate extension—see
“Immediate Extension Operations” on page 6-36). J denotes J-IALU reg-
isters; K denotes K-IALU registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Cleared

JC/KC Cleared

IALU (Integer) Instructions

8-214 ADSP-TS101 TigerSHARC Processor Programming Reference

Example

J5 = J4 AND J8 ;;

If J4 = b#…1001 and J8 = b#…1100
then J5 = b#…1000

K5 = K4 AND 0xC;;

If K4 = b#1001 (in binary)
then K5 = b#1000 (in binary)

J6 = J2 AND NOT J5 ;;

If J2 = b#…1001 and J5 = b#…1100
then J6 = b#…0001

J6 = J2 AND NOT 0xC;;

If J2 = b#1001 (in binary)
then J6 = b#0001 (in binary)

J5 = J3 OR J4 ;;

If J3 = b#…1001 and J4 = b#…1100
then J5 = b#…1101

K5 = K3 OR 0xC;;

If J3 = 1001 (in binary)
then J5 = 1101 (in binary)

J3 = J2 XOR J7 ;;

If J2 = b#…1001 and J7 = b#…1100
then J3 = b#…0101

J3 = J2 XOR 0xC;;

If J3 = b#1001 (in binary)
then J5 = b#0101 (in binary)

J7 = NOT J6 ;;

If J6 = b#…0110
then J7 = b#…1001

ADSP-TS101 TigerSHARC Processor Programming Reference 8-215

Instruction Set

Arithmetic Shift/Logical Shift (Integer)

Syntax

Js = ASHIFTR|LSHIFTR Jm ;

Ks = ASHIFTR|LSHIFTR Km ;

Function

These instructions perform an arithmetic shift (extends sign on right shift)
or logically shift (no sign extension) the operand in register Jm/Km to the
right by one bit. The shifted result is placed in register Js/Ks. The shift
values are two’s-complement numbers. J denotes J-IALU registers; K
denotes K-IALU registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Cleared

JC/KC Set to the least significant bit in the input

Examples

K4 = ASHIFTR K3 ;;

If K3 = 0x8600 0000
then K4 = 0xC300 0000 and JN is set
If K3 = 0x0860 0000
then K4 = 0x0430 0000 and JN is cleared
If K3 = 0xFFFF FFFF
then K4 = 0xFFFF FFFF and both JN and JC are set

K4 = LSHIFTR K3 ;;

If K3 = 0x0800 0000
then K4 = 0x0400 0000

IALU (Integer) Instructions

8-216 ADSP-TS101 TigerSHARC Processor Programming Reference

If K3 = 0x8600 0000
then K4 = 0x4300 0000
If K3 = 0xFFFF FFFF
then K4 = 0x7FFF FFFF and JC is set

ADSP-TS101 TigerSHARC Processor Programming Reference 8-217

Instruction Set

Left Rotate/Right Rotate (Integer)

Syntax

Js = ROTR|ROTL Jm ;

Ks = ROTR|ROTL Km ;

Function

These instruction rotate the operand in register Jm/Km to the left or right.
The rotated result is placed in register Js/Ks. J denotes J-IALU registers;
K denotes K-IALU registers.

Status Flags

JZ/KZ Set if all bits in result are zero

JN/KN Set to the most significant bit of result

JV/KV Cleared

JC/KC Cleared

Example

J5 = ROTR J3;;

If J3 = b#1000…0101
then J5 = b#1100…010

J5 = ROTL J3;;

If J3 = b#1000…0101
then J5 = b#000…01011

IALU (Load/Store/Transfer) Instructions

8-218 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU (Load/Store/Transfer) Instructions
The TigerSHARC processor’s two independent IALUs are referred to as
the J-IALU and K-IALU. The IALUs provide memory addresses when
data is transferred between memory and registers. Dual IALUs enable
simultaneous addresses for multiple operand reads or writes. The IALU’s
data addressing and data movement operations include:

• Direct and indirect memory addressing

• Circular buffer addressing

• Bit reverse addressing

• Universal register (Ureg) moves and loads

• Memory pointer generation

For a description of IALU operations, status flags, conditions, and exam-
ples, see “IALU” on page 6-1. The IALUs also provide integer arithmetic
support instructions. For instruction reference pages on IALU arithmetic
instructions, see “IALU (Integer) Instructions” on page 8-200.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “IALU” on
page 6-1. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-219

Instruction Set

• Jm or Km – the letter J or K in register names in italic indicate selec-
tion of a register in the J-IALU or K-IALU.

• Jm – the register names in italic represent user selectable single (Jm,
Jn, Js, Rs, Ureg_s), double (Rsd, Rmd, Ureg_sd, Ureg_md) or quad
(Rsq, Rmq, Ureg_sq, Ureg_mq) register names.

Each instruction presented on these reference pages occupies one
instruction slot in an instruction line. For more information about
instruction lines and instruction combination constraints, see
“Instruction Line Syntax and Structure” on page 1-20 and
“Instruction Parallelism Rules” on page 1-24.

IALU (Load/Store/Transfer) Instructions

8-220 ADSP-TS101 TigerSHARC Processor Programming Reference

Universal Register Load (Data Addressing)

Syntax

Ureg_s = [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_s = [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Km +|+= Kn|<Imm8>|<Imm32>] ;

/* Ureg suffix indicates: _s=single, _sd=double, _sq=quad */

Function

These instructions load the destination register (to left of =) with the con-
tents of the source memory location (to right of =). These instructions
support pre-modify without update ([+] operator) addressing and
post-modify with update ([+=] operator) addressing for memory
accesses. For a description of addressing and memory access types, see
“IALU Data Addressing and Transfer Operations” on page 6-13.

Status Flags

None affected

Options

None

Example

For examples, see “IALU Examples” on page 6-37.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-221

Instruction Set

Universal Register Store (Data Addressing)

Syntax

[Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_s ;

L [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sq ;

[Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_s ;

L [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sq ;

Function

These instructions load the destination memory location (to left of =) with
the contents of the source register (to right of =). These instructions sup-
port pre-modify without update ([+] operator) addressing and
post-modify with update ([+=] operator) addressing for memory
accesses. For a description of addressing and memory access types, see
“IALU Data Addressing and Transfer Operations” on page 6-13.

Status Flags

None affected

Options

None

Example

For examples, see “IALU Examples” on page 6-37.

IALU (Load/Store/Transfer) Instructions

8-222 ADSP-TS101 TigerSHARC Processor Programming Reference

Data Register Load and DAB Operation (Data Addressing)

Syntax

{X|Y|XY}Rs = {CB|BR} [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rs = {CB|BR} [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m must be 0,1,2, or 3 for bit reverse or circular buffers */

Function

These instructions load the destination register (to left of =) with the con-
tents of the source memory location (to right of =). These instructions
support post-modify with update ([+=] operator) addressing for mem-
ory accesses. For a description of addressing and memory access types, see
“IALU Data Addressing and Transfer Operations” on page 6-13.

Status Flags

None affected

Options

() Linear addressing

CB Circular buffer addressing

BR Bit-reversed output

ADSP-TS101 TigerSHARC Processor Programming Reference 8-223

Instruction Set

DAB Data alignment buffer access

SDAB Short data alignment buffer access

Example

For examples, see “IALU Examples” on page 6-37.

IALU (Load/Store/Transfer) Instructions

8-224 ADSP-TS101 TigerSHARC Processor Programming Reference

Data Register Store (Data Addressing)

Syntax

{CB|BR} [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

{CB|BR} [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m = 0,1,2 or 3 for bit reverse or circular buffers */

Function

These instructions load the destination memory location (to left of =) with
the contents of the source register (to right of =). These instructions sup-
port post-modify with update ([+=] operator) addressing for memory
accesses. For a description of addressing and memory access types, see
“IALU Data Addressing and Transfer Operations” on page 6-13.

Status Flags

None affected

Options

() Linear addressing

CB Circular buffer addressing

ADSP-TS101 TigerSHARC Processor Programming Reference 8-225

Instruction Set

BR Bit-reversed output

Example

For examples, see “IALU Examples” on page 6-37.

IALU (Load/Store/Transfer) Instructions

8-226 ADSP-TS101 TigerSHARC Processor Programming Reference

Universal Register Transfer

Syntax

Ureg_s = <Imm15>|<Imm32> ;

Ureg_s = Ureg_m ;

Ureg_sd = Ureg_md ;

Ureg_sq = Ureg_mq ;

Function

The Ureg=Ureg instructions move data from any source register in the chip
to any destination register in the chip. The source and destination regis-
ters are identified by a group (six bits) and a register (five bits). This type
of instruction may be executed by one of the IALUs according to pro-
gramming. The assembler decides which IALU executes the instruction.
To make a SIMD register transfer inside both compute blocks, use the com-
pute block broadcast in both source and destination Ureg groups.

This is the only instruction that can access groups 63:32. In all
other instructions, only register groups 31:0 can be accessed.

The Ureg=Imm instruction loads data word into a destination register. The
destination register is identified by a group (five bits) and a register (five
bits). The data is 15 bits sign extended unless there is an immediate exten-
sion in the instruction line. Immediate extension instructions are defined
in “Immediate Extension Operations” on page 6-36.

This type of instruction may be executed by either one of the IALUs— by
the J-IALU or by the K-IALU. The assembler decides which IALU exe-
cutes the instruction.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-227

Instruction Set

ALU Ureg Transfer Exceptions

The IALU Ureg transfer instructions may cause exceptions when the
source Ureg is “compute XY broadcast” and the destination is not “com-
pute XY broadcast”. For example:

XR3:0 = R7:6; ⇒ illegal and causes an exception, but
R3:0 = R7:4; ⇒ legal

Refer to “Program Sequencer” on page 1-13 and “IALU Data Addressing
and Transfer Operations” on page 6-13 for an explanation of how inter-
rupts are introduced with transfer exceptions.

Example

xR3:0 = yR31:28;;

This instruction moves four registers between compute block X and Y.
SDRCON= K0;;

This instruction transfers data from K0 to the SDRCON register.
R3:2 = R9:8;;

This instruction transfers data from R9:8 to R3:2 in both compute blocks
simultaneously.

XR0 = 0x12345678 ;;

/* Because this instruction uses 32-bit data, this instruction

must use the first instruction slot, so the DSP can use the sec-

ond instruction slot for the immediate extension data. */

Sequencer Instructions

8-228 ADSP-TS101 TigerSHARC Processor Programming Reference

Sequencer Instructions
The sequencer fetches instructions from memory and executes program
flow control instructions. The operations that the sequencer supports
include:

• Supply address of next instruction to fetch

• Maintain instruction alignment buffer (IAB), caching fetched
instructions

• Maintain branch target buffer (BTB), reducing branch delays

• Decrement loop counters

• Evaluate conditions (for conditional instructions)

• Respond to interrupts (with changes to program flow)

For a description of sequencer operations, conditional execution, pipeline
effects, and examples, see “Program Sequencer” on page 7-1.

The conventions used in these reference pages for representing register
names, optional items, and choices are covered in detail in “Register File
Registers” on page 2-5. Briefly, these conventions are:

• { } – the curly braces enclose options; these braces are not part of
the instruction syntax.

• | – the vertical bars separate choices; these bars are not part of the
instruction syntax.

• Label – the program label in italic represents user-selectable pro-
gram label, PC-relative 16- or 32-bit address, or a 32-bit absolute
address. When a program Label is used instead of an address, the
assembler converts the Label to an address, using a 16-bit address

ADSP-TS101 TigerSHARC Processor Programming Reference 8-229

Instruction Set

when the Label is contained in the same program .SECTION as the
branch instruction and using a 32-bit address when the Label is
not in the same program .SECTION as the branch instruction. For
more information on relative and absolute addresses and branch-
ing, see “Branching Execution” on page 7-16.

Each instruction presented here occupies one instruction slot in an
instruction line. For more information about instruction lines and
instruction combination constraints, see “Instruction Line Syntax
and Structure” on page 1-20 and “Instruction Parallelism Rules”
on page 1-24.

Sequencer Instructions

8-230 ADSP-TS101 TigerSHARC Processor Programming Reference

Jump/Call

Syntax

{IF Condition,} JUMP|CALL <Label> {(NP)} {(ABS)} ;

Function

These instructions provide branching execution through jumps and calls.
A JUMP instruction transfers execution to address Label (or an immediate
16- or 32-bit address). A CALL instruction transfers execution to address
Label (or to an immediate 16- or 32-bit address). When processing a call,
the sequencer writes the return address (next sequential address after the
call) to the CJMP register, then jumps to the subroutine address.

If the branch is conditional (prefixed with If Condition), the branch is
executed if a condition is specified and is true. If the branch prediction
option is set to Not Predicted (NP), the sequencer assumes that the branch
is not taken. Unless the absolute address option (ABS) is used, this
sequencer uses a PC-relative address for the branch. For more informa-
tion, see “Branching Execution” on page 7-16.

Options

NP Branch prediction is set to Not Predicted

ABS Target address is in immediate field; if using the
ABS option and a negative number is used (in place
of <label>), the number is zero (not sign) extended.

Example

R21 = R21 + R31;;

IF AEQ, JUMP label1;;

/* Will use logical OR of AEQ of compute block X and Y.

If true will jump to label1. */

XFR31 = R6 * R2;;

ADSP-TS101 TigerSHARC Processor Programming Reference 8-231

Instruction Set

IF XMLT, JUMP label2;;

/* Will use mult condition from compute block X

If true will jump to label2. */

XR31 += ASHIFT R0 BY 1;;

IF XSEQ, JUMP label3 (NP);;

/* Will use shift condition from compute block X

If true will jump to label3

NP indicates no branch prediction */

R21 = R21 + R31;;

IF AEQ, CALL label1;;

/* Will use logical OR of AEQ of compute block X and Y.

If true will call to label1. */

XFR31 = R6 * R2;;

IF XMLT, CALL label2;;

/* Will use mult condition from compute block X

If true will call to label2. */

XR31 += ASHIFT R0 BY 1;;

IF XSEQ, CALL label3 (NP);;

/* Will use shift condition from compute block X

If true will call to label3

NP indicates no branch prediction */

Sequencer Instructions

8-232 ADSP-TS101 TigerSHARC Processor Programming Reference

Computed Jump/Call

Syntax

{IF Condition,} CJMP|CJMP_CALL {(NP)} {(ABS)} ;

Function

These instructions provide branching execution through computed jumps
and calls. A CJMP instruction at the end of the subroutine (branched to
using a CALL) causes the sequencer to jump to the address in the CJMP reg-
ister. A CJMP_CALL instruction transfers execution to a subroutine using a
computed jump address (CJMP register). One way to load the computed
jump address is to use the (CJMP) option on the IALU add/subtract
instruction. The CJMP_CALL transfers execution to the address indicated by
the CJMP register, then loads the return address into CJMP. The CJMP
instruction at the end of the subroutine causes the sequencer to jump to
the address in the CJMP register.

If the branch is conditional (prefixed with If Condition), the branch is
executed if a condition is specified and is true. If the branch prediction
option is set to Not Predicted (NP), the sequencer assumes that the branch
is not taken. Unless the absolute address option (ABS) is used, this
sequencer uses a PC-relative address for the branch. For more informa-
tion, see “Branching Execution” on page 7-16.

If the prediction is true (option NP is not set), the call must be abso-
lute (option ABS must be set).

Options

NP Branch prediction is Not Predicted

ABS Target address is in the immediate field

See section “Branch Target Buffer (BTB)” on page 7-34 for more on NP
and ABS options.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-233

Instruction Set

Example

IF AEQ, CJMP (ABS) ;; /* predicted, absolute address */

IF AEQ, CJMP (ABS) (NP) ;; /* NOT predicted, absolute address */

IF AEQ, CJMP (NP) ;; /* NOT predicted, PC-relative address */

IF AEQ, CJMP_CALL (ABS) ;; /* predicted, absolute address */

IF AEQ, CJMP_CALL (ABS) (NP) ;; /* NOT predicted, absolute

address */

IF AEQ, CJMP_CALL (NP) ;; /* NOT predicted, PC-relative address

*/

Sequencer Instructions

8-234 ADSP-TS101 TigerSHARC Processor Programming Reference

Return (from Interrupt)

Syntax

{IF Condition,} RETI|RTI {(NP)} {(ABS)} ;

Function

The sequencer supports interrupting execution through hardware inter-
rupts (external IRQ3–0 pins and internal process conditions) and software
interrupts (program sets an interrupt’s latch bit). Figure 8-64 provides a
comparison of interrupt service variations using the RETI and RTI
instructions.

Figure 8-64. Non-Reusable Versus Reusable Interrupt Service

INSTRUCTION

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

NON-REUSABLE
INTERRUPT

INSTRUCTION

RTI

INSTRUCTION

RETURN
ADDRESS

VECTOR

1

2

1

2

Writes return address
to RETI register, sets bit
in PMASK, and jumps to
interrupt vector address.

Jumps to return address
and clears PMASK and
ILAT bits.

INTERRUPT

RDS

INSTRUCTION

…

INSTRUCTION

INSTRUCTION

REUSABLE
INTERRUPT

INSTRUCTION

RETI

INSTRUCTION

RETURN
ADDRESS

VECTOR

1

3

1

2

Writes return address
to RETI register, sets bit
in PMASK, and jumps to
interrupt vector address.

Reduces interrupt to sub-
routine by clearing the
PMASK and ILAT bits.

INTERRUPT

2

3 Jumps to return address.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-235

Instruction Set

If the return branch is conditional (prefixed with If Condition), the
branch is executed if a condition is specified and is true. If the branch pre-
diction option is set to Not Predicted (NP), the sequencer assumes that the
branch is not taken. The absolute address option (ABS) is required (not
optional). For more information, see “Interrupting Execution” on
page 7-20.

Options

NP Branch prediction is Not Predicted

See section “Branch Target Buffer (BTB)” on page 7-34 for more
on NP and ABS options.

Example

IF AEQ, RTI (ABS) ;; /* predicted, absolute address */

IF AEQ, RTI (NP) (ABS) ;; /* NOT predicted, absolute address */

IF AEQ, RETI (ABS) ;; /* predicted, absolute address */

IF AEQ, RETI (NP) (ABS) ;; /* NOT predicted, absolute address */

Sequencer Instructions

8-236 ADSP-TS101 TigerSHARC Processor Programming Reference

Reduce (Interrupt to Subroutine)

Syntax

{IF Condition,} RDS ;

Function

This instruction reduces the function to a subroutine, making the inter-
rupt reusable. See Figure 8-64 on page 8-234 for additional details about
interrupt service routines for non-reusable interrupts and reusable
interrupts.

If the reduce instruction is conditional (prefixed with If Condition), the
reduction is executed if a condition is specified and is true. For more
information, see “Interrupting Execution” on page 7-20.

Options

None

Example

<interrupt service code part 1>

RDS;;

<interrupt service code part 2>

RETI;; /* After using RDS return is by RETI and not RTI. */

In part 1, all the interrupts that have a lower priority than the one cur-
rently serviced are disabled. In part 2, no interrupts are disabled following
the RDS (which can be also conditional). Note that if this interrupt hap-
pens during the execution of a lower priority interrupt, the lower priority
interrupt bit in PMASK is still set after the RDS.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-237

Instruction Set

If – Do (Conditional Execution)

Syntax

IF Condition;

DO, instruction; DO, instruction; DO, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the DO before the instruction makes the

instruction unconditional. */

Function

Any instruction in the instruction set can be conditional. The condition
can be either the inverse of the branch condition (any type of branch
instruction) or a stand-alone condition. For more information, see “Con-
ditional Execution” on page 7-12.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do idle;; /* ILLEGAL! */

Example

if JEQ; do, J0=J1+J2; K0=K1+K2;;

When JEQ evaluates true, the J-IALU instruction is executed and when it
evaluates false, the J-IALU instruction is not executed. The K-IALU
instruction is always executed.

Sequencer Instructions

8-238 ADSP-TS101 TigerSHARC Processor Programming Reference

If – Else (Conditional Sequencing and Execution)

Syntax

IF Condition, JUMP|CALL|CJMP|CJMP_CALL ;

ELSE, instruction; ELSE, instruction; ELSE, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the ELSE before the instruction makes

the instruction unconditional. */

Function

Any instruction in the instruction set can be conditional. The condition
can be either the inverse of the branch condition (any type of branch
instruction) or a stand-alone condition. For more information, see “Con-
ditional Execution” on page 7-12.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do idle;; /* ILLEGAL! */

Example

if MEQ, cjmp; else, xR0 = R5 + R6; yR8 - R9 * R10;;

If previous multiply result is zero, the CJMP is taken and the ADD instruc-
tion is not executed. If previous multiply result is not zero, the ADD
instruction is executed. The MUL instruction is always executed.

ADSP-TS101 TigerSHARC Processor Programming Reference 8-239

Instruction Set

Static Flag Registers

Syntax

SF1|SF0 = Condition ;

SF1|SF0 += AND|OR|XOR Condition ;

Function

This instruction sets the static condition flags, defining the conditions
upon which they are dependent.

Conditions are updated every time that the flags that create them are
updated. You may need to use a condition that was created a few lines
before, and has since been changed. In order to keep a condition valid,
you can use the Static Condition Flag (SFREG) register. The SFREG can be
loaded with the condition when valid, and used later. Another use for the
SFREG is for complex conditions. Functions can be defined between the
old value of static condition flags and other conditions.

Example

XSF0 = XMLT ;; /* Static flag xSF0 is set to XMLT. */

XSF1 += OR XAEQ ;; /* Static flag xSF1 ORed with xAEQ. */

Sequencer Instructions

8-240 ADSP-TS101 TigerSHARC Processor Programming Reference

Idle

Syntax

IDLE {(LP)} ;

Function

This instruction causes the TigerSHARC processor to go into IDLE state.
In this state the TigerSHARC processor stops executing instructions and
waits for any type of interrupt. If the LP option is set, the TigerSHARC
processor will go into power save mode. In order to go into power save
mode and keep the system in synchronization, a special sequence should
be followed. See “Low Power Mode” in Chapter 5 Core Controls of the
ADSP-TS101 TigerSHARC Processor Hardware Reference. Execution of
IDLE instruction without (LP) option can be done any time.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do idle;; /* ILLEGAL! */

ADSP-TS101 TigerSHARC Processor Programming Reference 8-241

Instruction Set

BTB Invalid

Syntax

BTBINV

Function

This instruction changes all BTB entries to be invalid. It must be executed
whenever internal memory TigerSHARC processor code is replaced.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do btbinv;; /* ILLEGAL! */

Sequencer Instructions

8-242 ADSP-TS101 TigerSHARC Processor Programming Reference

Trap

Syntax

TRAP (<Imm5>) ;;

Function

This instruction causes a trap and writes the 5-bit immediate into the
SPVCMD field in the SQSTAT register. See “Exceptions” in Chapter 6 Inter-
rupts of the ADSP-TS101 TigerSHARC Processor Hardware Reference.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do trap(0x3);; /* ILLEGAL! */

ADSP-TS101 TigerSHARC Processor Programming Reference 8-243

Instruction Set

Emulator Trap

Syntax

EMUTRAP ;;

Function

This instruction causes an emulation trap after the current line. The next
PC is saved in the DBGE register, and the sequencer starts reading instruc-
tions from the EMUIR register, which extracts instructions from JTAG.
“Emulator” and “Emulation Debug” in the ADSP-TS101 TigerSHARC
Processor Hardware Reference.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do emutrap;; /* ILLEGAL! */

Sequencer Instructions

8-244 ADSP-TS101 TigerSHARC Processor Programming Reference

No Operation

Syntax

NOP ;

Function

No operation – holds an instruction slot.

Can be executed with other Seq instructions in the same line.

The NOP, IDLE (lp), BTBINV, TRAP (<imm>), and EMUTRAP instruc-
tions may not be conditional. The following instruction line for
example is not legal:

if aeq; do nop;; /* ILLEGAL! */

ADSP-TS101 TigerSHARC Processor Programming Reference A-1

A QUICK REFERENCE

This chapter contains a concise description of the TigerSHARC processor
programming model and assembly language. It is intended to be used as
an assembly programming reference for language syntax and for typical
code sequences. This chapter does not contain information on the func-
tional aspects of the instruction set, nor does it describe in detail pipeline
dependency and parallelism mechanisms.

Some sections in this text with which a programmer should be familiar
before using this quick reference include:

• “DSP Architecture” on page 1-6

• “Instruction Line Syntax and Structure” on page 1-20

• “Instruction Parallelism Rules” on page 1-24

• “Register File Registers” on page 2-5

• “ALU Operations” on page 3-5

• “Multiplier Operations” on page 4-4

• “Shifter Operations” on page 5-3

• “IALU Operations” on page 6-5

• “Sequencer Operations” on page 7-7

ALU Quick Reference

A-2 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU Quick Reference
For examples using these instructions, see “ALU Examples” on page 3-16
and “CLU Examples” on page 3-21.

Listing A-1. ALU Fixed-Point Instructions

{X|Y|XY}{S|B}Rs = Rm +|- Rn {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd {({S|SU})} ;1

{X|Y|XY}Rs = Rm + CI {-1} ;

{X|Y|XY}LRsd = Rmd + CI {-1} ;

{X|Y|XY}{S|B}Rs = Rm +|- Rn + CI {-1} {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = Rmd +|- Rnd + CI {-1} {({S|SU})} ;1

{X|Y|XY}{S|B}Rs = (Rm +|- Rn)/2 {({T}{U})} ;2

{X|Y|XY}{L|S|B}Rsd = (Rmd +|- Rnd)/2 {({T}{U})} ;2

{X|Y|XY}{S|B}Rs = ABS Rm ;

{X|Y|XY}{L|S|B}Rsd = ABS Rmd ;

{X|Y|XY}{S|B}Rs = ABS (Rm + Rn) {(X)} ;3

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd + Rnd) {(X)} ;3

{X|Y|XY}{S|B}Rs = ABS (Rm - Rn) {({X}{U})} ;4

{X|Y|XY}{L|S|B}Rsd = ABS (Rmd - Rnd) {({X}{U})} ;4

{X|Y|XY}{S|B}Rs = - Rm ;

{X|Y|XY}{L|S|B}Rsd = - Rmd ;

{X|Y|XY}{S|B}Rs = MAX|MIN (Rm, Rn) {({U}{Z})} ;5

{X|Y|XY}{L|S|B}Rsd = MAX|MIN (Rmd, Rnd) {({U}{Z})} ;5

1 Options include: (): no saturation, (S): saturation, signed, (SU): saturation, unsigned
2 Options include: (): signed, round-to-nearest even, (T): signed, truncate, (U): unsigned,

round-to-nearest even, (TU): unsigned, truncate
3 Options include: (X): extend for ABS
4 Options include: (X): extend for ABS, (U): unsigned, round-to-nearest even, (XU): unsigned,

extend
5 Options include: (): regular signed comparison, (U): comparison between unsigned numbers,
(Z): returned result is zero if Rn is selected by MIN/MAX operation; otherwise returned result is Rm,
(UZ): unsigned comparison with option (Z) as described above

ADSP-TS101 TigerSHARC Processor Programming Reference A-3

Quick Reference

{X|Y|XY}S|BRsd = VMAX|VMIN (Rmd, Rnd) ;

{X|Y|XY}{S|B}Rs = INC|DEC Rm {({S|SU})} ;1

{X|Y|XY}{L|S|B}Rsd = INC|DEC Rmd {({S|SU})} ;1

{X|Y|XY}{S|B}COMP(Rm, Rn) {(U)} ;5

{X|Y|XY}{L|S|B}COMP(Rnd,Rnd) {(U)} ;5

{X|Y|XY}{S|B}Rs = CLIP Rm BY Rn ;

{X|Y|XY}{L|S|B}Rsd = CLIP Rmd BY Rnd ;

{X|Y|XY}Rs = SUM S|B Rm {(U)} ;1

{X|Y|XY}Rs = SUM S|B Rmd {(U)} ;1

{X|Y|XY}Rs = ONES Rm|Rmd ;

{X|Y|XY}PR1:0 = Rmd ;

{X|Y|XY}Rsd = PR1:0 ;

{X|Y|XY}Rs = BFOINC Rmd ;

{X|Y|XY}PR0|PR1 += ABS (SRmd - SRnd){(U)} ;1

{X|Y|XY}PR0|PR1 += ABS (BRmd - BRnd){(U)} ;1

{X|Y|XY}PR0|PR1 += SUM SRm {(U)} ;1

{X|Y|XY}PR0|PR1 += SUM SRmd {(U)} ;1

{X|Y|XY}PR0|PR1 += SUM BRm {(U)} ;1

{X|Y|XY}PR0|PR1 += SUM BRmd {(U)} ;1

{X|Y|XY}{S|B}Rs = Rm + Rn, Ra = Rm - Rn ; (dual operation)
{X|Y|XY}{L|S|B}Rsd = Rmd + Rnd, Rad = Rmd - Rnd ; (dual operation)

Listing A-2. ALU Logical Operation Instructions

{X|Y|XY}Rs = PASS Rm ;

{X|Y|XY}LRsd = PASS Rmd ;

{X|Y|XY}Rs = Rm AND|AND NOT|OR|XOR Rn ;

{X|Y|XY}LRsd = Rmd AND|AND NOT|OR|XOR Rnd ;

{X|Y|XY}Rs = NOT Rm ;

{X|Y|XY}LRsd = NOT Rmd ;

1 Options include: (): signed, (U): unsigned

ALU Quick Reference

A-4 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing A-3. ALU Fixed-Point Miscellaneous

{X|Y|XY}Rsd = EXPAND SRm {+|- SRn} {({I|IU})} ;1

{X|Y|XY}Rsq = EXPAND SRmd {+|- SRnd} {({I|IU})} ;1

{X|Y|XY}Rsd = EXPAND BRm {+|- BRn} {({I|IU})} ;1

{X|Y|XY}Rsq = EXPAND BRmd {+|- BRnd} {({I|IU})} ;1

{X|Y|XY}SRs = COMPACT Rmd {+|- Rnd} {({T|I|IS|ISU})} ;2

{X|Y|XY}BRs = COMPACT SRmd {+|- SRnd} {({T|I|IS|ISU})} ;2

{X|Y|XY}BRsd = MERGE Rm, Rn ;

{X|Y|XY}BRsq = MERGE Rmd, Rnd ;

{X|Y|XY}SRsd = MERGE Rm, Rn ;

{X|Y|XY}SRsq = MERGE Rmd, Rnd ;

Listing A-4. Floating-Point ALU Instructions

{X|Y|XY}FRs = Rm +|- Rn {(T)} ;3

{X|Y|XY}FRsd = Rmd +|- Rnd {(T)} ;3

{X|Y|XY}FRs = (Rm +|- Rn)/2 {(T)} ;3

{X|Y|XY}FRsd = (Rmd +|- Rnd)/2 {(T)} ;3

{X|Y|XY}FRs = MAX|MIN (Rm +|- Rn) {(T)} ;4

{X|Y|XY}FRsd = MAX|MIN (Rmd +|- Rnd) {(T)} ;4

{X|Y|XY}FRs = ABS (Rm) ;

{X|Y|XY}FRsd = ABS (Rmd) ;

{X|Y|XY}FRs = ABS (Rm +|- Rn) {(T)} ;3

{X|Y|XY}FRsd = ABS (Rmd +|- Rnd) {(T)} ;3

{X|Y|XY}FRs = - Rm ;

{X|Y|XY}FRsd = - Rmd ;

{X|Y|XY}FCOMP (Rm, Rn) ;

1 Options include: (): fractional, (I): integer signed, (IU): integer unsigned
2 Options include: (): fractional round, (I): integer, no saturate, (T): fractional, truncate, (IS):

integer, saturate, signed, (ISU): integer, saturate, unsigned
3 Options include: (): round, (T): truncate
4 Options include: (): round, (T): truncate (MIN only)

ADSP-TS101 TigerSHARC Processor Programming Reference A-5

Quick Reference

{X|Y|XY}FCOMP (Rmd, Rnd) ;

{X|Y|XY}Rs = FIX FRm|FRmd {BY Rn} {(T)} ;3

{X|Y|XY}FRs|FRsd = FLOAT Rm {BY Rn} {(T)} ;3

{X|Y|XY}FRsd = EXTD Rm ;

{X|Y|XY}FRs = SNGL Rmd ;

{X|Y|XY}FRs = CLIP Rm BY Rn ;

{X|Y|XY}FRsd = CLIP Rmd BY Rnd ;

{X|Y|XY}FRs = Rm COPYSIGN Rn ;

{X|Y|XY}FRsd = Rmd COPYSIGN Rnd ;

{X|Y|XY}FRs = SCALB FRm BY Rn ;

{X|Y|XY}FRsd = SCALB FRmd BY Rn ;

{X|Y|XY}FRs = PASS Rm ;

{X|Y|XY}FRsd = PASS Rmd ;

{X|Y|XY}FRs = RECIPS Rm ;

{X|Y|XY}FRsd = RECIPS Rmd ;

{X|Y|XY}FRs = RSQRTS Rm ;

{X|Y|XY}FRsd = RSQRTS Rmd ;

{X|Y|XY}Rs = MANT FRm|FRmd ;

{X|Y|XY}Rs = LOGB FRm|FRmd {(S)} ;1

{X|Y|XY}FRs = Rm + Rn, FRa = Rm - Rn ; (dual instruction)
{X|Y|XY}FRsd = Rmd + Rnd, FRad = Rmd - Rnd ; (dual instruction)

Listing A-5. Fixed-Point CLU Instructions

{X|Y|XY}{S}TRsd = TMAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = TMAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

{X|Y|XY}{S}Rs = TMAX(TRm, TRn) ;

{X|Y|XY}{S}TRsd = MAX(TRmd + Rmq_h, TRnd + Rmq_l) ;

{X|Y|XY}{S}TRsd = MAX(TRmd - Rmq_h, TRnd - Rmq_l) ;

{X|Y|XY}Rs = TRm ;

{X|Y|XY}Rsd = TRmd ;

{X|Y|XY}Rsq = TRmq ;

1 Options include: (): do not saturate, (S): saturate

Multiplier Quick Reference

A-6 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}TRs = Rm ;

{X|Y|XY}TRsd = Rmd ;

{X|Y|XY}TRsq = Rmq ;

{X|Y|XY}Rs = THRm ;

{X|Y|XY}Rsd = THRmd ;

{X|Y|XY}Rsq = THRmq ;1

{X|Y|XY}THRs = Rm} ;

{X|Y|XY}THRsd = Rmd {(i)} ;

{X|Y|XY}THRsq = Rmq ;1

{X|Y|XY}TRs = DESPREAD (Rmq, THRd) + TRn ;

{X|Y|XY}Rs = TRs, TRs = DESPREAD (Rmq, THRd) ; (dual instruction)
{X|Y|XY}Rsd = TRsd, TRsd = DESPREAD (Rmq, THRd) ; (dual instruction)
{X|Y|XY}{S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ;

{X|Y|XY}Rsq = TRaq, {S}TRsq = ACS (TRmd, TRnd, Rm) (TMAX) ; (dual
instr.)
{X|Y|XY}Rsd = PERMUTE (Rmd, Rn) ;

{X|Y|XY}Rsq = PERMUTE (Rmd, -Rmd, Rn) ;

Multiplier Quick Reference
For examples using these instructions, see “Multiplier Examples” on
page 4-21.

Listing A-6. 32-Bit Fixed-Point Multiplication Instructions

{X|Y|XY}Rs = Rm * Rn {({U|nU}{I}{T}{S})} ;2

{X|Y|XY}Rsd = Rm * Rn {({U|nU}{I})} ;

{X|Y|XY}MRa += Rm * Rn {({U}{I}{C|CR})} ;3

1 Not implemented, but syntax reserved
2 Options include: (): fractional, signed, and no saturation; (S): saturation, signed, (SU): satura-

tion, unsigned
3 Options include: (): signed, round-to-nearest even, (T): signed, truncate, (U): unsigned,

round-to-nearest even, (TU): unsigned, truncate

ADSP-TS101 TigerSHARC Processor Programming Reference A-7

Quick Reference

{X|Y|XY}MRa -= Rm * Rn {({I}{C|CR})} ;

{X|Y|XY}Rs = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm * Rn {({U}{I}{C})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Listing A-7. 16-Bit Fixed-Point Quad Multiplication Instructions

{X|Y|XY}Rsd = Rmd * Rnd {({U}{I}{T}{S})} ;

{X|Y|XY}Rsq = Rmd * Rnd {({U}{I})} ;

{X|Y|XY}MRb += Rmd * Rnd {({U}{I}{C})} ;

/* where MRb is either MR1:0, MR3:2 */{X|Y|XY}MRb += Rmd * Rnd

{({U}{I}{C|CR})} ;

{X|Y|XY}Rsd = MRb, MRb += Rmd * Rnd {{I}{C})} ; dual operation
/* where MRb is either MR1:0, MR3:2, or MR3:0 */

Listing A-8. 16-Bit Fixed-Point Complex Multiplication Instructions

{X|Y|XY}MRa += Rm ** Rn {({I}{C|CR}{J})} ;

{X|Y|XY}Rs = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
{X|Y|XY}Rsd = MRa, MRa += Rm ** Rn {({I}{C}{J})} ; dual operation
/* where MRa is either MR1:0 or MR3:2 */

Listing A-9. 32- and 40-Bit Floating-Point Multiplication Instructions

{X|Y|XY}FRs = Rm * Rn {(T)} ;

{X|Y|XY}FRsd = Rmd * Rnd {(T)} ;

Listing A-10. Multiplier Register Load Instructions

{X|Y|XY}MRa = Rmd ;

{X|Y|XY}MR4 = Rm ;

{X|Y|XY}{S}Rsd = MRa {({U}{S})} ;

{X|Y|XY}Rsq = MR3:0 {({U}{S})} ;

{X|Y|XY}Rs = MR4 ;

Shifter Quick Reference

A-8 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y|XY}Rs = COMPACT MRa {({U}{I}{S})} ;

{X|Y|XY}SRsd = COMPACT MR3:0 {({U}{I}{S}{C})} ;

/* where MRa is either MR1:0 or MR3:2 */

Shifter Quick Reference
For examples using these instructions, see “Shifter Examples” on
page 5-17.

ADSP-TS101 TigerSHARC Processor Programming Reference A-9

Quick Reference

Listing A-11. Shifter Instructions

{X|Y|XY}{B|S}Rs = LSHIFT|ASHIFT Rm BY Rn|<Imm> ;1,2

{X|Y|XY}{B|S|L}Rsd = LSHIFT|ASHIFT Rmd BY Rn|<Imm> ;1,2

{X|Y|XY}Rs = ROT Rm BY Rn|<Imm6> ;1

{X|Y|XY}{L}Rsd = ROT Rmd BY Rnd|<Imm> ;1,2

{X|Y|XY}Rs = FEXT Rm BY Rn|Rnd {(SE)} ;3

{X|Y|XY}LRsd = FEXT Rmd BY Rn|Rnd {(SE)} ;3

{X|Y|XY}Rs += FDEP Rm BY Rn|Rnd {(SE|ZF)} ;3

{X|Y|XY}LRsd += FDEP Rmd BY Rn|Rnd {(SE|ZF)} ;3

{X|Y|XY}Rs += MASK Rm BY Rn ;

{X|Y|XY}LRsd += MASK Rmd BY Rnd ;

{X|Y|XY}Rsd = GETBITS Rmq BY Rnd {(SE)} ;

{X|Y|XY}Rsd += PUTBITS Rmd BY Rnd ;

{X|Y|XY}BITEST Rm BY Rn|<Imm5> ;

{X|Y|XY}BITEST Rmd BY Rn|<Imm6> ;

{X|Y|XY}Rs = BCLR|BSET|BTGL Rm BY Rn|<Imm5> ;

{X|Y|XY}Rsd = BCLR|BSET|BTGL Rmd BY Rn|<Imm6> ;

{X|Y|XY}Rs = LD0|LD1 Rm|Rmd ;

{X|Y|XY}Rs = EXP Rm|Rmd ;

{X|Y}STAT = Rm ;

1 The Rn data size (bits) for the shift magnitude varies with the output operand: Byte: 5, Short: 6,
Normal: 7, Long: 8.

2 The size in bits of the Imm data varies with the output operand: Byte: 4, Short: 5, Normal: 6,
Long: 7.

3 The placement of the Pos8 and Len7 fields varies with the Rn/Rnd register, see Figure 5-5 on
page 5-8.

IALU Quick Reference

A-10 ADSP-TS101 TigerSHARC Processor Programming Reference

{X|Y}STATL = Rm ;

{X|Y}Rs = {X|Y}STAT ;

{X|Y|XY}BKFPT Rmd, Rnd ;

{X|Y|XY}Rsd = BFOTMP ;

{X|Y|XY}BFOTMP = Rmd ;

IALU Quick Reference
For examples using these instructions, see “IALU Examples” on
page 6-37.

Listing A-12. IALU Arithmetic, Logical, and Function Instructions

Js = Jm +|- Jn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

JB0|JB1|JB2|JB3|JL0|JL1|JL2|JL3 = Jm +|-Jn|<Imm8>|<Imm32> ;

Js = Jm + Jn|<Imm8>|<Imm32> + JC ;

Js = Jm - Jn|<Imm8>|<Imm32> + JC - 1 ;

Js = (Jm +|- Jn|<Imm8>|<Imm32>)/2 ;

COMP(Jm, Jn|<Imm8>|<Imm32>) {(U)} ;

Js = MAX|MIN (Jm, Jn|<Imm8>|<Imm32>) ;

Js = ABS Jm ;

Js = Jm OR|AND|XOR|AND NOT Jn|<Imm8>|<Imm32> ;

Js = NOT Jm ;

Js = ASHIFTR|LSHIFTR Jm ;

Js = ROTR|ROTL Jm ;

Ks = Km +|- Kn|<Imm8>|<Imm32> {({CJMP|CB|BR})} ;

KB0|KB1|KB2|KB3|KL0|KL1|KL2|KL3 = Km +|-Kn|<Imm8>|<Imm32> ;

Ks = Km + Kn|<Imm8>|<Imm32> + KC ;

Ks = Km - Kn|<Imm8>|<Imm32> + KC - 1 ;

Ks = (Km +|- Kn|<Imm8>|<Imm32>)/2 ;

COMP(Km, Kn|<Imm8>|<Imm32>) {(U)} ;

ADSP-TS101 TigerSHARC Processor Programming Reference A-11

Quick Reference

Ks = MAX|MIN (Km, Kn|<Imm8>|<Imm32>) ;

Ks = ABS Km ;

Ks = Km OR|AND|XOR|AND NOT Kn|<Imm8>|<Imm32> ;

Ks = NOT Km ;

Ks = ASHIFTR|LSHIFTR Km ;

Ks = ROTR|ROTL Km ;

Listing A-13. IALU Ureg Register Load (Data Addressing) Instructions

Ureg_s = [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Jm +|+= Jn|<Imm8>|<Imm32>] ;

Ureg_s = [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sd = L [Km +|+= Kn|<Imm8>|<Imm32>] ;

Ureg_sq = Q [Km +|+= Kn|<Imm8>|<Imm32>] ;

/* Ureg suffix indicates: _s=single, _sd=double, _sq=quad */

Listing A-14. IALU Dreg Register Load Data Addressing (and DAB
Operation) Instructions

{X|Y|XY}Rs = {CB|BR} [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Jm += Jn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rs = {CB|BR} [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsd = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rs = {CB|BR} L [Km += Kn|<Imm8>|<Imm32>] ;

{X|Y|XY}Rsq = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

{XY|YX}Rsd = {CB|BR|DAB|SDAB} Q [Km += Kn|<Imm8>|<Imm32>] ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m must be 0,1,2, or 3 for bit reverse or circular buffers */

IALU Quick Reference

A-12 ADSP-TS101 TigerSHARC Processor Programming Reference

Listing A-15. IALU Ureg Register Store (Data Addressing) Instructions

[Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_s ;

L [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Jm +|+= Jn|<Imm8>|<Imm32>] = Ureg_sq ;

[Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_s ;

L [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sd ;

Q [Km +|+= Kn|<Imm8>|<Imm32>] = Ureg_sq ;

Listing A-16. IALU Dreg Register Store (Data Addressing) Instructions

{CB|BR} [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Jm += Jn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

{CB|BR} [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rs ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsd ;

{CB|BR} L [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rs ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {X|Y}Rsq ;

{CB|BR} Q [Km += Kn|<Imm8>|<Imm32>] = {XY|YX}Rsd ;

/* R suffix indicates: _s=single, _sd=double, _sq=quad */

/* m = 0,1,2 or 3 for bit reverse or circular buffers */

Listing A-17. IALU Universal Register Transfer Instructions

Ureg_s = <Imm15>|<Imm32> ;

Ureg_s = Ureg_m ;

Ureg_sd = Ureg_md ;

Ureg_sq = Ureg_mq ;

ADSP-TS101 TigerSHARC Processor Programming Reference A-13

Quick Reference

Sequencer Quick Reference
For examples using these instructions, see “Sequencer Examples” on
page 7-72.

Listing A-18. Sequencer Instructions

{IF Condition,} JUMP|CALL <Label> {(NP)} {(ABS)} ;

{IF Condition,} CJMP|CJMP_CALL {(NP)} {(ABS)} ;

{IF Condition,} RETI|RTI {(NP)} {(ABS)} ;

{IF Condition,} RDS ;

IF Condition;

DO, instruction; DO, instruction; DO, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the DO before the instruction makes the

instruction unconditional. */

IF Condition, JUMP|CALL|CJMP|CJMP_CALL ;

ELSE, instruction; ELSE, instruction; ELSE, instruction ;;

/* This syntax permits up to three instructions to be controlled

by a condition. Omitting the ELSE before the instruction makes

the instruction unconditional. */

SF1|SF0 = Condition ;

SF1|SF0 += AND|OR|XOR Condition ;

IDLE {(LP)} ;

BTBINV

Sequencer Quick Reference

A-14 ADSP-TS101 TigerSHARC Processor Programming Reference

TRAP (<Imm5>) ;;

EMUTRAP ;;

NOP ;

ADSP-TS101 TigerSHARC Processor Programming Reference B-1

B REGISTER/BIT DEFINITIONS

When writing DSP programs, it is often necessary to set, clear, or test bits
in the DSP’s registers. While these bit operations can all be done by refer-
ring to the bit’s location within a register or (for some operations) the
register’s address with a hexadecimal number, it is much easier to use sym-
bols that correspond to the bit’s or register’s name. For convenience and
consistency, Analog Devices provides a header file that provides these bit
and registers definitions for the ADSP-TS101 TigerSHARC processor.
For more information on TigerSHARC processor registers, see the “Regis-
ters and Memory” chapter in the ADSP-TS101 TigerSHARC Processor
Hardware Reference.

Listing B-1. DEFTS101.H – Register and Bit #Defines File

/**

* defTS101.h

*

* Copyright (c) 2001 Analog Devices, Inc., All rights reserved

*/

#if !defined(__DEFTS101_H_)

#define __DEFTS101_H_

///////////////////////////////////

// Macros

///////////////////////////////////

#if !defined(MAKE_BITMASK_)

B-2 ADSP-TS101 TigerSHARC Processor Programming Reference

#define MAKE_BITMASK_(x_) (1<<(x_)) // Make a bit mask from a bit

position

#endif

#if !defined(MAKE_LL_BITMASK_)

#define MAKE_LL_BITMASK_(x_) (1LL<<(x_)) // Make a bit mask from

a bit position (usable only in C)

#endif

//****

//*** Unmapped Registers Defines ****

//****

//*** XSTAT ******

// Bit positions

#define XSTAT_AZ_P (0)

#define XSTAT_AN_P (1)

#define XSTAT_AV_P (2)

#define XSTAT_AC_P (3)

#define XSTAT_MZ_P (4)

#define XSTAT_MN_P (5)

#define XSTAT_MV_P (6)

#define XSTAT_MU_P (7)

#define XSTAT_SZ_P (8)

#define XSTAT_SN_P (9)

#define XSTAT_BF_P (10)

#define XSTAT_AI_P (12)

#define XSTAT_MI_P (13)

#define XSTAT_UEN_P (20)

#define XSTAT_OEN_P (21)

#define XSTAT_IVEN_P (22)

#define XSTAT_AUS_P (24)

#define XSTAT_AVS_P (25)

#define XSTAT_AOS_P (26)

#define XSTAT_AIS_P (27)

ADSP-TS101 TigerSHARC Processor Programming Reference B-3

Register/Bit Definitions

#define XSTAT_MUS_P (28)

#define XSTAT_MVS_P (29)

#define XSTAT_MOS_P (30)

#define XSTAT_MIS_P (31)

// Bit Masks

#define XSTAT_AZ MAKE_BITMASK_(XSTAT_AZ_P)

#define XSTAT_AN MAKE_BITMASK_(XSTAT_AN_P)

#define XSTAT_AV MAKE_BITMASK_(XSTAT_AV_P)

#define XSTAT_AC MAKE_BITMASK_(XSTAT_AC_P)

#define XSTAT_MZ MAKE_BITMASK_(XSTAT_MZ_P)

#define XSTAT_MN MAKE_BITMASK_(XSTAT_MN_P)

#define XSTAT_MV MAKE_BITMASK_(XSTAT_MV_P)

#define XSTAT_MU MAKE_BITMASK_(XSTAT_MU_P)

#define XSTAT_SZ MAKE_BITMASK_(XSTAT_SZ_P)

#define XSTAT_SN MAKE_BITMASK_(XSTAT_SN_P)

#define XSTAT_BF MAKE_BITMASK_(XSTAT_BF_P)

#define XSTAT_AI MAKE_BITMASK_(XSTAT_AI_P)

#define XSTAT_MI MAKE_BITMASK_(XSTAT_MI_P)

#define XSTAT_UEN MAKE_BITMASK_(XSTAT_UEN_P)

#define XSTAT_OEN MAKE_BITMASK_(XSTAT_OEN_P)

#define XSTAT_IVEN MAKE_BITMASK_(XSTAT_IVEN_P)

#define XSTAT_AUS MAKE_BITMASK_(XSTAT_AUS_P)

#define XSTAT_AVS MAKE_BITMASK_(XSTAT_AVS_P)

#define XSTAT_AOS MAKE_BITMASK_(XSTAT_AOS_P)

#define XSTAT_AIS MAKE_BITMASK_(XSTAT_AIS_P)

#define XSTAT_MUS MAKE_BITMASK_(XSTAT_MUS_P)

#define XSTAT_MVS MAKE_BITMASK_(XSTAT_MVS_P)

#define XSTAT_MOS MAKE_BITMASK_(XSTAT_MOS_P)

#define XSTAT_MIS MAKE_BITMASK_(XSTAT_MIS_P)

//*** YSTAT *****

// Bit positions

#define YSTAT_AZ_P (0)

B-4 ADSP-TS101 TigerSHARC Processor Programming Reference

#define YSTAT_AN_P (1)

#define YSTAT_AV_P (2)

#define YSTAT_AC_P (3)

#define YSTAT_MZ_P (4)

#define YSTAT_MN_P (5)

#define YSTAT_MV_P (6)

#define YSTAT_MU_P (7)

#define YSTAT_SZ_P (8)

#define YSTAT_SN_P (9)

#define YSTAT_BF_P (10)

#define YSTAT_AI_P (12)

#define YSTAT_MI_P (13)

#define YSTAT_UEN_P (20)

#define YSTAT_OEN_P (21)

#define YSTAT_IVEN_P (22)

#define YSTAT_AUS_P (24)

#define YSTAT_AVS_P (25)

#define YSTAT_AOS_P (26)

#define YSTAT_AIS_P (27)

#define YSTAT_MUS_P (28)

#define YSTAT_MVS_P (29)

#define YSTAT_MOS_P (30)

#define YSTAT_MIS_P (31)

// Bit Masks

#define YSTAT_AZ MAKE_BITMASK_(YSTAT_AZ_P)

#define YSTAT_AN MAKE_BITMASK_(YSTAT_AN_P)

#define YSTAT_AV MAKE_BITMASK_(YSTAT_AV_P)

#define YSTAT_AC MAKE_BITMASK_(YSTAT_AC_P)

#define YSTAT_MZ MAKE_BITMASK_(YSTAT_MZ_P)

#define YSTAT_MN MAKE_BITMASK_(YSTAT_MN_P)

#define YSTAT_MV MAKE_BITMASK_(YSTAT_MV_P)

#define YSTAT_MU MAKE_BITMASK_(YSTAT_MU_P)

#define YSTAT_SZ MAKE_BITMASK_(YSTAT_SZ_P)

ADSP-TS101 TigerSHARC Processor Programming Reference B-5

Register/Bit Definitions

#define YSTAT_SN MAKE_BITMASK_(YSTAT_SN_P)

#define YSTAT_BF MAKE_BITMASK_(YSTAT_BF_P)

#define YSTAT_AI MAKE_BITMASK_(YSTAT_AI_P)

#define YSTAT_MI MAKE_BITMASK_(YSTAT_MI_P)

#define YSTAT_UEN MAKE_BITMASK_(YSTAT_UEN_P)

#define YSTAT_OEN MAKE_BITMASK_(YSTAT_OEN_P)

#define YSTAT_IVEN MAKE_BITMASK_(YSTAT_IVEN_P)

#define YSTAT_AUS MAKE_BITMASK_(YSTAT_AUS_P)

#define YSTAT_AVS MAKE_BITMASK_(YSTAT_AVS_P)

#define YSTAT_AOS MAKE_BITMASK_(YSTAT_AOS_P)

#define YSTAT_AIS MAKE_BITMASK_(YSTAT_AIS_P)

#define YSTAT_MUS MAKE_BITMASK_(YSTAT_MUS_P)

#define YSTAT_MVS MAKE_BITMASK_(YSTAT_MVS_P)

#define YSTAT_MOS MAKE_BITMASK_(YSTAT_MOS_P)

#define YSTAT_MIS MAKE_BITMASK_(YSTAT_MIS_P)

//*****

//*** Mapped Register Defines *****

//*****

//*** X Comp Block ******

#define XR0_LOC (0x180000)

#define XR1_LOC (0x180001)

#define XR2_LOC (0x180002)

#define XR3_LOC (0x180003)

#define XR4_LOC (0x180004)

#define XR5_LOC (0x180005)

#define XR6_LOC (0x180006)

#define XR7_LOC (0x180007)

#define XR8_LOC (0x180008)

#define XR9_LOC (0x180009)

#define XR10_LOC (0x18000A)

B-6 ADSP-TS101 TigerSHARC Processor Programming Reference

#define XR11_LOC (0x18000B)

#define XR12_LOC (0x18000C)

#define XR13_LOC (0x18000D)

#define XR14_LOC (0x18000E)

#define XR15_LOC (0x18000F)

#define XR16_LOC (0x180010)

#define XR17_LOC (0x180011)

#define XR18_LOC (0x180012)

#define XR19_LOC (0x180013)

#define XR20_LOC (0x180014)

#define XR21_LOC (0x180015)

#define XR22_LOC (0x180016)

#define XR23_LOC (0x180017)

#define XR24_LOC (0x180018)

#define XR25_LOC (0x180019)

#define XR26_LOC (0x18001A)

#define XR27_LOC (0x18001B)

#define XR28_LOC (0x18001C)

#define XR29_LOC (0x18001D)

#define XR30_LOC (0x18001E)

#define XR31_LOC (0x18001F)

//*** Y Comp Block ******

#define YR0_LOC (0x180040)

#define YR1_LOC (0x180041)

#define YR2_LOC (0x180042)

#define YR3_LOC (0x180043)

#define YR4_LOC (0x180044)

#define YR5_LOC (0x180045)

#define YR6_LOC (0x180046)

#define YR7_LOC (0x180047)

#define YR8_LOC (0x180048)

#define YR9_LOC (0x180049)

ADSP-TS101 TigerSHARC Processor Programming Reference B-7

Register/Bit Definitions

#define YR10_LOC (0x18004A)

#define YR11_LOC (0x18004B)

#define YR12_LOC (0x18004C)

#define YR13_LOC (0x18004D)

#define YR14_LOC (0x18004E)

#define YR15_LOC (0x18004F)

#define YR16_LOC (0x180050)

#define YR17_LOC (0x180051)

#define YR18_LOC (0x180052)

#define YR19_LOC (0x180053)

#define YR20_LOC (0x180054)

#define YR21_LOC (0x180055)

#define YR22_LOC (0x180056)

#define YR23_LOC (0x180057)

#define YR24_LOC (0x180058)

#define YR25_LOC (0x180059)

#define YR26_LOC (0x18005A)

#define YR27_LOC (0x18005B)

#define YR28_LOC (0x18005C)

#define YR29_LOC (0x18005D)

#define YR30_LOC (0x18005E)

#define YR31_LOC (0x18005F)

//*** XY Comp Block Merged *****

#define XYR0_LOC (0x180080)

#define XYR1_LOC (0x180081)

#define XYR2_LOC (0x180082)

#define XYR3_LOC (0x180083)

#define XYR4_LOC (0x180084)

#define XYR5_LOC (0x180085)

#define XYR6_LOC (0x180086)

#define XYR7_LOC (0x180087)

#define XYR8_LOC (0x180088)

B-8 ADSP-TS101 TigerSHARC Processor Programming Reference

#define XYR9_LOC (0x180089)

#define XYR10_LOC (0x18008A)

#define XYR11_LOC (0x18008B)

#define XYR12_LOC (0x18008C)

#define XYR13_LOC (0x18008D)

#define XYR14_LOC (0x18008E)

#define XYR15_LOC (0x18008F)

#define XYR16_LOC (0x180090)

#define XYR17_LOC (0x180091)

#define XYR18_LOC (0x180092)

#define XYR19_LOC (0x180093)

#define XYR20_LOC (0x180094)

#define XYR21_LOC (0x180095)

#define XYR22_LOC (0x180096)

#define XYR23_LOC (0x180097)

#define XYR24_LOC (0x180098)

#define XYR25_LOC (0x180099)

#define XYR26_LOC (0x18009A)

#define XYR27_LOC (0x18009B)

#define XYR28_LOC (0x18009C)

#define XYR29_LOC (0x18009D)

#define XYR30_LOC (0x18009E)

#define XYR31_LOC (0x18009F)

//*** YX Comp Block Merged *****

#define YXR0_LOC (0x1800C0)

#define YXR1_LOC (0x1800C1)

#define YXR2_LOC (0x1800C2)

#define YXR3_LOC (0x1800C3)

#define YXR4_LOC (0x1800C4)

#define YXR5_LOC (0x1800C5)

#define YXR6_LOC (0x1800C6)

#define YXR7_LOC (0x1800C7)

ADSP-TS101 TigerSHARC Processor Programming Reference B-9

Register/Bit Definitions

#define YXR8_LOC (0x1800C8)

#define YXR9_LOC (0x1800C9)

#define YXR10_LOC (0x1800CA)

#define YXR11_LOC (0x1800CB)

#define YXR12_LOC (0x1800CC)

#define YXR13_LOC (0x1800CD)

#define YXR14_LOC (0x1800CE)

#define YXR15_LOC (0x1800CF)

#define YXR16_LOC (0x1800D0)

#define YXR17_LOC (0x1800D1)

#define YXR18_LOC (0x1800D2)

#define YXR19_LOC (0x1800D3)

#define YXR20_LOC (0x1800D4)

#define YXR21_LOC (0x1800D5)

#define YXR22_LOC (0x1800D6)

#define YXR23_LOC (0x1800D7)

#define YXR24_LOC (0x1800D8)

#define YXR25_LOC (0x1800D9)

#define YXR26_LOC (0x1800DA)

#define YXR27_LOC (0x1800DB)

#define YXR28_LOC (0x1800DC)

#define YXR29_LOC (0x1800DD)

#define YXR30_LOC (0x1800DE)

#define YXR31_LOC (0x1800DF)

//*** XY Comp Block Broadcast ****

#define XYBR0_LOC (0x180100)

#define XYBR1_LOC (0x180101)

#define XYBR2_LOC (0x180102)

#define XYBR3_LOC (0x180103)

#define XYBR4_LOC (0x180104)

#define XYBR5_LOC (0x180105)

#define XYBR6_LOC (0x180106)

B-10 ADSP-TS101 TigerSHARC Processor Programming Reference

#define XYBR7_LOC (0x180107)

#define XYBR8_LOC (0x180108)

#define XYBR9_LOC (0x180109)

#define XYBR10_LOC (0x18010A)

#define XYBR11_LOC (0x18010B)

#define XYBR12_LOC (0x18010C)

#define XYBR13_LOC (0x18010D)

#define XYBR14_LOC (0x18010E)

#define XYBR15_LOC (0x18010F)

#define XYBR16_LOC (0x180110)

#define XYBR17_LOC (0x180111)

#define XYBR18_LOC (0x180112)

#define XYBR19_LOC (0x180113)

#define XYBR20_LOC (0x180114)

#define XYBR21_LOC (0x180115)

#define XYBR22_LOC (0x180116)

#define XYBR23_LOC (0x180117)

#define XYBR24_LOC (0x180118)

#define XYBR25_LOC (0x180119)

#define XYBR26_LOC (0x18011A)

#define XYBR27_LOC (0x18011B)

#define XYBR28_LOC (0x18011C)

#define XYBR29_LOC (0x18011D)

#define XYBR30_LOC (0x18011E)

#define XYBR31_LOC (0x18011F)

//*** J-IALU ******

#define J0_LOC (0x180180)

#define J1_LOC (0x180181)

#define J2_LOC (0x180182)

#define J3_LOC (0x180183)

#define J4_LOC (0x180184)

#define J5_LOC (0x180185)

ADSP-TS101 TigerSHARC Processor Programming Reference B-11

Register/Bit Definitions

#define J6_LOC (0x180186)

#define J7_LOC (0x180187)

#define J8_LOC (0x180188)

#define J9_LOC (0x180189)

#define J10_LOC (0x18018A)

#define J11_LOC (0x18018B)

#define J12_LOC (0x18018C)

#define J13_LOC (0x18018D)

#define J14_LOC (0x18018E)

#define J15_LOC (0x18018F)

#define J16_LOC (0x180190)

#define J17_LOC (0x180191)

#define J18_LOC (0x180192)

#define J19_LOC (0x180193)

#define J20_LOC (0x180194)

#define J21_LOC (0x180195)

#define J22_LOC (0x180196)

#define J23_LOC (0x180197)

#define J24_LOC (0x180198)

#define J25_LOC (0x180199)

#define J26_LOC (0x18019A)

#define J27_LOC (0x18019B)

#define J28_LOC (0x18019C)

#define J29_LOC (0x18019D)

#define J30_LOC (0x18019E)

#define J31_LOC (0x18019F)

//*** K-IALU ******

#define K0_LOC (0x1801A0)

#define K1_LOC (0x1801A1)

#define K2_LOC (0x1801A2)

#define K3_LOC (0x1801A3)

#define K4_LOC (0x1801A4)

B-12 ADSP-TS101 TigerSHARC Processor Programming Reference

#define K5_LOC (0x1801A5)

#define K6_LOC (0x1801A6)

#define K7_LOC (0x1801A7)

#define K8_LOC (0x1801A8)

#define K9_LOC (0x1801A9)

#define K10_LOC (0x1801AA)

#define K11_LOC (0x1801AB)

#define K12_LOC (0x1801AC)

#define K13_LOC (0x1801AD)

#define K14_LOC (0x1801AE)

#define K15_LOC (0x1801AF)

#define K16_LOC (0x1801B0)

#define K17_LOC (0x1801B1)

#define K18_LOC (0x1801B2)

#define K19_LOC (0x1801B3)

#define K20_LOC (0x1801B4)

#define K21_LOC (0x1801B5)

#define K22_LOC (0x1801B6)

#define K23_LOC (0x1801B7)

#define K24_LOC (0x1801B8)

#define K25_LOC (0x1801B9)

#define K26_LOC (0x1801BA)

#define K27_LOC (0x1801BB)

#define K28_LOC (0x1801BC)

#define K29_LOC (0x1801BD)

#define K30_LOC (0x1801BE)

#define K31_LOC (0x1801BF)

//*** J-IALU Circular ****

#define JB0_LOC (0x1801C0)

#define JB1_LOC (0x1801C1)

#define JB2_LOC (0x1801C2)

#define JB3_LOC (0x1801C3)

ADSP-TS101 TigerSHARC Processor Programming Reference B-13

Register/Bit Definitions

#define JL4_LOC (0x1801C4)

#define JL5_LOC (0x1801C5)

#define JL6_LOC (0x1801C6)

#define JL7_LOC (0x1801C7)

//*** K-IALU Circular ****

#define KB0_LOC (0x1801E0)

#define KB1_LOC (0x1801E1)

#define KB2_LOC (0x1801E2)

#define KB3_LOC (0x1801E3)

#define KL4_LOC (0x1801E4)

#define KL5_LOC (0x1801E5)

#define KL6_LOC (0x1801E6)

#define KL7_LOC (0x1801E7)

//*** Sequencer Registers ***

#define CJMP_LOC (0x180340)

#define RETI_LOC (0x180342)

#define RETS_LOC (0x180344)

#define DBGE_LOC (0x180345)

//#define ILATSTL_LOC (0x180346) //Should not be used due to sil-

icon anomaly

//#define ILATSTH_LOC (0x180347)

#define LC0_LOC (0x180348)

#define LC1_LOC (0x180349)

//*** ILAT and IMASK with bit defines ****

#define ILATL_LOC (0x18034A) //Use ILAT registers for reads only

#define ILATH_LOC (0x18034B)

#define IMASKL_LOC (0x18034C)

#define IMASKH_LOC (0x18034D)

B-14 ADSP-TS101 TigerSHARC Processor Programming Reference

#define PMASKL_LOC (0x18034E)

#define PMASKH_LOC (0x18034F)

// Bit positions

#define INT_RES0_P (0)

#define INT_RES1_P (1)

#define INT_TIMER0L_P (2)

#define INT_TIMER1L_P (3)

#define INT_RES4_P (4)

#define INT_RES5_P (5)

#define INT_LINK0_P (6)

#define INT_LINK1_P (7)

#define INT_LINK2_P (8)

#define INT_LINK3_P (9)

#define INT_RES_10_P (10)

#define INT_RES_11_P (11)

#define INT_RES_12_P (12)

#define INT_RES_13_P (13)

#define INT_DMA0_P (14)

#define INT_DMA1_P (15)

#define INT_DMA2_P (16)

#define INT_DMA3_P (17)

#define INT_RES18_P (18)

#define INT_RES19_P (19)

#define INT_RES20_P (20)

#define INT_RES21_P (21)

#define INT_DMA4_P (22)

#define INT_DMA5_P (23)

#define INT_DMA6_P (24)

#define INT_DMA7_P (25)

#define INT_RES26_P (26)

#define INT_RES27_P (27)

#define INT_RES28_P (28)

#define INT_DMA8_P (29)

ADSP-TS101 TigerSHARC Processor Programming Reference B-15

Register/Bit Definitions

#define INT_DMA9_P (30)

#define INT_DMA10_P (31)

#define INT_DMA11_P (0)

#define INT_RES33_P (1)

#define INT_RES34_P (2)

#define INT_RES35_P (3)

#define INT_RES36_P (4)

#define INT_DMA12_P (5)

#define INT_DMA13_P (6)

#define INT_RES39_P (7)

#define INT_RES40_P (8)

#define INT_IRQ0_P (9)

#define INT_IRQ1_P (10)

#define INT_IRQ2_P (11)

#define INT_IRQ3_P (12)

#define INT_RES45_P (13)

#define INT_RES46_P (14)

#define INT_RES47_P (15)

#define INT_VIRPT_P (16)

#define INT_RES49_P (17)

#define INT_BUSLOCK_P (18)

#define INT_RES51_P (19)

#define INT_TIMER0H_P (20)

#define INT_TIMER1H_P (21)

#define INT_RES54_P (22)

#define INT_RES55_P (23)

#define INT_RES56_P (24)

#define INT_HW_P (25)

#define INT_RES58_P (26)

#define INT_RES59_P (27)

#define INT_GIE_P (28)

#define INT_RES61_P (29)

#define INT_EXCEPT_P (30) //!!! Need to choose one or the other

!!!

B-16 ADSP-TS101 TigerSHARC Processor Programming Reference

#define INT_SW_P (30)

#define INT_EMUL_P (31)

// Bit Masks for C only

#define INT_RES0_64 MAKE_LL_BITMASK_(INT_RES0_P + 0)

#define INT_RES1_64 MAKE_LL_BITMASK_(INT_RES1_P + 0)

#define INT_TIMER0L_64 MAKE_LL_BITMASK_(INT_TIMER0L_P + 0)

#define INT_TIMER1L_64 MAKE_LL_BITMASK_(INT_TIMER1L_P + 0)

#define INT_RES4_64 MAKE_LL_BITMASK_(INT_RES4_P + 0)

#define INT_RES5_64 MAKE_LL_BITMASK_(INT_RES5_P + 0)

#define INT_LINK0_64 MAKE_LL_BITMASK_(INT_LINK0_P + 0)

#define INT_LINK1_64 MAKE_LL_BITMASK_(INT_LINK1_P + 0)

#define INT_LINK2_64 MAKE_LL_BITMASK_(INT_LINK2_P + 0)

#define INT_LINK3_64 MAKE_LL_BITMASK_(INT_LINK3_P + 0)

#define INT_RES_10_64 MAKE_LL_BITMASK_(INT_RES_10_P + 0)

#define INT_RES_11_64 MAKE_LL_BITMASK_(INT_RES_11_P + 0)

#define INT_RES_12_64 MAKE_LL_BITMASK_(INT_RES_12_P + 0)

#define INT_RES_13_64 MAKE_LL_BITMASK_(INT_RES_13_P + 0)

#define INT_DMA0_64 MAKE_LL_BITMASK_(INT_DMA0_P + 0)

#define INT_DMA1_64 MAKE_LL_BITMASK_(INT_DMA1_P + 0)

#define INT_DMA2_64 MAKE_LL_BITMASK_(INT_DMA2_P + 0)

#define INT_DMA3_64 MAKE_LL_BITMASK_(INT_DMA3_P + 0)

#define INT_RES18_64 MAKE_LL_BITMASK_(INT_RES18_P + 0)

#define INT_RES19_64 MAKE_LL_BITMASK_(INT_RES19_P + 0)

#define INT_RES20_64 MAKE_LL_BITMASK_(INT_RES20_P + 0)

#define INT_RES21_64 MAKE_LL_BITMASK_(INT_RES21_P + 0)

#define INT_DMA4_64 MAKE_LL_BITMASK_(INT_DMA4_P + 0)

#define INT_DMA5_64 MAKE_LL_BITMASK_(INT_DMA5_P + 0)

#define INT_DMA6_64 MAKE_LL_BITMASK_(INT_DMA6_P + 0)

#define INT_DMA7_64 MAKE_LL_BITMASK_(INT_DMA7_P + 0)

#define INT_RES26_64 MAKE_LL_BITMASK_(INT_RES26_P + 0)

#define INT_RES27_64 MAKE_LL_BITMASK_(INT_RES27_P + 0)

#define INT_RES28_64 MAKE_LL_BITMASK_(INT_RES28_P + 0)

#define INT_DMA8_64 MAKE_LL_BITMASK_(INT_DMA8_P + 0)

ADSP-TS101 TigerSHARC Processor Programming Reference B-17

Register/Bit Definitions

#define INT_DMA9_64 MAKE_LL_BITMASK_(INT_DMA9_P + 0)

#define INT_DMA10_64 MAKE_LL_BITMASK_(INT_DMA10_P + 0)

#define INT_DMA11_64 MAKE_LL_BITMASK_(INT_DMA11_P + 32)

#define INT_RES33_64 MAKE_LL_BITMASK_(INT_RES33_P + 32)

#define INT_RES34_64 MAKE_LL_BITMASK_(INT_RES34_P + 32)

#define INT_RES35_64 MAKE_LL_BITMASK_(INT_RES35_P + 32)

#define INT_RES36_64 MAKE_LL_BITMASK_(INT_RES36_P + 32)

#define INT_DMA12_64 MAKE_LL_BITMASK_(INT_DMA12_P + 32)

#define INT_DMA13_64 MAKE_LL_BITMASK_(INT_DMA13_P + 32)

#define INT_RES39_64 MAKE_LL_BITMASK_(INT_RES39_P + 32)

#define INT_RES40_64 MAKE_LL_BITMASK_(INT_RES40_P + 32)

#define INT_IRQ0_64 MAKE_LL_BITMASK_(INT_IRQ0_P + 32)

#define INT_IRQ1_64 MAKE_LL_BITMASK_(INT_IRQ1_P + 32)

#define INT_IRQ2_64 MAKE_LL_BITMASK_(INT_IRQ2_P + 32)

#define INT_IRQ3_64 MAKE_LL_BITMASK_(INT_IRQ3_P + 32)

#define INT_RES45_64 MAKE_LL_BITMASK_(INT_RES45_P + 32)

#define INT_RES46_64 MAKE_LL_BITMASK_(INT_RES46_P + 32)

#define INT_RES47_64 MAKE_LL_BITMASK_(INT_RES47_P + 32)

#define INT_VIRPT_64 MAKE_LL_BITMASK_(INT_VIRPT_P + 32)

#define INT_RES49_64 MAKE_LL_BITMASK_(INT_RES49_P + 32)

#define INT_BUSLOCK_64 MAKE_LL_BITMASK_(INT_BUSLOCK_P + 32)

#define INT_RES51_64 MAKE_LL_BITMASK_(INT_RES51_P + 32)

#define INT_TIMER0H_64 MAKE_LL_BITMASK_(INT_TIMER0H_P + 32)

#define INT_TIMER1H_64 MAKE_LL_BITMASK_(INT_TIMER1H_P + 32)

#define INT_RES54_64 MAKE_LL_BITMASK_(INT_RES54_P + 32)

#define INT_RES55_64 MAKE_LL_BITMASK_(INT_RES55_P + 32)

#define INT_RES56_64 MAKE_LL_BITMASK_(INT_RES56_P + 32)

#define INT_HW_64 MAKE_LL_BITMASK_(INT_HWERR_P + 32)

#define INT_RES58_64 MAKE_LL_BITMASK_(INT_RES58_P + 32)

#define INT_RES59_64 MAKE_LL_BITMASK_(INT_RES59_P + 32)

#define INT_RES60_64 MAKE_LL_BITMASK_(INT_RES60_P + 32)

#define INT_RES61_64 MAKE_LL_BITMASK_(INT_RES61_P + 32)

#define INT_EXCEPT_64 MAKE_LL_BITMASK_(INT_EXCEPT_P + 32)

#define INT_EMUL_64 MAKE_LL_BITMASK_(INT_EMUL_P + 32)

B-18 ADSP-TS101 TigerSHARC Processor Programming Reference

// Bit Masks

#define INT_RES0 MAKE_BITMASK_(INT_RES0_P)

#define INT_RES1 MAKE_BITMASK_(INT_RES1_P)

#define INT_TIMER0L MAKE_BITMASK_(INT_TIMER0L_P)

#define INT_TIMER1L MAKE_BITMASK_(INT_TIMER1L_P)

#define INT_RES4 MAKE_BITMASK_(INT_RES4_P)

#define INT_RES5 MAKE_BITMASK_(INT_RES5_P)

#define INT_LINK0 MAKE_BITMASK_(INT_LINK0_P)

#define INT_LINK1 MAKE_BITMASK_(INT_LINK1_P)

#define INT_LINK2 MAKE_BITMASK_(INT_LINK2_P)

#define INT_LINK3 MAKE_BITMASK_(INT_LINK3_P)

#define INT_RES_10 MAKE_BITMASK_(INT_RES_10_P)

#define INT_RES_11 MAKE_BITMASK_(INT_RES_11_P)

#define INT_RES_12 MAKE_BITMASK_(INT_RES_12_P)

#define INT_RES_13 MAKE_BITMASK_(INT_RES_13_P)

#define INT_DMA0 MAKE_BITMASK_(INT_DMA0_P)

#define INT_DMA1 MAKE_BITMASK_(INT_DMA1_P)

#define INT_DMA2 MAKE_BITMASK_(INT_DMA2_P)

#define INT_DMA3 MAKE_BITMASK_(INT_DMA3_P)

#define INT_RES18 MAKE_BITMASK_(INT_RES18_P)

#define INT_RES19 MAKE_BITMASK_(INT_RES19_P)

#define INT_RES20 MAKE_BITMASK_(INT_RES20_P)

#define INT_RES21 MAKE_BITMASK_(INT_RES21_P)

#define INT_DMA4 MAKE_BITMASK_(INT_DMA4_P)

#define INT_DMA5 MAKE_BITMASK_(INT_DMA5_P)

#define INT_DMA6 MAKE_BITMASK_(INT_DMA6_P)

#define INT_DMA7 MAKE_BITMASK_(INT_DMA7_P)

#define INT_RES26 MAKE_BITMASK_(INT_RES26_P)

#define INT_RES27 MAKE_BITMASK_(INT_RES27_P)

#define INT_RES28 MAKE_BITMASK_(INT_RES28_P)

#define INT_DMA8 MAKE_BITMASK_(INT_DMA8_P)

#define INT_DMA9 MAKE_BITMASK_(INT_DMA9_P)

#define INT_DMA10 MAKE_BITMASK_(INT_DMA10_P)

ADSP-TS101 TigerSHARC Processor Programming Reference B-19

Register/Bit Definitions

#define INT_DMA11 MAKE_BITMASK_(INT_DMA11_P)

#define INT_RES33 MAKE_BITMASK_(INT_RES33_P)

#define INT_RES34 MAKE_BITMASK_(INT_RES34_P)

#define INT_RES35 MAKE_BITMASK_(INT_RES35_P)

#define INT_RES36 MAKE_BITMASK_(INT_RES36_P)

#define INT_DMA12 MAKE_BITMASK_(INT_DMA12_P)

#define INT_DMA13 MAKE_BITMASK_(INT_DMA13_P)

#define INT_RES39 MAKE_BITMASK_(INT_RES39_P)

#define INT_RES40 MAKE_BITMASK_(INT_RES40_P)

#define INT_IRQ0 MAKE_BITMASK_(INT_IRQ0_P)

#define INT_IRQ1 MAKE_BITMASK_(INT_IRQ1_P)

#define INT_IRQ2 MAKE_BITMASK_(INT_IRQ2_P)

#define INT_IRQ3 MAKE_BITMASK_(INT_IRQ3_P)

#define INT_RES45 MAKE_BITMASK_(INT_RES45_P)

#define INT_RES46 MAKE_BITMASK_(INT_RES46_P)

#define INT_RES47 MAKE_BITMASK_(INT_RES47_P)

#define INT_VIRPT MAKE_BITMASK_(INT_VIRPT_P)

#define INT_RES49 MAKE_BITMASK_(INT_RES49_P)

#define INT_BUSLOCK MAKE_BITMASK_(INT_BUSLOCK_P)

#define INT_RES51 MAKE_BITMASK_(INT_RES51_P)

#define INT_TIMER0H MAKE_BITMASK_(INT_TIMER0H_P)

#define INT_TIMER1H MAKE_BITMASK_(INT_TIMER1H_P)

#define INT_RES54 MAKE_BITMASK_(INT_RES54_P)

#define INT_RES55 MAKE_BITMASK_(INT_RES55_P)

#define INT_RES56 MAKE_BITMASK_(INT_RES56_P)

#define INT_HWERR MAKE_BITMASK_(INT_HWERR_P)

#define INT_RES58 MAKE_BITMASK_(INT_RES58_P)

#define INT_RES59 MAKE_BITMASK_(INT_RES59_P)

#define INT_GIE MAKE_BITMASK_(INT_GIE_P)

#define INT_RES61 MAKE_BITMASK_(INT_RES61_P)

#define INT_SW MAKE_BITMASK_(INT_SW_P) //!!! Need to choose !!!

#define INT_EXCEPT MAKE_BITMASK_(INT_EXCEPT_P)

#define INT_EMUL MAKE_BITMASK_(INT_EMUL_P)

B-20 ADSP-TS101 TigerSHARC Processor Programming Reference

//*****

#define TIMER0L_LOC (0x180350)

#define TIMER0H_LOC (0x180351)

#define TIMER1L_LOC (0x180352)

#define TIMER1H_LOC (0x180353)

#define TMRIN0L_LOC (0x180354)

#define TMRIN0H_LOC (0x180355)

#define TMRIN1L_LOC (0x180356)

#define TMRIN1H_LOC (0x180357)

//*** SQCTL With Bit Defines ****

#define SQCTL_LOC (0x180358)

#define SQCTLST_LOC (0x180359)

#define SQCTLCL_LOC (0x18035A)

// Bit positions

#define SQCTL_BTBEN_P (0)

#define SQCTL_BTBLK_P (1)

#define SQCTL_SWRST_P (5)

#define SQCTL_DBGEN_P (8)

#define SQCTL_NMOD_P (9)

#define SQCTL_TMR0RN_P (12)

#define SQCTL_TMR1RN_P (13)

#define SQCTL_IRQ0_EDGE_P (16)

#define SQCTL_IRQ1_EDGE_P (17)

#define SQCTL_IRQ2_EDGE_P (18)

#define SQCTL_IRQ3_EDGE_P (19)

#define SQCTL_FLAG0_EN_P (20) // FLAG0 output enable is bit 20 in

SQCTL

#define SQCTL_FLAG1_EN_P (21) // FLAG1 output enable is bit 21 in

SQCTL

#define SQCTL_FLAG2_EN_P (22) // FLAG2 output enable is bit 22 in

SQCTL

ADSP-TS101 TigerSHARC Processor Programming Reference B-21

Register/Bit Definitions

#define SQCTL_FLAG3_EN_P (23) // FLAG3 output enable is bit 23 in

SQCTL

#define SQCTL_FLAG0_OUT_P (24) // FLAG0 out pin is bit 24 in

SQCTL

#define SQCTL_FLAG1_OUT_P (25) // FLAG1 out pin is bit 25 in

SQCTL

#define SQCTL_FLAG2_OUT_P (26) // FLAG2 out pin is bit 26 in

SQCTL

#define SQCTL_FLAG3_OUT_P (27) // FLAG3 out pin is bit 27 in

SQCTL

// Bit Masks

#define SQCTL_BTBEN MAKE_BITMASK_(SQCTL_BTBEN_P)

#define SQCTL_BTBLK MAKE_BITMASK_(SQCTL_BTBLK_P)

#define SQCTL_SWRST MAKE_BITMASK_(SQCTL_SWRST_P)

#define SQCTL_DBGEN MAKE_BITMASK_(SQCTL_DBGEN_P)

#define SQCTL_NMOD MAKE_BITMASK_(SQCTL_NMOD_P)

#define SQCTL_TMR0RN MAKE_BITMASK_(SQCTL_TMR0RN_P)

#define SQCTL_TMR1RN MAKE_BITMASK_(SQCTL_TMR1RN_P)

#define SQCTL_IRQ0_EDGE MAKE_BITMASK_(SQCTL_IRQ0_EDGE_P)

#define SQCTL_IRQ1_EDGE MAKE_BITMASK_(SQCTL_IRQ1_EDGE_P)

#define SQCTL_IRQ2_EDGE MAKE_BITMASK_(SQCTL_IRQ2_EDGE_P)

#define SQCTL_IRQ3_EDGE MAKE_BITMASK_(SQCTL_IRQ3_EDGE_P)

#define SQCTL_FLAG0_EN MAKE_BITMASK_(SQCTL_FLAG0_EN_P)

#define SQCTL_FLAG1_EN MAKE_BITMASK_(SQCTL_FLAG1_EN_P)

#define SQCTL_FLAG2_EN MAKE_BITMASK_(SQCTL_FLAG2_EN_P)

#define SQCTL_FLAG3_EN MAKE_BITMASK_(SQCTL_FLAG3_EN_P)

#define SQCTL_FLAG0_OUT MAKE_BITMASK_(SQCTL_FLAG0_OUT_P)

#define SQCTL_FLAG1_OUT MAKE_BITMASK_(SQCTL_FLAG1_OUT_P)

#define SQCTL_FLAG2_OUT MAKE_BITMASK_(SQCTL_FLAG2_OUT_P)

#define SQCTL_FLAG3_OUT MAKE_BITMASK_(SQCTL_FLAG3_OUT_P)

//*** SQSTAT With Bit Defines ***

B-22 ADSP-TS101 TigerSHARC Processor Programming Reference

#define SQSTAT_LOC (0x18035B)

// Bit positions (of the masks)

#define SQSTAT_MODE_P (0)

#define SQSTAT_IDLE_P (2)

#define SQSTAT_SPVCMD_P (3)

#define SQSTAT_EXCAUSE_P (8)

#define SQSTAT_EMCAUSE_P (12)

#define SQSTAT_FLG_P (16)

// Bit masks

#define SQSTAT_MODE (0x00000003)

#define SQSTAT_IDLE (0x00000004)

#define SQSTAT_SPVCMD (0x000000F8)

#define SQSTAT_EXCAUSE (0x00000F00)

#define SQSTAT_EMCAUSE (0x0000F000)

#define SQSTAT_FLG (0x000F0000)

//*** SFREG With Bit Defines ****

#define SFREG_LOC (0x18035C)

// Bit positions

#define SFREG_GSCF0_P (0)

#define SFREG_GSCF1_P (1)

#define SFREG_XSCF0_P (2)

#define SFREG_XSCF1_P (3)

#define SFREG_YSCF0_P (4)

#define SFREG_YSCF1_P (5)

// Bit Masks

#define SFREG_GSCF0 MAKE_BITMASK_(SFREG_GSCF0_P)

#define SFREG_GSCF1 MAKE_BITMASK_(SFREG_GSCF1_P)

#define SFREG_XSCF0 MAKE_BITMASK_(SFREG_XSCF0_P)

ADSP-TS101 TigerSHARC Processor Programming Reference B-23

Register/Bit Definitions

#define SFREG_XSCF1 MAKE_BITMASK_(SFREG_XSCF1_P)

#define SFREG_YSCF0 MAKE_BITMASK_(SFREG_YSCF0_P)

#define SFREG_YSCF1 MAKE_BITMASK_(SFREG_YSCF1_P)

//******

//#define ILATCLL_LOC (0x18035E) //Should not be used due to sil-

icon anomaly

//#define ILATCLH_LOC (0x18035F)

//*** Emulation Registers ***

#define EMUCTL_LOC (0x180360)

// Bit positions

#define EMUCTL_EMEN_P (0)

#define EMUCTL_TEME_P (1)

#define EMUCTL_EMUOE_P (2)

#define EMUCTL_SPFDIS_P (3)

// Bit Masks

#define EMUCTL_EMEN MAKE_BITMASK_(EMUCTL_EMEN_P)

#define EMUCTL_TEME MAKE_BITMASK_(EMUCTL_TEME_P)

#define EMUCTL_EMUOE MAKE_BITMASK_(EMUCTL_EMUOE_P)

#define EMUCTL_SPFDIS MAKE_BITMASK_(EMUCTL_SPFDIS_P)

#define EMUSTAT_LOC (0x180361)

// Bit positions

#define EMUSTAT_EMUMOD_P (0)

#define EMUSTAT_IRFREE_P (1)

// Bit Masks

#define EMUSTAT_EMUMOD MAKE_BITMASK_(EMUSTAT_EMUMOD_P)

B-24 ADSP-TS101 TigerSHARC Processor Programming Reference

#define EMUSTAT_IRFREE MAKE_BITMASK_(EMUSTAT_IRFREE_P)

#define PRFM_LOC (0x180363)

// Bit Masks

// Non Granted Requests

#define PRFM_NGR_SEQ (0)

#define PRFM_NGR_JALU (1)

#define PRFM_NGR_KALU (2)

#define PRFM_NGR_DMAI (3)

#define PRFM_NGR_DMAE (4)

#define PRFM_NGR_BIU (5)

// Granted Requests

#define PRFM_GR_SEQ (6)

#define PRFM_GR_JALU (7)

#define PRFM_GR_KALU (8)

#define PRFM_GR_DMAI (9)

#define PRFM_GR_DMAE (10)

#define PRFM_GR_BIU (11)

// Bus 0

#define PRFM_BUS0_NORM (12)

#define PRFM_BUS0_LONG (13)

#define PRFM_BUS0_QUAD (14)

// Bus 1

#define PRFM_BUS1_NORM (15)

#define PRFM_BUS1_LONG (16)

#define PRFM_BUS1_QUAD (17)

// Bus 2

#define PRFM_BUS2_NORM (18)

#define PRFM_BUS2_LONG (19)

ADSP-TS101 TigerSHARC Processor Programming Reference B-25

Register/Bit Definitions

#define PRFM_BUS2_QUAD (20)

// Module Used

#define PRFM_MODULE_JALU (21)

#define PRFM_MODULE_KALU (22)

#define PRFM_MODULE_CBX (23)

#define PRFM_MODULE_CBY (24)

#define PRFM_MODULE_CTRL (25)

#define PRFM_VBT (26)

#define PRFM_SCYCLE (27)

#define PRFM_BTBPR (28)

#define PRFM_ISL (29)

#define PRFM_CCYCLE (30)

#define PRFM_SUMEN (31)

#define CCNT0_LOC (0x180364)

#define CCNT1_LOC (0x180365)

#define PRFCNT_LOC (0x180366)

#define EMUDAT_LOC (0x180368)

#define EMUIR_LOC (0x18036C)

#define TRCBMASK_LOC (0x180370)

#define TRCBPTR_LOC (0x180378)

#define IDCODE_LOC (0x18037A)

//*** TCBs With Bit Defines *****

#define DCS0_LOC (0x180400)

#define DCD0_LOC (0x180404)

#define DCS1_LOC (0x180408)

#define DCD1_LOC (0x18040c)

#define DCS2_LOC (0x180410)

#define DCD2_LOC (0x180414)

B-26 ADSP-TS101 TigerSHARC Processor Programming Reference

#define DCS3_LOC (0x180418)

#define DCD3_LOC (0x18041C)

#define DC4_LOC (0x180420)

#define DC5_LOC (0x180424)

#define DC6_LOC (0x180428)

#define DC7_LOC (0x18042C)

#define DC8_LOC (0x180440)

#define DC9_LOC (0x180444)

#define DC10_LOC (0x180448)

#define DC11_LOC (0x18044C)

#define DC12_LOC (0x180458)

#define DC13_LOC (0x18045C)

// TYPES

#define TCB_EPROM (0xC0000000)

#define TCB_FLYBY (0xA0000000)

#define TCB_EXTMEM (0x80000000)

#define TCB_INTMEM (0x40000000)

#define TCB_LINK (0x20000000)

#define TCB_DISABLE (0x00000000)

// PRIORITY

#define TCB_HPRIORITY (0x10000000)

// 2D

#define TCB_TWODIM (0x08000000)

// GRANULARITY

#define TCB_QUAD (0x06000000)

#define TCB_LONG (0x04000000)

#define TCB_NORMAL (0x02000000)

// INTERRUPT

#define TCB_INT (0x01000000)

// DMA REQUEST

#define TCB_DMAR (0x00800000)

// CHAINING

#define TCB_CHAIN (0x00400000)

ADSP-TS101 TigerSHARC Processor Programming Reference B-27

Register/Bit Definitions

// CHAINED CHANNEL

#define TCB_DMA13DEST (0x002E0000)

#define TCB_DMA12DEST (0x002C0000)

#define TCB_DMA11DEST (0x00260000)

#define TCB_DMA10DEST (0x00240000)

#define TCB_DMA9DEST (0x00220000)

#define TCB_DMA8DEST (0x00200000)

#define TCB_DMA7DEST (0x00160000)

#define TCB_DMA6DEST (0x00140000)

#define TCB_DMA5DEST (0x00120000)

#define TCB_DMA4DEST (0x00100000)

#define TCB_DMA3DEST (0x000E0000)

#define TCB_DMA3SOURCE (0x000C0000)

#define TCB_DMA2DEST (0x000A0000)

#define TCB_DMA2SOURCE (0x00080000)

#define TCB_DMA1DEST (0x00060000)

#define TCB_DMA1SOURCE (0x00040000)

#define TCB_DMA0DEST (0x00020000)

#define TCB_DMA0SOURCE (0x00000000)

// MS FOR CHAIN POINTER

#define TCB_CHAINPTRM2 (0x00010000)

#define TCB_CHAINPTRM1 (0x00008000)

#define TCB_CHAINPTRM0 (0x00000000)

//*** DMA Controls With Bit Defines *****

#define DCNT_LOC (0x180460)

#define DCNTST_LOC (0x180464)

#define DCNTCL_LOC (0x180468)

// Bit positions

#define DCNT_DMA0_P (0)

#define DCNT_DMA1_P (1)

#define DCNT_DMA2_P (2)

#define DCNT_DMA3_P (3)

B-28 ADSP-TS101 TigerSHARC Processor Programming Reference

#define DCNT_DMA4_P (4)

#define DCNT_DMA5_P (5)

#define DCNT_DMA6_P (6)

#define DCNT_DMA7_P (7)

#define DCNT_DMA8_P (10)

#define DCNT_DMA9_P (11)

#define DCNT_DMA10_P (12)

#define DCNT_DMA11_P (13)

#define DCNT_DMA12_P (16)

#define DCNT_DMA13_P (17)

// Bit Masks

#define DCNT_DMA0 MAKE_BITMASK_(DCNT_DMA0_P)

#define DCNT_DMA1 MAKE_BITMASK_(DCNT_DMA1_P)

#define DCNT_DMA2 MAKE_BITMASK_(DCNT_DMA2_P)

#define DCNT_DMA3 MAKE_BITMASK_(DCNT_DMA3_P)

#define DCNT_DMA4 MAKE_BITMASK_(DCNT_DMA4_P)

#define DCNT_DMA5 MAKE_BITMASK_(DCNT_DMA5_P)

#define DCNT_DMA6 MAKE_BITMASK_(DCNT_DMA6_P)

#define DCNT_DMA7 MAKE_BITMASK_(DCNT_DMA7_P)

#define DCNT_DMA8 MAKE_BITMASK_(DCNT_DMA8_P)

#define DCNT_DMA9 MAKE_BITMASK_(DCNT_DMA9_P)

#define DCNT_DMA10 MAKE_BITMASK_(DCNT_DMA10_P)

#define DCNT_DMA11 MAKE_BITMASK_(DCNT_DMA11_P)

#define DCNT_DMA12 MAKE_BITMASK_(DCNT_DMA12_P)

#define DCNT_DMA13 MAKE_BITMASK_(DCNT_DMA13_P)

//*** DMA Status With Bit Defines ***

#define DSTATL_LOC (0x18046C)

#define DSTATCL_LOC (0x180470)

// Bit Masks

#define DSTAT_IDLE (0x00000000)

#define DSTAT_ACT (0x00000001)

ADSP-TS101 TigerSHARC Processor Programming Reference B-29

Register/Bit Definitions

#define DSTAT_DONE (0x00000002)

#define DSTAT_ACT_ERR (0x00000004)

#define DSTAT_CFG_ERR (0x00000005)

#define DSTAT_ADD_ERR (0x00000007)

// Field Extracts - use with fext instruction

#define DSTATL0 (0x0003) // 0th position of length 3

#define DSTATL1 (0x0303) // 3rd position of length 3

#define DSTATL2 (0x0603) // 6th position of length 3

#define DSTATL3 (0x0903) // 9th position of length 3

#define DSTATL4 (0x0C03) // 12th position of length 3

#define DSTATL5 (0x0F03) // 15th position of length 3

#define DSTATL6 (0x1203) // 18th position of length 3

#define DSTATL7 (0x1503) // 21st position of length 3

#define DSTATH_LOC (0x18046D)

#define DSTATCH_LOC (0x180471)

#define DSTATH8 (0x0003) // 0th position of length 3

#define DSTATH9 (0x0303) // 3rd position of length 3

#define DSTATH10 (0x0603) // 6th position of length 3

#define DSTATH11 (0x0903) // 9th position of length 3

#define DSTATH12 (0x1203) // 18th position of length 3

#define DSTATH13 (0x1503) // 21st position of length 3

//*** SYSCON register With Bit Masks *****

#define SYSCON_LOC (0x180480)

// Bit Masks

#define SYSCON_MS0_IDLE (0x00000001)

#define SYSCON_MS0_WT0 (0x00000000)

#define SYSCON_MS0_WT1 (0x00000002)

#define SYSCON_MS0_WT2 (0x00000004)

#define SYSCON_MS0_WT3 (0x00000006)

B-30 ADSP-TS101 TigerSHARC Processor Programming Reference

#define SYSCON_MS0_PIPE1 (0x00000000)

#define SYSCON_MS0_PIPE2 (0x00000008)

#define SYSCON_MS0_PIPE3 (0x00000010)

#define SYSCON_MS0_PIPE4 (0x00000018)

#define SYSCON_MS0_SLOW (0x00000020)

#define SYSCON_MS1_IDLE (SYSCON_MS0_IDLE << 6)

#define SYSCON_MS1_WT0 (SYSCON_MS0_WT0 << 6)

#define SYSCON_MS1_WT1 (SYSCON_MS0_WT1 << 6)

#define SYSCON_MS1_WT2 (SYSCON_MS0_WT2 << 6)

#define SYSCON_MS1_WT3 (SYSCON_MS0_WT3 << 6)

#define SYSCON_MS1_PIPE1 (SYSCON_MS0_PIPE1 << 6)

#define SYSCON_MS1_PIPE2 (SYSCON_MS0_PIPE2 << 6)

#define SYSCON_MS1_PIPE3 (SYSCON_MS0_PIPE3 << 6)

#define SYSCON_MS1_PIPE4 (SYSCON_MS0_PIPE4 << 6)

#define SYSCON_MS1_SLOW (SYSCON_MS0_SLOW << 6)

#define SYSCON_MSH_IDLE (SYSCON_MS0_IDLE << 12)

#define SYSCON_MSH_WT0 (SYSCON_MS0_WT0 << 12)

#define SYSCON_MSH_WT1 (SYSCON_MS0_WT1 << 12)

#define SYSCON_MSH_WT2 (SYSCON_MS0_WT2 << 12)

#define SYSCON_MSH_WT3 (SYSCON_MS0_WT3 << 12)

#define SYSCON_MSH_PIPE1 (SYSCON_MS0_PIPE1 << 12)

#define SYSCON_MSH_PIPE2 (SYSCON_MS0_PIPE2 << 12)

#define SYSCON_MSH_PIPE3 (SYSCON_MS0_PIPE3 << 12)

#define SYSCON_MSH_PIPE4 (SYSCON_MS0_PIPE4 << 12)

#define SYSCON_MSH_SLOW (SYSCON_MS0_SLOW << 12)

#define SYSCON_MEM_WID64 (0x00080000)

#define SYSCON_MP_WID64 (0x00100000)

#define SYSCON_HOST_WID64 (0x00200000)

//*** SDRCON register With Bit Masks *****

#define SDRCON_LOC (0x180484)

// Bit Masks

#define SDRCON_ENBL (0x00000001)

ADSP-TS101 TigerSHARC Processor Programming Reference B-31

Register/Bit Definitions

#define SDRCON_CLAT1 (0x00000000)

#define SDRCON_CLAT2 (0x00000002)

#define SDRCON_CLAT3 (0x00000004)

#define SDRCON_PIPE1 (0x00000008)

#define SDRCON_PG256 (0x00000000)

#define SDRCON_PG512 (0x00000010)

#define SDRCON_PG1K (0x00000020)

#define SDRCON_REF600 (0x00000000)

#define SDRCON_REF900 (0x00000080)

#define SDRCON_REF1200 (0x00000100)

#define SDRCON_REF2400 (0x00000180)

#define SDRCON_PC2RAS2 (0x00000000)

#define SDRCON_PC2RAS3 (0x00000200)

#define SDRCON_PC2RAS4 (0x00000400)

#define SDRCON_PC2RAS5 (0x00000600)

#define SDRCON_RAS2PC2 (0x00000000)

#define SDRCON_RAS2PC3 (0x00000800)

#define SDRCON_RAS2PC4 (0x00001000)

#define SDRCON_RAS2PC5 (0x00001800)

#define SDRCON_RAS2PC6 (0x00002000)

#define SDRCON_RAS2PC7 (0x00002800)

#define SDRCON_RAS2PC8 (0x00003000)

#define SDRCON_INIT (0x00004000)

//*** Link Buffer Registers ******

#define LBUFTX0_LOC (0x1804A0)

#define LBUFRX0_LOC (0x1804A4)

#define LBUFTX1_LOC (0x1804A8)

#define LBUFRX1_LOC (0x1804AC)

#define LBUFTX2_LOC (0x1804B0)

#define LBUFRX2_LOC (0x1804B4)

#define LBUFTX3_LOC (0x1804B8)

#define LBUFRX3_LOC (0x1804BC)

B-32 ADSP-TS101 TigerSHARC Processor Programming Reference

//**** Link Control Registers with Bit Masks *****

#define LCTL0_LOC (0x1804E0)

#define LCTL1_LOC (0x1804E1)

#define LCTL2_LOC (0x1804E2)

#define LCTL3_LOC (0x1804E3)

// Bit Masks

#define LCTL_DSBL (0x00000000)

#define LCTL_VER (0x00000004)

#define LCTL_DIV8 (0x00000000)

#define LCTL_DIV4 (0x00000008)

#define LCTL_DIV3 (0x00000010)

#define LCTL_DIV2 (0x00000018)

#define LCTL_LTEN (0x00000040)

#define LCTL_PSIZE (0x00000080)

#define LCTL_TTOE (0x00000100)

#define LCTL_CERE (0x00000200)

#define LCTL_LREN (0x00000400)

#define LCTL_RTOE (0x00000800)

//**** Link Status Registers with Bit Masks ******

#define LSTAT0_LOC (0x1804E0)

#define LSTAT1_LOC (0x1804E1)

#define LSTAT2_LOC (0x1804E2)

#define LSTAT3_LOC (0x1804E3)

#define LSTATC0_LOC (0x1804E0)

#define LSTATC1_LOC (0x1804E1)

#define LSTATC2_LOC (0x1804E2)

#define LSTATC3_LOC (0x1804E3)

// Bit Masks

#define LSTAT_RER (0x00000003)

#define LSTAT_RST (0x0000000C)

#define LSTAT_TER (0x00000030)

ADSP-TS101 TigerSHARC Processor Programming Reference B-33

Register/Bit Definitions

#define LSTAT_TST (0x000000C0)

//****** BTB Registers ***

// Tags - Way 0

#define BTB_WAY0_TG0_LOC (0x180600)

#define BTB_WAY0_TG1_LOC (0x180601)

#define BTB_WAY0_TG2_LOC (0x180602)

#define BTB_WAY0_TG3_LOC (0x180603)

#define BTB_WAY0_TG4_LOC (0x180604)

#define BTB_WAY0_TG5_LOC (0x180605)

#define BTB_WAY0_TG6_LOC (0x180606)

#define BTB_WAY0_TG7_LOC (0x180607)

#define BTB_WAY0_TG8_LOC (0x180608)

#define BTB_WAY0_TG9_LOC (0x180609)

#define BTB_WAY0_TG10_LOC (0x18060A)

#define BTB_WAY0_TG11_LOC (0x18060B)

#define BTB_WAY0_TG12_LOC (0x18060C)

#define BTB_WAY0_TG13_LOC (0x18060D)

#define BTB_WAY0_TG14_LOC (0x18060E)

#define BTB_WAY0_TG15_LOC (0x18060F)

#define BTB_WAY0_TG16_LOC (0x180610)

#define BTB_WAY0_TG17_LOC (0x180611)

#define BTB_WAY0_TG18_LOC (0x180612)

#define BTB_WAY0_TG19_LOC (0x180613)

#define BTB_WAY0_TG20_LOC (0x180614)

#define BTB_WAY0_TG21_LOC (0x180615)

#define BTB_WAY0_TG22_LOC (0x180616)

#define BTB_WAY0_TG23_LOC (0x180617)

#define BTB_WAY0_TG24_LOC (0x180618)

#define BTB_WAY0_TG25_LOC (0x180619)

#define BTB_WAY0_TG26_LOC (0x18061A)

#define BTB_WAY0_TG27_LOC (0x18061B)

#define BTB_WAY0_TG28_LOC (0x18061C)

B-34 ADSP-TS101 TigerSHARC Processor Programming Reference

#define BTB_WAY0_TG29_LOC (0x18061D)

#define BTB_WAY0_TG30_LOC (0x18061E)

#define BTB_WAY0_TG31_LOC (0x18061F)

// Tags - Way 1

#define BTB_WAY1_TG0_LOC (0x180620)

#define BTB_WAY1_TG1_LOC (0x180621)

#define BTB_WAY1_TG2_LOC (0x180622)

#define BTB_WAY1_TG3_LOC (0x180623)

#define BTB_WAY1_TG4_LOC (0x180624)

#define BTB_WAY1_TG5_LOC (0x180625)

#define BTB_WAY1_TG6_LOC (0x180626)

#define BTB_WAY1_TG7_LOC (0x180627)

#define BTB_WAY1_TG8_LOC (0x180628)

#define BTB_WAY1_TG9_LOC (0x180629)

#define BTB_WAY1_TG10_LOC (0x18062A)

#define BTB_WAY1_TG11_LOC (0x18062B)

#define BTB_WAY1_TG12_LOC (0x18062C)

#define BTB_WAY1_TG13_LOC (0x18062D)

#define BTB_WAY1_TG14_LOC (0x18062E)

#define BTB_WAY1_TG15_LOC (0x18062F)

#define BTB_WAY1_TG16_LOC (0x180630)

#define BTB_WAY1_TG17_LOC (0x180631)

#define BTB_WAY1_TG18_LOC (0x180632)

#define BTB_WAY1_TG19_LOC (0x180633)

#define BTB_WAY1_TG20_LOC (0x180634)

#define BTB_WAY1_TG21_LOC (0x180635)

#define BTB_WAY1_TG22_LOC (0x180636)

#define BTB_WAY1_TG23_LOC (0x180637)

#define BTB_WAY1_TG24_LOC (0x180638)

#define BTB_WAY1_TG25_LOC (0x180639)

#define BTB_WAY1_TG26_LOC (0x18063A)

#define BTB_WAY1_TG27_LOC (0x18063B)

#define BTB_WAY1_TG28_LOC (0x18063C)

ADSP-TS101 TigerSHARC Processor Programming Reference B-35

Register/Bit Definitions

#define BTB_WAY1_TG29_LOC (0x18063D)

#define BTB_WAY1_TG30_LOC (0x18063E)

#define BTB_WAY1_TG31_LOC (0x18063F)

// Tags - Way 2

#define BTB_WAY2_TG0_LOC (0x180640)

#define BTB_WAY2_TG1_LOC (0x180641)

#define BTB_WAY2_TG2_LOC (0x180642)

#define BTB_WAY2_TG3_LOC (0x180643)

#define BTB_WAY2_TG4_LOC (0x180644)

#define BTB_WAY2_TG5_LOC (0x180645)

#define BTB_WAY2_TG6_LOC (0x180646)

#define BTB_WAY2_TG7_LOC (0x180647)

#define BTB_WAY2_TG8_LOC (0x180648)

#define BTB_WAY2_TG9_LOC (0x180649)

#define BTB_WAY2_TG10_LOC (0x18064A)

#define BTB_WAY2_TG11_LOC (0x18064B)

#define BTB_WAY2_TG12_LOC (0x18064C)

#define BTB_WAY2_TG13_LOC (0x18064D)

#define BTB_WAY2_TG14_LOC (0x18064E)

#define BTB_WAY2_TG15_LOC (0x18064F)

#define BTB_WAY2_TG16_LOC (0x180650)

#define BTB_WAY2_TG17_LOC (0x180651)

#define BTB_WAY2_TG18_LOC (0x180652)

#define BTB_WAY2_TG19_LOC (0x180653)

#define BTB_WAY2_TG20_LOC (0x180654)

#define BTB_WAY2_TG21_LOC (0x180655)

#define BTB_WAY2_TG22_LOC (0x180656)

#define BTB_WAY2_TG23_LOC (0x180657)

#define BTB_WAY2_TG24_LOC (0x180658)

#define BTB_WAY2_TG25_LOC (0x180659)

#define BTB_WAY2_TG26_LOC (0x18065A)

#define BTB_WAY2_TG27_LOC (0x18065B)

#define BTB_WAY2_TG28_LOC (0x18065C)

B-36 ADSP-TS101 TigerSHARC Processor Programming Reference

#define BTB_WAY2_TG29_LOC (0x18065D)

#define BTB_WAY2_TG30_LOC (0x18065E)

#define BTB_WAY2_TG31_LOC (0x18065F)

// Tags - Way 3

#define BTB_WAY3_TG0_LOC (0x180660)

#define BTB_WAY3_TG1_LOC (0x180661)

#define BTB_WAY3_TG2_LOC (0x180662)

#define BTB_WAY3_TG3_LOC (0x180663)

#define BTB_WAY3_TG4_LOC (0x180664)

#define BTB_WAY3_TG5_LOC (0x180665)

#define BTB_WAY3_TG6_LOC (0x180666)

#define BTB_WAY3_TG7_LOC (0x180667)

#define BTB_WAY3_TG8_LOC (0x180668)

#define BTB_WAY3_TG9_LOC (0x180669)

#define BTB_WAY3_TG10_LOC (0x18066A)

#define BTB_WAY3_TG11_LOC (0x18066B)

#define BTB_WAY3_TG12_LOC (0x18066C)

#define BTB_WAY3_TG13_LOC (0x18066D)

#define BTB_WAY3_TG14_LOC (0x18066E)

#define BTB_WAY3_TG15_LOC (0x18066F)

#define BTB_WAY3_TG16_LOC (0x180670)

#define BTB_WAY3_TG17_LOC (0x180671)

#define BTB_WAY3_TG18_LOC (0x180672)

#define BTB_WAY3_TG19_LOC (0x180673)

#define BTB_WAY3_TG20_LOC (0x180674)

#define BTB_WAY3_TG21_LOC (0x180675)

#define BTB_WAY3_TG22_LOC (0x180676)

#define BTB_WAY3_TG23_LOC (0x180677)

#define BTB_WAY3_TG24_LOC (0x180678)

#define BTB_WAY3_TG25_LOC (0x180679)

#define BTB_WAY3_TG26_LOC (0x18067A)

#define BTB_WAY3_TG27_LOC (0x18067B)

#define BTB_WAY3_TG28_LOC (0x18067C)

ADSP-TS101 TigerSHARC Processor Programming Reference B-37

Register/Bit Definitions

#define BTB_WAY3_TG29_LOC (0x18067D)

#define BTB_WAY3_TG30_LOC (0x18067E)

#define BTB_WAY3_TG31_LOC (0x18067F)

// Targets - Way 0

#define BTB_WAY0_TR0_LOC (0x180680)

#define BTB_WAY0_TR1_LOC (0x180681)

#define BTB_WAY0_TR2_LOC (0x180682)

#define BTB_WAY0_TR3_LOC (0x180683)

#define BTB_WAY0_TR4_LOC (0x180684)

#define BTB_WAY0_TR5_LOC (0x180685)

#define BTB_WAY0_TR6_LOC (0x180686)

#define BTB_WAY0_TR7_LOC (0x180687)

#define BTB_WAY0_TR8_LOC (0x180688)

#define BTB_WAY0_TR9_LOC (0x180689)

#define BTB_WAY0_TR10_LOC (0x18068A)

#define BTB_WAY0_TR11_LOC (0x18068B)

#define BTB_WAY0_TR12_LOC (0x18068C)

#define BTB_WAY0_TR13_LOC (0x18068D)

#define BTB_WAY0_TR14_LOC (0x18068E)

#define BTB_WAY0_TR15_LOC (0x18068F)

#define BTB_WAY0_TR16_LOC (0x180690)

#define BTB_WAY0_TR17_LOC (0x180691)

#define BTB_WAY0_TR18_LOC (0x180692)

#define BTB_WAY0_TR19_LOC (0x180693)

#define BTB_WAY0_TR20_LOC (0x180694)

#define BTB_WAY0_TR21_LOC (0x180695)

#define BTB_WAY0_TR22_LOC (0x180696)

#define BTB_WAY0_TR23_LOC (0x180697)

#define BTB_WAY0_TR24_LOC (0x180698)

#define BTB_WAY0_TR25_LOC (0x180699)

#define BTB_WAY0_TR26_LOC (0x18069A)

#define BTB_WAY0_TR27_LOC (0x18069B)

#define BTB_WAY0_TR28_LOC (0x18069C)

B-38 ADSP-TS101 TigerSHARC Processor Programming Reference

#define BTB_WAY0_TR29_LOC (0x18069D)

#define BTB_WAY0_TR30_LOC (0x18069E)

#define BTB_WAY0_TR31_LOC (0x18069F)

// Targets - Way 1

#define BTB_WAY1_TR0_LOC (0x1806A0)

#define BTB_WAY1_TR1_LOC (0x1806A1)

#define BTB_WAY1_TR2_LOC (0x1806A2)

#define BTB_WAY1_TR3_LOC (0x1806A3)

#define BTB_WAY1_TR4_LOC (0x1806A4)

#define BTB_WAY1_TR5_LOC (0x1806A5)

#define BTB_WAY1_TR6_LOC (0x1806A6)

#define BTB_WAY1_TR7_LOC (0x1806A7)

#define BTB_WAY1_TR8_LOC (0x1806A8)

#define BTB_WAY1_TR9_LOC (0x1806A9)

#define BTB_WAY1_TR10_LOC (0x1806AA)

#define BTB_WAY1_TR11_LOC (0x1806AB)

#define BTB_WAY1_TR12_LOC (0x1806AC)

#define BTB_WAY1_TR13_LOC (0x1806AD)

#define BTB_WAY1_TR14_LOC (0x1806AE)

#define BTB_WAY1_TR15_LOC (0x1806AF)

#define BTB_WAY1_TR16_LOC (0x1806B0)

#define BTB_WAY1_TR17_LOC (0x1806B1)

#define BTB_WAY1_TR18_LOC (0x1806B2)

#define BTB_WAY1_TR19_LOC (0x1806B3)

#define BTB_WAY1_TR20_LOC (0x1806B4)

#define BTB_WAY1_TR21_LOC (0x1806B5)

#define BTB_WAY1_TR22_LOC (0x1806B6)

#define BTB_WAY1_TR23_LOC (0x1806B7)

#define BTB_WAY1_TR24_LOC (0x1806B8)

#define BTB_WAY1_TR25_LOC (0x1806B9)

#define BTB_WAY1_TR26_LOC (0x1806BA)

#define BTB_WAY1_TR27_LOC (0x1806BB)

#define BTB_WAY1_TR28_LOC (0x1806BC)

ADSP-TS101 TigerSHARC Processor Programming Reference B-39

Register/Bit Definitions

#define BTB_WAY1_TR29_LOC (0x1806BD)

#define BTB_WAY1_TR30_LOC (0x1806BE)

#define BTB_WAY1_TR31_LOC (0x1806BF)

// Targets - Way 2

#define BTB_WAY2_TR0_LOC (0x1806C0)

#define BTB_WAY2_TR1_LOC (0x1806C1)

#define BTB_WAY2_TR2_LOC (0x1806C2)

#define BTB_WAY2_TR3_LOC (0x1806C3)

#define BTB_WAY2_TR4_LOC (0x1806C4)

#define BTB_WAY2_TR5_LOC (0x1806C5)

#define BTB_WAY2_TR6_LOC (0x1806C6)

#define BTB_WAY2_TR7_LOC (0x1806C7)

#define BTB_WAY2_TR8_LOC (0x1806C8)

#define BTB_WAY2_TR9_LOC (0x1806C9)

#define BTB_WAY2_TR10_LOC (0x1806CA)

#define BTB_WAY2_TR11_LOC (0x1806CB)

#define BTB_WAY2_TR12_LOC (0x1806CC)

#define BTB_WAY2_TR13_LOC (0x1806CD)

#define BTB_WAY2_TR14_LOC (0x1806CE)

#define BTB_WAY2_TR15_LOC (0x1806CF)

#define BTB_WAY2_TR16_LOC (0x1806D0)

#define BTB_WAY2_TR17_LOC (0x1806D1)

#define BTB_WAY2_TR18_LOC (0x1806D2)

#define BTB_WAY2_TR19_LOC (0x1806D3)

#define BTB_WAY2_TR20_LOC (0x1806D4)

#define BTB_WAY2_TR21_LOC (0x1806D5)

#define BTB_WAY2_TR22_LOC (0x1806D6)

#define BTB_WAY2_TR23_LOC (0x1806D7)

#define BTB_WAY2_TR24_LOC (0x1806D8)

#define BTB_WAY2_TR25_LOC (0x1806D9)

#define BTB_WAY2_TR26_LOC (0x1806DA)

#define BTB_WAY2_TR27_LOC (0x1806DB)

#define BTB_WAY2_TR28_LOC (0x1806DC)

B-40 ADSP-TS101 TigerSHARC Processor Programming Reference

#define BTB_WAY2_TR29_LOC (0x1806DD)

#define BTB_WAY2_TR30_LOC (0x1806DE)

#define BTB_WAY2_TR31_LOC (0x1806DF)

// Targets - Way 3

#define BTB_WAY3_TR0_LOC (0x1806E0)

#define BTB_WAY3_TR1_LOC (0x1806E1)

#define BTB_WAY3_TR2_LOC (0x1806E2)

#define BTB_WAY3_TR3_LOC (0x1806E3)

#define BTB_WAY3_TR4_LOC (0x1806E4)

#define BTB_WAY3_TR5_LOC (0x1806E5)

#define BTB_WAY3_TR6_LOC (0x1806E6)

#define BTB_WAY3_TR7_LOC (0x1806E7)

#define BTB_WAY3_TR8_LOC (0x1806E8)

#define BTB_WAY3_TR9_LOC (0x1806E9)

#define BTB_WAY3_TR10_LOC (0x1806EA)

#define BTB_WAY3_TR11_LOC (0x1806EB)

#define BTB_WAY3_TR12_LOC (0x1806EC)

#define BTB_WAY3_TR13_LOC (0x1806ED)

#define BTB_WAY3_TR14_LOC (0x1806EE)

#define BTB_WAY3_TR15_LOC (0x1806EF)

#define BTB_WAY3_TR16_LOC (0x1806F0)

#define BTB_WAY3_TR17_LOC (0x1806F1)

#define BTB_WAY3_TR18_LOC (0x1806F2)

#define BTB_WAY3_TR19_LOC (0x1806F3)

#define BTB_WAY3_TR20_LOC (0x1806F4)

#define BTB_WAY3_TR21_LOC (0x1806F5)

#define BTB_WAY3_TR22_LOC (0x1806F6)

#define BTB_WAY3_TR23_LOC (0x1806F7)

#define BTB_WAY3_TR24_LOC (0x1806F8)

#define BTB_WAY3_TR25_LOC (0x1806F9)

#define BTB_WAY3_TR26_LOC (0x1806FA)

#define BTB_WAY3_TR27_LOC (0x1806FB)

#define BTB_WAY3_TR28_LOC (0x1806FC)

ADSP-TS101 TigerSHARC Processor Programming Reference B-41

Register/Bit Definitions

#define BTB_WAY3_TR29_LOC (0x1806FD)

#define BTB_WAY3_TR30_LOC (0x1806FE)

#define BTB_WAY3_TR31_LOC (0x1806FF)

//**** Interrupt Vectors *****

#define IVTIMER0LP_LOC (0x180702)

#define IVTIMER1LP_LOC (0x180703)

#define IVLINK0_LOC (0x180706)

#define IVLINK1_LOC (0x180707)

#define IVLINK2_LOC (0x180708)

#define IVLINK3_LOC (0x180709)

#define IVDMA0_LOC (0x18070E)

#define IVDMA1_LOC (0x18070F)

#define IVDMA2_LOC (0x180710)

#define IVDMA3_LOC (0x180711)

#define IVDMA4_LOC (0x180716)

#define IVDMA5_LOC (0x180717)

#define IVDMA6_LOC (0x180718)

#define IVDMA7_LOC (0x180719)

#define IVDMA8_LOC (0x18071D)

#define IVDMA9_LOC (0x18071E)

#define IVDMA10_LOC (0x18071F)

#define IVDMA11_LOC (0x180720)

#define IVDMA12_LOC (0x180725)

#define IVDMA13_LOC (0x180726)

#define IVIRQ0_LOC (0x180729)

#define IVIRQ1_LOC (0x18072A)

#define IVIRQ2_LOC (0x18072B)

#define IVIRQ3_LOC (0x18072C)

#define VIRPT_LOC (0x180730)

#define IVBUSLK_LOC (0x180732)

#define IVTIMER0HP_LOC (0x180734)

#define IVTIMER1HP_LOC (0x180735)

B-42 ADSP-TS101 TigerSHARC Processor Programming Reference

#define IVHW_LOC (0x180739)

#define IVSW_LOC (0x18073E)

//****

#define AUTODMA0_LOC (0x180740)

#define AUTODMA1_LOC (0x180744)

//**** Watchpoint Registers ******

#define WP0CTL_LOC (0x1807A0)

#define WP1CTL_LOC (0x1807A1)

#define WP2CTL_LOC (0x1807A2)

// Bit Masks

// OPMODE

#define WPCTL_DSBL (0x00000000)

#define WPCTL_ADDRESS (0x00000001)

#define WPCTL_RANGE (0x00000002)

#define WPCTL_NOTRANGE (0x00000003)

// BM

#define WPCTL_SEQ (0x00000004)

#define WPCTL_JALU (0x00000008)

#define WPCTL_KALU (0x00000010)

#define WPCTL_DMAI (0x00000020)

#define WPCTL_BIU (0x00000040)

#define WPCTL_SEQFETCH (0x00000080)

// R/W

#define WPCTL_READ (0x00000100)

#define WPCTL_WRITE (0x00000200)

// EXTYPE

#define WPCTL_NOEXCEPT (0x00000000)

#define WPCTL_EXCEPT (0x00000400)

#define WPCTL_EMUTRAP (0x00000800)

ADSP-TS101 TigerSHARC Processor Programming Reference B-43

Register/Bit Definitions

// SSTP,WPOR,WPAND

#define WPCTL_SSTP (0x00001000)

#define WPCTL_WPOR (0x00001000)

#define WPCTL_WPAND (0x00001000)

#define WP0STAT_LOC (0x1807A4)

#define WP1STAT_LOC (0x1807A5)

#define WP2STAT_LOC (0x1807A6)

// Bit positions (of the masks)

#define WPSTAT_VALUE_P (0)

#define WPSTAT_EX_P (16)

// Bit masks

#define WPSTAT_VALUE (0x0000FFFF)

#define WPSTAT_EX (0x00030000)

#define WP0L_LOC (0x1807A8)

#define WP0H_LOC (0x1807A9)

#define WP1L_LOC (0x1807AA)

#define WP1H_LOC (0x1807AB)

#define WP2L_LOC (0x1807AC)

#define WP3H_LOC (0x1807AD)

//*** Trace Buffer Registers *****

#define TRCB0_LOC (0x1807C0)

#define TRCB1_LOC (0x1807C1)

#define TRCB2_LOC (0x1807C2)

#define TRCB3_LOC (0x1807C3)

#define TRCB4_LOC (0x1807C4)

#define TRCB5_LOC (0x1807C5)

#define TRCB6_LOC (0x1807C6)

B-44 ADSP-TS101 TigerSHARC Processor Programming Reference

#define TRCB7_LOC (0x1807C7)

//**** Global memory *****

#define BLOCK0_LOC (0x00000000) // Internal memory block 0

#define BLOCK1_LOC (0x00080000) // Internal memory block 1

#define BLOCK2_LOC (0x00100000) // Internal memory block 2

#define P0_OFFSET_LOC (0x02000000) // Processor ID0 MP memory

offset

#define P1_OFFSET_LOC (0x02400000) // Processor ID1 MP memory

offset

#define P2_OFFSET_LOC (0x02800000) // Processor ID2 MP memory

offset

#define P3_OFFSET_LOC (0x02C00000) // Processor ID3 MP memory

offset

#define P4_OFFSET_LOC (0x03000000) // Processor ID4 MP memory

offset

#define P5_OFFSET_LOC (0x03400000) // Processor ID5 MP memory

offset

#define P6_OFFSET_LOC (0x03800000) // Processor ID6 MP memory

offset

#define P7_OFFSET_LOC (0x03C00000) // Processor ID7 MP memory

offset

#endif /* !defined(__DEFTS101_H_) */

ADSP-TS101 TigerSHARC Processor Programming Reference C-1

C INSTRUCTION DECODE

This chapter identifies operation codes (opcodes) for instructions. Use this
chapter to learn how to construct opcodes.

Instruction Structure
TigerSHARC processor instructions are all 32-bit words, where the upper
bits are identical to all instructions as shown in Figure C-1.

The ITYPE field determines the execution group to which the instruction
belongs. Its length varies according to the type of instruction. The format
is strictly set by the two MSB’s (bits[29-28]). The decoding for the ITYPE
field appears in Table C-1.

Figure C-1. Instruction Structure

31 30 29

ITYPEE
X

C
C

0

Instruction Structure

C-2 ADSP-TS101 TigerSHARC Processor Programming Reference

Table C-1. ITYPE Field

Bit Field Description

29–28 0<JK> Integer ALU operation (calculation and/or Bits[29:28] load/store).
The <JK> field in IALU instructions determines if the instruction
refers to J or K IALU, and decodes as follows:
0 = J-IALU
1 = K-IALU

29–26 10<XY> Compute block ALU instruction.
The <XY> field in compute block instructions is a two bit field that
determines if the instruction is targeted at the X compute block, the Y
compute block, or both. It decodes as follows:
00 = Reserved for future use
01 = Compute block X
10 = Compute block Y
11 = Both compute block X and Y

29–25 10<XY>0 Compute block ALU instruction.

29–24 10<XY>10 Compute block shifter instruction.

29–24 10<XY>11 Compute block multiplier instruction.

29–26 1100 Control Flow instructions, Immediate Extension and others.

31 EX When the EX bit is set, determines the instruction as the last in the
instruction line.

30 CC In most instructions, bit 30 is the CC bit. When set, conditions the
execution of the instruction by the condition instruction in the
instruction line. This applies to compute block, IALU and load/store
instructions. This does not apply to conditional instructions, immedi-
ate extensions and others. (see “Sequencer Indirect Jump Instruction
Format” on page C-36 and “Sequencer Flow Control Instructions” on
page C-33).

ADSP-TS101 TigerSHARC Processor Programming Reference C-3

Instruction Decode

Compute Block Instruction Format
The instruction format for all compute block instructions is as shown in
Figure C-2 and Table C-2.

Figure C-2. Compute Block Instruction Format

Table C-2. Compute Block Instruction Opcode Fields

Bits Field Description

4–0 RN Determines the second operand in the instruction.

9–5 RM Determines the first operand in the instruction.

14–10 RS Determines the result registers.

19–15 OPCODE/R
A

See Table C-5 on page C-10, Table C-7 on page C-16, Table C-8 on
page C-18, Table C-9 on page C-20, Table C-10 on page C-21,
Table C-11 on page C-22, Table C-22 on page C-39, and Table C-23
on page C-40.

23–20 TYPE See Table C-5 on page C-10, Table C-7 on page C-16, Table C-8 on
page C-18, Table C-9 on page C-20, Table C-10 on page C-21,
Table C-11 on page C-22, Table C-22 on page C-39, and Table C-23
on page C-40.

25–24 CU Determines the type of compute block instruction:
00 = ALU fixed-point instruction
01 = ALU fixed and floating-point instruction
10 = Shifter instruction
11 = Multiplier instruction

31 30 29:28 27:26 25:24 23:20 19:15 14:10 9:5 4:0

RnRmRs
Opcode/

Type10C
C

E
X

Standard Compute Block: Rs = Rm op Rn

Ra
XY CU

Rs = Rm + Rn, Ra = Rm - Rn

Compute Block Instruction Format

C-4 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU Instructions
ALU instruction syntax and opcodes are covered in the following sections:

• “ALU Fixed-Point, Arithmetic and Logical Instructions (CU=00)”
on page C-5

• “ALU Fixed-Point, Data Conversion Instructions (CU=01)” on
page C-7

• “ALU Floating-Point, Arithmetic and Logical Instructions
(CU=01)” on page C-10

• “CLU Instructions” on page C-12

27–26 XY Discerns which compute block is to execute the operation:
00 = Reserved
01 = Sets compute block X as the executing unit
10 = Sets compute block Y as the executing unit
11 = Sets both compute blocks as the executing units

29–28 10 Determine that this is an operation to be executed by the compute
blocks.

30 CC Condition bit. When set, specifies the execution of the instruction by
the condition instruction in this line.

31 EX When set, determines the instruction as the last in the instruction line.

Table C-2. Compute Block Instruction Opcode Fields (Cont’d)

Bits Field Description

ADSP-TS101 TigerSHARC Processor Programming Reference C-5

Instruction Decode

ALU Fixed-Point, Arithmetic and Logical Instructions (CU=00)

Table C-3 lists the syntax, type-codes, and opcodes for ALU fixed point
instructions. These instructions have the same data type and data size for
operands and results.

Table C-3. ALU Fixed-Point, Arithmetic and Logical Instruction
Syntax and Opcodes

Syntax Type Opcode

(B/S/L)Rs(d) = Rm + Rn

0000-Rs
0011-(L)Rsd 1

0110-SRs
1001-BRs
1100-B/SRsd 2

000 S1 S03

(B/S/L)Rs(d) = Rm - Rn 001 S1 S03

(B/S/L)Rs(d) = ABS (Rm + Rn) 010 0 X4

(B/S/L)Rs(d) = ABS (Rm - Rn)4 011 U X

(B/S/L)Rs(d) = (Rm + Rn) / 2 100 U T5

(B/S/L)Rs(d) = (Rm - Rn) / 2 101 U T5

(B/S/L)Rs(d) = MAX (Rm, Rn) 110 U Z6

(B/S/L)Rs(d) = MIN (Rm, Rn) 111 U Z6

Compute Block Instruction Format

C-6 ADSP-TS101 TigerSHARC Processor Programming Reference

(L)Rs(d) = Rm + Rn + CI 7 0001-Rs
0100-(L)Rsd1

0111-SRs
1010-BRs
1101-B/SRsd2

000 S1 S03

(L)Rs(d) = Rm - Rn + CI - 17 001 S1 S03

(B/S/L)Rs(d) = INC Rm 010 S1 S03

(B/S/L)Rs(d) = DEC Rm 011 S1 S03

(B/S/L)COMP (Rm, Rn) — signed 100 00

(B/S/L)COMP (Rm, Rn) —unsigned 100 10

(B/S/L)Rs = CLIP Rm by Rn 101 00

(L)Rs(d) = PASS Rm7 101 01

(B/S/L)Rs(d) = ABS Rm 101 10

(B/S/L)Rs(d) = -Rm 101 11

(L)Rs(d) = Rm AND Rn7 110 00

(L)Rs(d) = Rm OR Rn7 110 01

(L)Rs(d) = Rm XOR Rn7 110 10

(L)Rs(d) = NOT Rm7 110 11

S/BRsd = VMAX (Rmd, Rnd)8 110 00

S/BRsd = VMIN (Rmd, Rnd)8 111 00

(L)Rs(d) = Rm + CI7 111 00

(L)Rs(d) = Rm + CI - 17 111 01

(L)Rs(d) = Rm AND NOT Rn7 111 11

(B/S/L)Rs(d) = Rm(d) + Rn(d),
Ra(d) = Rm(d) - Rn(d)

0010-Rs
0101-(L)Rsd1

1000-SRs
1011-BRs
1110-B/SRsd2

–Ra–

Table C-3. ALU Fixed-Point, Arithmetic and Logical Instruction
Syntax and Opcodes (Cont’d)

Syntax Type Opcode

ADSP-TS101 TigerSHARC Processor Programming Reference C-7

Instruction Decode

ALU Fixed-Point, Data Conversion Instructions (CU=01)

Table C-4 lists syntax, type-codes, and opcodes for ALU fixed-point
instructions with short, byte, and miscellaneous operands. Note that the
CU field is set to 01.

1 The LSB of Rn (bit 0 of the instruction) is used to decode operand size, where:
0 = determines dual normal
1 = determines long word

2 The LSB of Rn (bit 0 of the instruction) is used to decode operand size, where:
0 = determines octal byte
1 = determines quad short

3 S1 S0 values are: no saturation () – 00, saturation signed (S) – 01,
saturation unsigned (SU) – 11

4 Option X - extend for ABS
5 On instruction Rs = (Rm +/- Rn)/2 the decode of (TU) is as follows (Bits[16:15], U T):

11 = Unsigned, truncate (TU)
10 = Unsigned, round to nearest even (U)
01 = Signed, truncate (T)
00 = Signed, round to nearest even ()

6 On instruction MIN and MAX, options are: ()=00, (U)=10, (Z)=01 and (UZ)=11
7 Instruction is implemented only for single normal or long.
8 The VMIN and VMAX instructions use the same opcode as other instructions, but only for short

or byte, while the other instructions are implemented in word or long only.

Table C-4. ALU Fixed-Point, Data Conversion Instruction
Syntax and Opcodes

Syntax CU = 01 Fixed Type Opcode

Rsd = EXPAND SRm + SRn 0000 000 T1 T01

Rsq = EXPAND SRmd +/- SRnd 1 0000 001 T1 T01

SRsd = EXPAND BRm + BRn 0000 010 T1 T01

SRsq = EXPAND BRmd +/- BRnd1 0000 011 T1 T01

Rsd = EXPAND SRm - SRn 0000 100 T1 T01

SRsd = EXPAND BRm - BRn 0000 110 T1 T01

Rsd = EXPAND SRm Rn = 00000 0000 111 T1 T01

Compute Block Instruction Format

C-8 ADSP-TS101 TigerSHARC Processor Programming Reference

Rsq = EXPAND SRmd Rn = 00001 0000 111 T1 T01

SRsd = EXPAND BRm Rn = 00010 0000 111 T1 T01

SRsq = EXPAND BRmd Rn = 00011 0000 111 T1 T01

SRs = COMPACT Rmd +/- Rnd2 0001 00 C2 C1 C02

BRs = COMPACT SRmd +/- SRnd2 0001 01 C2 C1 C02

SRs = COMPACT Rmd 0001 10 C2 C1 C02

BRs = COMPACT SRmd 0001 11 C2 C1 C02

BRsd = MERGE Rm, Rn 0010 000 00

BRsq = MERGE Rmd, Rnd 0010 000 01

SRsd = MERGE Rm, Rn 0010 000 10

SRsq = MERGE Rmd, Rnd 0010 000 11

Rs = SUM SRm3 Rn=00000 0010 001 S0 04

Rs = SUM SRmd3 Rn=00001 0010 001 S0 04

Rs = SUM BRm3 Rn=00010 0010 001 S0 04

Rs = SUM BRmd3 Rn=00011 0010 001 S0 04

Rs = ONES Rm Rn=00100 0010 001 00

Rs = ONES Rmd Rn=00101 0010 001 00

Rsd = PR1:0 Rn=00110 0010 001 00

Rs = BFOINC Rmd 0010 010 00

PR0 += ABS (SRmd - SRnd) 0011 000 S0 04

PR0 += ABS (BRmd - BRnd) 0011 001 S0 04

PR1 += ABS (SRmd - SRnd) 0011 000 S0 04

PR1 += ABS (BRmd - BRnd) 0011 001 S0 04

PRO += SUM SRm Rn=00000 0011 010 S0 04

Table C-4. ALU Fixed-Point, Data Conversion Instruction
Syntax and Opcodes (Cont’d)

Syntax CU = 01 Fixed Type Opcode

ADSP-TS101 TigerSHARC Processor Programming Reference C-9

Instruction Decode

PRO += SUM SRmd Rn=00001 0011 010 S0 04

PRO += SUM BRm Rn=00010 0011 010 S0 04

PRO += SUM BRmd Rn=00011 0011 010 S0 04

PR1 += SUM SRm Rn=00100 0011 010 S0 04

PR1 += SUM SRmd Rn=00101 0011 010 S0 04

PR1 += SUM BRm Rn=00110 0011 010 S0 04

PR1 += SUM BRmd Rn=00111 0011 010 S0 04

PR1:0 = Rmd Rn=01000 0011 010 00

Reserved Rn>01000 0011 010 xx

1 The LSB of Rn in EXPAND & COMPACT is used to decode +/-, where: LSB = 0 determines
addition, and LSB = 1 determines subtraction

2 Compact Coding—C2 C1 C0—is used to determine a combination of options that the instruc-
tion may incorporate. The ensuing combinations determine the following options:
000 = Fractional round
001 = Integer, no saturate (I)
100 = Fractional, truncate (T)
101 = Integer, saturate, signed (IS)
111 = Integer, saturate, unsigned (ISU)

3 SUM is sideways summation—for example, BR5 = SUM R1:0 adds the eight bytes in double
register R1:0 and stores the results in R5. The PR0/1 SUMs accumulate the results in the PR
registers, which are two accumulation registers primarily used for block matching.

4 S0 is 0 for signed, and 1 for unsigned.

Table C-4. ALU Fixed-Point, Data Conversion Instruction
Syntax and Opcodes (Cont’d)

Syntax CU = 01 Fixed Type Opcode

Compute Block Instruction Format

C-10 ADSP-TS101 TigerSHARC Processor Programming Reference

ALU Floating-Point, Arithmetic and Logical Instructions
(CU=01)

Table C-5 lists syntax, type-codes and opcodes for ALU floating-point
instructions. Note that the CU field=01, and floating-point is distinguished
by the type codes 0100, 0101, 0110 and 0111—as opposed to the
fixed-point instructions listed in Table C-4, where the CU field is also set
to 01 but the type codes are different.

Table C-5. ALU Floating-Point, Arithmetic Instruction
Syntax and Opcodes

Syntax (CU = 01 Float) Type Opcode

FRs(d) = Rm(d) + Rn(d) 0100 000 T d1,2

FRs(d) = Rm(d) - Rn(d) 0100 001 T d

FRs(d) = (Rm(d) + Rn(d)) / 2 0100 010 T d

FRs(d) = (Rm(d) - Rn(d)) / 2 0100 011 T d

FRs(d) = ABS (Rm(d)+ Rn(d)) 0100 100 T d

FRs(d) = ABS (Rm(d) - Rn(d)) 0100 101 T d

FRs(d) = FLOAT Rm by Rn 0100 110 T d

Rs = FIX FRm(d) by Rn 0100 111 T d

FRs(d) = CLIP Rm(d) by Rn(d) 0101 000 0 d

FRs(d) = Rm(d) COPYSIGN Rn(d) 0101 000 1 d

FRs(d) = SCALB FRm(d) by Rn 0101 001 0 d

FRs(d) = FLOAT Rm Rn = 00000 0101 010 T d

FRs(d) = ABS Rm(d) Rn = 00001 0101 010 0 d

Rs = MANT FRm(d) Rn = 00010 0101 010 0 d

FRs(d) = PASS Rm(d) Rn = 00011 0101 010 0 d

FRs(d) = - Rm(d) Rn = 00100 0101 010 0 d

FRs(d) = RECIPS Rm(d) Rn = 00101 0101 010 0 d

ADSP-TS101 TigerSHARC Processor Programming Reference C-11

Instruction Decode

FRs(d) = RSQRTS Rm(d) Rn = 00110 0101 010 0 d

Rs = FIX FRm(d) Rn = 00111 0101 010 T d

Rs = LOGB FRm(d) Rn = 01000 0101 010 S d3

FRsd = EXTD Rm—extended prec output Rn = 01001 0101 010 0 1

FRs = SNGL Rmd—single prec output Rn = 01010 0101 010 T 0

FRs(d) = MAX (Rm(d), Rn(d)) 0101 011 0 d

FRs(d) = MIN (Rm(d), Rn(d)) 0101 011 1 d

FCOMP (Rm(d), Rn(d)) 0101 100 0 d

FRs = Rm + Rn, FRa = Rm - Rn —always round 0110 –Ra–

FRsd = Rmd + Rnd, FRad = Rmd - Rnd—always round 0111 –Rad–

1 T: Round (T=0); Truncate (T=1) for all the floating point ALU instructions.
2 d: Extended precision format implied by operand size—for example, in the instruction

FR1:0 = R3:2 + R5:4, d is set (d=1) to imply double register floating point using 40-bit extend-
ed precision format. In the instruction FR0 = R2 + R3, d is cleared (d=0) to imply normal single
register 32-bit IEEE floating point. This applies for all floating point ALU instructions.

3 S is for saturation: 0 – no saturation, 1 – saturation is enabled.

Table C-5. ALU Floating-Point, Arithmetic Instruction
Syntax and Opcodes (Cont’d)

Syntax (CU = 01 Float) Type Opcode

Compute Block Instruction Format

C-12 ADSP-TS101 TigerSHARC Processor Programming Reference

CLU Instructions

The communications logic unit (CLU) instructions are compute block
instructions, which look like ALU or shifter instructions. Bits 25:0 of the
op-code is detailed in Table C-6, while bits 31:26 are identical for all
compute block instructions.

Table C-6. Communications Logic Unit (CLU) Instruction
Syntax and Opcodes

Instruction 25–20 19/ 18–17 16–15 14–11 10 9–5 4–3 2/1–0

CU/type Op - Code

Rs(d)(q)=TRm(d)(q)
01 1110 10

1

00

R
s(

d)
(q

)

00
00

0

N
LQ 00

0

TRs(d)(q)=Rm(d)(q)
10 1110

10
,T

R
sd

1

T
R

sd
3–

2

00
00

0

R
m

(d
)(

q)

N
LQ

1

00
00

Rs(d)(q)=
 THRm(d)(q) 01 1111 10

1

00

R
s(

d)
(q

)

00
00

0

N
LQ

1

T
H

R
m

3–
1

THRs(d)(q)=
 Rm(d)(q)(I)1

10 1111

10
,T

H
R

sd
1

T
H

R
sd

3–
2

00
00

0

R
m

(d
)

N
LQ

1

i0
0

(S)TRsd=
 MAX
 (TRmd+Rmq_h,
 TRnd+Rmq_l)

01 1110

11
,T

rs
d1

T
R

sd
3–

2

00
S2 X

3

T
R

nd
3

R
m

q

T
R

nd
2–

1

T
R

m
d3

–1

(S)TRsd=
 MAX
 (TRmd-Rmq_h,
 TRnd-Rmq_l)

01 1100

11
,T

rs
d1

T
R

sd
3–

2

00
S3 X

4

T
R

nd
3

R
m

q

T
R

nd
2–

1

T
R

m
d3

–1

(S)TRsd=
 TMAX
 (TRmd+Rmq_h,
 TRnd+Rmq_l)

01 1111

11
,T

rs
d1

T
R

sd
3–

2

00
S3 X

4

T
R

nd
3

R
m

q

T
R

nd
2–

1

T
R

m
d3

–1

ADSP-TS101 TigerSHARC Processor Programming Reference C-13

Instruction Decode

(S)TRsd=
 TMAX(TRmd-
 Rmq_h,
 TRnd-=Rmq_l)

01 1101

11
,T

rs
d1

T
R

sd
3–

2

00
S3 X

4

T
R

nd
3

R
m

q

T
R

nd
2–

1

T
R

m
d3

–1

(S)Rs=
 TMAX(TRm,TRn)

01 1011
11

,T
rn

0

T
R

n3
, 0

R
s

00
S3 X

4 T
R

m
0

T
R

n2
–1

T
R

m
3–

1

(S)TRsq=
 ACS
 (TRmd,TRnd,Rm)
 (TMAX)

01 11S3T4

10
0

T
R

sq
3–

2

00
0X

4

T
R

nd
 3

R
m

T
R

nd
2–

1

T
R

m
d3

–1

Rsq=TRaq,
(S)TRsq=
 ACS
 (TRmd,TRnd,Rm)
 (TMAX)

01 11S3T5 0

Tr
aq

3–
2

T
R

sq
3–

2

R
sq

4–
2,

X
4

T
R

nd
3

R
m

T
R

nd
2–

1

T
R

m
d3

–1

TRs=
 DESPREAD
 (Rmq,THrd)+TRn

01 1000 0 10

T
R

s3
–2

T
R

n3

R
m

q4
–2

,
T

R
s1

–0

T
R

n2
–0

T
H

R
d5

Rs=TRs,
 TRs=DESPREAD
 (Rmq,THrd)

01 1000 0 00

T
R

s3
–2

R
s

R
m

q4
–2

,
T

R
s1

–0

T
H

R
d5

Rsd=TRsd,
 TRsd=DESPREAD
 (Rmq,THrd)

01 1000 0 01

T
R

s3
–2

R
sd

R
m

q4
–2

,
T

R
s1

,0

T
H

R
d5

Rsq=Permute
 (Rmd,-Rmd,Rn) 01 1100 1 01 00 R

sd

R
sq

,R
m

d

R
n

Rsd=Permute
 (Rmd,Rn)

01 1100 1 01 01 R
sd

R
m

d

R
n

Table C-6. Communications Logic Unit (CLU) Instruction
Syntax and Opcodes (Cont’d)

Instruction 25–20 19/ 18–17 16–15 14–11 10 9–5 4–3 2/1–0

CU/type Op - Code

Compute Block Instruction Format

C-14 ADSP-TS101 TigerSHARC Processor Programming Reference

Multiplier Instructions
In the multiplier the op-code is defined by the options. The options nota-
tion is as follows:

Bits ‘XY’ define the options (U) and (NU):

00: both operands signed – ()

10: both operands are unsigned – (U)

01: Rm signed and Rn unsigned – (nU)

Bit ‘U’ indicates unsigned (if set); default is signed (0).

Bit ‘I’ indicates integer (if set); default is fractional (0).

Bit ‘S’ indicates saturation (if set) or no saturation (if cleared).

Bit ‘T’ indicates truncate (if set) or round (if cleared). This bit is signifi-
cant only when format is fractional.

Rs=X/Ystat According to existing definition of instruction - CLU refers only to bits 16–14

X/Ystat=Rm According to existing definition of instruction - CLU refers only to bits 16–14

1 (i) is option “interleave”
2 S– Short operation (if clear) or regular 32-bit operation (if set).
3 X is “0”—the value “1” is reserved for non-saturation.
4 T is set when option (TMAX) is used, otherwise it is cleared.
5 THRd field can be only 00. Other values are reserved for future (when more THR registers are imple-

mented.

Table C-6. Communications Logic Unit (CLU) Instruction
Syntax and Opcodes (Cont’d)

Instruction 25–20 19/ 18–17 16–15 14–11 10 9–5 4–3 2/1–0

CU/type Op - Code

ADSP-TS101 TigerSHARC Processor Programming Reference C-15

Instruction Decode

Bits ‘C’ and ‘R’ for multiply-accumulate are as follows:

C=0, R=0 – normal multiply-accumulate

C=1, R=0 – Clear MR registers before multiply-accumulate

C=1, R=1 – Clear MR registers and set round bits before
multiply-accumulate

Compute Block Instruction Format

C-16 ADSP-TS101 TigerSHARC Processor Programming Reference

Bits ‘ab’ for quad multiply-accumulate and transfer instruction are as
follows:

Rsd=MR3:0, MR3:0+= Rmd * Rnd ⇒ ab=00

Rsd=MR3:2, MR3:2+= Rmd * Rnd ⇒ ab=01

Rsd=MR1:0, MR1:0+= Rmd * Rnd ⇒ ab=10

Table C-7 summarizes the syntax, type-codes and opcodes for multiplier
instructions.

Table C-7. Multiplier Instruction Syntax and Opcodes

Syntax Type Opcode

Rs = Rm * Rn 0000 x I y T S

Rsd = Rm * Rn 0001 x I 0 0 y

Rsd = Rmd * Rnd 0010 U I 0 T S

Rsq = Rmd * Rnd 0011 U I 0 0 0

Rs = MRa, MRa += Rm * Rn a = 1 MR1:0
a = 0 MR3:2

0100 U I C a 1

Rsd = MRa, MRa += Rm * Rn 0101 U I C a 1

Rs = MRa, MRa += Rm ** Rn 1000 0 I C a 1

Rsd = MRa, MRa += Rm ** Rn 1001 0 I C a 1

Rs = MRa, MRa += Rm ** Rn (J) 1010 0 I C a 1

Rsd = MRa, MRa += Rm ** Rn (J) 1011 0 I C a 1

Rsd = MRa, MRa += Rmd * Rnd. 1100 U I C a b

MR3:2 += Rm * Rn 1 Rs = 00000 1101 U I C R 1

MR1:0 += Rm * Rn Rs = 00001 1101 U I C R 1

MR3:2 -= Rm * Rn Rs = 00010 1101 0 I C R 1

MR1:0 -= Rm * Rn Rs = 00011 1101 0 I C R 1

MR3:0 += Rmd * Rnd Rs = 00100 1101 U I C R 1

ADSP-TS101 TigerSHARC Processor Programming Reference C-17

Instruction Decode

MR3:2 += Rmd * Rnd Rs = 00101 1101 U I C 0 1

MR1:0 += Rmd * Rnd Rs = 00110 1101 U I C 0 1

MR3:2+= Rm ** Rn Rs = 00111 1101 0 I C R 1

MR1:0 += Rm ** Rn Rs = 01000 1101 0 I C R 1

MR3:2+= Rm ** Rn (J) Rs = 01001 1101 0 I C R 1

MR1:0 += Rm ** Rn (J) Rs = 01010 1101 0 I C R 1

MR3:2 = Rmd Rs = 01110 1101 0 0 0 0 0

MR1:0 = Rmd Rs = 01111 1101 0 0 0 0 0

MR4 = Rm Rs = 10000 1101 0 0 0 0 0

Rsd = MR3:2 Rm = 00000 1110 U 0 0 0 S

Rsd = MR1:0 Rm = 00001 1110 U 0 0 0 S

SRsd = MR3:2 Rm = 00010 1110 U 0 0 0 S

SRsd = MR1:0 Rm = 00011 1110 U 0 0 0 S

Rsq = MR3:0 Rm = 00100 1110 U 0 0 0 S

Rs = MR4 Rm = 00101 1110 0 0 0 0 0

Rs = COMPACT MR3:2 Rm = 00110 1110 U I 0 1 S

Rs = COMPACT MR1:0 Rm = 00111 1110 U I 0 1 S

SRsd = COMPACT MR3:0 Rm = 01000 1110 U I 0 1 S

FRs = Rm * Rn 1111 000 T 0

FRsd = Rmd * Rnd 1111 000 T 1

1 MR3:0 are four 32-bit accumulation registers. They overflow into R4, which stores two 16-bit
overflows for 32-bit multiples, or four 8-bit overflows for quad 16-bit multiples.

Table C-7. Multiplier Instruction Syntax and Opcodes (Cont’d)

Syntax Type Opcode

Compute Block Instruction Format

C-18 ADSP-TS101 TigerSHARC Processor Programming Reference

Shifter Instructions
Shifter instruction syntax and opcodes are covered in the following
sections:

• “Shifter Instructions Using Single Normal-Word Operands and
Single Register” on page C-18

• “Shifter Instructions Using Single Long-Word or Dual Nor-
mal-Word Operands and Dual Register” on page C-19

• “Shifter Instructions Using Short or Byte Operands and Single or
Dual Registers” on page C-20

• “Shifter Instructions Using Single Operand” on page C-22

Shifter Instructions Using Single Normal-Word Operands and
Single Register

Table C-8 lists the syntax, type-codes and opcodes for shifter instructions
with single, normal-word operands and single result registers.

Table C-8. Shifter Instruction Syntax and Opcodes
(Single, Normal-Word Operands and Single Register)

Syntax Type Opcode Comments

Rs = LSHIFT Rn BY Rm 0000 000 xx See 1

Rs = LSHIFT Rn BY <imm6> 0000 001 xi5 2

Rs = ASHIFT Rn BY Rm 0000 010 xx No options

Rs = ASHIFT Rn BY <imm6> 0000 011 xi52

Rs = ROT Rn BY Rm 0001 000 xx No options

Rs = ROT Rn BY <imm6> 0001 001 0i52

Rs = FEXT Rn BY Rm 0001 010 x S0 S0=1 sign extend
(SE)

ADSP-TS101 TigerSHARC Processor Programming Reference C-19

Instruction Decode

Shifter Instructions Using Single Long-Word or Dual Nor-
mal-Word Operands and Dual Register

Table C-9 lists the syntax, type-codes and opcodes for shifter instructions
with single long-word or dual normal-word operands and dual result
registers.

Notes:

• Single long-word operands have an L prefix, as in LRsd = Rmd + Rnd

• Dual normal-word operands have no prefix, as in Rsd = Rmd + Rnd

• The LSB of Rn (bit[0] of the instruction) is used to decode operand
size, where LSB = 0 determines dual normal words and LSB = 1
determines long words

Rs = FEXT Rn BY Rmd 0001 011 x S0

Rs += FDEP Rn BY Rm 0010 000 S1 S0 S0=1 sign extend

Rs += FDEP Rn BY Rmd 0010 001 S1 S0 S1=1 zero fill ZF

Rs += MASK Rn BY Rm 0010 010 xx No options

1 The following bits in Rm are used as the shift magnitude for the operation:
Byte: [4:0]
Short: [5:0]
Word: [6:0]
Long: [7:0]

2 LSB of opcode field is bit 5 of the six bits immediate.

Table C-8. Shifter Instruction Syntax and Opcodes
(Single, Normal-Word Operands and Single Register) (Cont’d)

Syntax Type Opcode Comments

Compute Block Instruction Format

C-20 ADSP-TS101 TigerSHARC Processor Programming Reference

Shifter Instructions Using Short or Byte Operands and Single or
Dual Registers

Table C-10 lists the syntax, type-codes and opcodes for shifter instruc-
tions with short or byte operands and single or dual result registers.

Notes:

• Dual short operands have an S prefix, as in SRs = Rm+Rn

• Quad short operands have an S prefix and a d suffix, as in
SRsd = Rmd+Rnd

Table C-9. Shifter Instruction Syntax and Opcodes
(Single Long-Word or Dual Normal-Word Operands and Dual Register)

Syntax Type Opcode

(L)Rsd = LSHIFT Rnd BY Rm 0100 000 xx

(L)Rsd = LSHIFT Rnd BY <imm7> 0100 001 i6 i51

(L)Rsd = ASHIFT Rnd BY Rm 0100 010 xx

(L)Rsd = ASHIFT Rnd BY <imm7> 0100 011 i6 i51

(L)Rsd = ROT Rnd BY Rm 0101 000 xx

(L)Rsd = ROT Rnd BY <imm7> 0101 001 i6 i51

LRsd = FEXT Rnd BY Rm 0101 010 x S0

LRsd = FEXT Rnd BY Rmd 0101 011 x S0

Rsd = GETBITS Rmq BY Rnd 0101 100 x S0

LRsd += FDEP Rnd BY Rm 0110 000 S1 S0

LRsd += FDEP Rnd BY Rmd 0110 001 S1 S0

LRsd += MASK Rnd BY Rmd 0110 010 xx

Rsd += PUTBITS Rmd BY Rnd 0110 100 xx

1 Two LSBs of opcode field is bit 6:5 of the seven bits immediate.

ADSP-TS101 TigerSHARC Processor Programming Reference C-21

Instruction Decode

• Byte operands have a B prefix, as in BRs = Rm+Rn

• Octal byte operands have a B prefix and a d suffix, as in
BRsd = Rmd+Rnd

• The LSB of Rn (bit[0] of the instruction) is used to decode operand
size, where LSB=0 determines bytes and LSB=1 determines short
words

Table C-10. Shifter Instruction Syntax and Opcodes
(Short or Byte Operands and Single or Dual Registers)

Syntax Type Opcode S1 S0

SRs = LSHIFT Rn BY Rm 1000 000 xx

SRs = LSHIFT Rn BY <imm5> 1000 001

SRs = ASHIFT Rn BY Rm 1000 010 xx

SRs = ASHIFT Rn BY <imm5> 1000 011

BRs = LSHIFT Rn BY Rm 1001 000 xx

BRs = LSHIFT Rn BY <imm4> 1001 001

BRs = ASHIFT Rn BY Rm 1001 010 xx

BRs = ASHIFT Rn BY <imm4> 1001 011

(S/B)Rsd = LSHIFT Rnd BY Rm 1010 000 xx

(S/B)Rsd = LSHIFT Rnd BY <imm5> 1010 001

(S/B)Rsd = ASHIFT Rnd BY Rm 1010 010 xx

(S/B)Rsd = ASHIFT Rnd BY <imm5> 1010 011

Compute Block Instruction Format

C-22 ADSP-TS101 TigerSHARC Processor Programming Reference

Shifter Instructions Using Single Operand

Opcode encoding for the following single-operand instructions differs
from the rest of the shifter instructions and is specified by:

Bit[0] For bit i5 of immediate magnitude <imm6>

Bit[1] Operate on single or dual registers

Bits[2] Register file-based or immediate magnitude

Bits[4:3] Test, Clear, Set and Toggle

Table C-11 lists the syntax, type-codes and opcodes for single operand
shifter instructions.

Table C-11. Shifter Instruction Syntax and Opcodes
(Single Operand)

Syntax Type Opcode

BITEST Rn BY Rm 1011 1100x

BITEST Rn BY <imm5> 1011 1110x

BITEST Rnd BY Rm 1011 1101x

BITEST Rnd BY <imm6> 1011 1111i5

Rs = BCLR Rn BY Rm 1011 0000x

Rs = BCLR Rn BY <imm5> 1011 0010x

Rs = BSET Rn BY Rm 1011 0100x

Rs = BSET Rn BY <imm5> 1011 0110x

Rs = BTGL Rn BY Rm 1011 1000x

Rs = BTGL Rn BY <imm5> 1011 1010x

Rsd = BCLR Rnd BY Rm 1011 0001x

Rsd = BCLR Rnd BY <imm6> 1011 0011i5

Rsd = BSET Rnd BY Rm 1011 0101x

ADSP-TS101 TigerSHARC Processor Programming Reference C-23

Instruction Decode

Rsd = BSET Rnd BY <imm6> 1011 0111i5

Rsd = BTGL Rnd BY Rm 1011 1001x

Rsd = BTGL Rnd BY <imm6> 1011 1011i5

Rs = LD0 Rm 1100 00000

Rs = LD0 Rmd 1100 00010

Rs = LD1 Rm 1100 00001

Rs = LD1 Rmd 1100 00011

Rs = EXP Rm 1100 00100

Rs = EXP Rmd 1100 00110

X/YSTAT = Rm 1100 01000

Rs = X/YSTAT 1100 01001

X/YSTATL = Rm 1100 01110

BKFPT Rmd, Rnd 1100 01111

Rsd = BFOTMP 1100 01010

BFOTMP = Rmd 1100 01011

Table C-11. Shifter Instruction Syntax and Opcodes
(Single Operand) (Cont’d)

Syntax Type Opcode

IALU (Integer) Instruction Format

C-24 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU (Integer) Instruction Format
The instruction format for regular IALU instructions is as shown in
Figure C-3 and Table C-12.

Figure C-3. IALU (Integer) Instruction Format

Table C-12. IALU (Integer) Instruction Opcode Fields

Bits Field Description

7–0 Jn/Kn/Imm Jn/Kn or the immediate is the second operand of the instruction. The
selection between Jn/Kn and immediate is done by bit IMM: Imm=0
[5:1] indicate the register. Imm=1 The operand is an immediate right
justified two’s-complement 8-bit value, and if there is an immediate
extension in the same line for the same IALU, it is a 32-bit two’s-com-
plement immediate.

12–8 Jm/Km The first operand of the instruction.

13 Imm Determines the second operand:
0 = Sets the second operand as register
1 = Sets the second operand as immediate

15–14 R Reserved.

20–16 Js/Ks Result register, indicating one of the 32 registers in the IALU register
file where the result is to be stored.

25–21 Opcode See Table C-16 on page C-31.

27–26 11 Determines that this is a regular IALU instruction.

28 JK Determines IALU executing unit:
0 = Sets J-IALU as the executing unit
1 = Sets K-IALU as the executing unit

IALU Computations: Js = Jm op Jn/<imm8/32>

31 30 29 28 27:26 25:21 20:16 15:14 13 12:8 5:1 0

Jm/Km

Im
mRJs/KsOpcode11JK0

C
CE
X

 Imm

7:6

Jn/Kn

ADSP-TS101 TigerSHARC Processor Programming Reference C-25

Instruction Decode

IALU Move Instruction Format
The instruction format for move register instructions is as shown in
Figure C-4 and Table C-13.

29 0 Determines that this is an operation to be executed by the IALU.

30 CC When set, specifies the execution of the instruction by the condition
instruction in the same line.

31 EX When set, determines the instruction as the last in the instruction line.

Figure C-4. IALU Move Instruction Format

Table C-13. IALU Move Instruction Opcode Fields

Bits Field Description

0 Q Long or quad data size indication. If LQ is cleared and the data is
word, bit[0] is unused; otherwise:
1 = Indicates the data to be quad (128 bits)
0 = Indicates the data to be long (64 bits) in the instruction line

5–1 DEST
UREG

Determines the destination register.

6 Reserved

7 SG5 Most Significant Bit (MSB) of the Source Group.

Table C-12. IALU (Integer) Instruction Opcode Fields (Cont’d)

Bits Field Description

Register Move: UREG = UREG

31 30 29 25:21 20:16 15 613:8 5:1

Source
0C

CE
X

14 0

Group
Source

Ureg L
Q

Dest
Group R

Dest
Ureg Q

28 27:26

10JK

7

S
G

5

0

IALU Move Instruction Format

C-26 ADSP-TS101 TigerSHARC Processor Programming Reference

13–8 DEST
GROUP

Determines the destination group.

14 LQ Data size indication. The size of the register must be aligned to the
type of data. For example, if the data is quad, the size of the transac-
tion must be divisible by four; if the data is long the size of the trans-
action must be divisible by two:
1 = Indicates the data to be either long or quad.
0 = Indicates the data to be word

15 0 Indicates that this is a Ureg transfer instruction.

20–16 SOURCE
UREG

Determines the source register.

25–21 SOURCE
GROUP

Define the first five bits ([4:0]) of the field that determines the source
group. Bit[5] of the field is defined by the SG5 (bit[15] of the instruc-
tion).

27–26 10 Determines the type of instruction as a move register operation.

28 JK Determines the IALU unit:
0 = Sets J-IALU as the executing unit
1 = Sets K-IALU as the executing unit

29 0 Determines that this is an operation to be executed by the IALU.

30 CC Condition bit. When set, specifies the execution of the instruction by
the condition instruction in this line.

31 EX When set, determines the instruction as the last in the instruction line.

Table C-13. IALU Move Instruction Opcode Fields (Cont’d)

Bits Field Description

ADSP-TS101 TigerSHARC Processor Programming Reference C-27

Instruction Decode

IALU Load Data Instruction Format
The instruction format for Load register instructions is as shown in
Figure C-5 and Table C-14.

Figure C-5. IALU Load Data Instruction Format

Table C-14. IALU Load Data Instruction Format

Bits Field Description

14–0 DATA Determines 15 bit signed data to be loaded.

15 1 Indicates that this is a Ureg data load instruction.

20–16 UREG Determines the destination register.

25–21 GROUP Determines the destination register group.

27–26 10 Determines the instruction type as load register operation.

28 JK Determines the IALU unit:
0 = Sets J-IALU as the executing unit
1 = Sets K-IALU as the executing unit

29 0 Determines that this is an operation to be executed by the IALU.

30 CC Condition bit. When set, specifies the execution of the instruction by
the condition instruction in this line.

31 EX When set, determines the instruction as the last in the instruction line.

Register Data Load: UREG = <imm15>/<32>

31 30 29 25:21 20:16

0C
CE
X

Group Ureg Data

14:028 27:26

10JK

15

1

IALU Load/Store Instruction Format

C-28 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU Load/Store Instruction Format
The instruction format for load register instructions is as shown in
Figure C-6 and Table C-15.

The instruction format for store register instructions is as shown in
Figure C-7 and Table C-15.

Figure C-6. IALU Load Instruction Format

Figure C-7. IALU Store Instructions Format

31 30 29 25:21 20:16 15 7:6 5:1

0C
CE
X

Load with Register Update: UREG = [Jm + Jn/Imm]

14 0

Group Ureg

M
O

D

L
Q Jm/Km

R Jn/Kn Q

UREG = [Jm += Jn/Imm]

JK

W
R

=
0

0

28 27 26 13 12:8

7:1 0

Imm QIM
M

31 30 29 25:21 20:16 15 7:6 5:1

0C
C

E
X

Store with Register Update: [Jm + Jn/Imm] = UREG

14 0

Group Ureg

M
O

D

L
Q Jm/

[Jm += Jn/Imm] = UREG

JK

W
R

=
1

0

28 27 26 13

R Jn/Kn Q

7:1 0

Imm Q

IM
M

Km

Access group

12:8

ADSP-TS101 TigerSHARC Processor Programming Reference C-29

Instruction Decode

Table C-15. IALU Load/Store Instruction Opcode Fields

Bits Field Description

0 Q Long or quad data size indication. If LQ is clear, Bit[0] is unused only
if [Jm +|+= Jn] is used. If [Jm +|+= imm] is used, Bit [0] is used as LSB
of immediate. Note that if LQ is set, Bit [0] of immediate is assumed
0; otherwise:
1 = Indicates the data to be quad (128 bits)
0 = Indicates the data to be long (64 bits) in the instruction line

5–1 JN/KN Defines the second address in the J-/K-IALU.

7–6 R Reserved.

12–8 JM/KM Defines the first address in J-/K-IALU.

13 Imm Determines the instruction to be either register update (0) or immedi-
ate (1).

14 LQ Data size indication. See also alternate access on page C-31:
1 = Indicates the data to be either long or quad
0 = Indicates the data to be word

15 MOD Modify indication:
0 = Determines the operation to be pre-modify no update (+)
1 = Determines the operation to be post modify and update (+=)

20–16 UREG Determines the destination/source register.

25–21 GROUP Determines the destination (for load) or source (for store) register
group.

26 WR Discerns between load and store operations:
0 = Determines a load operation, transferring data from memory to a
destination register
1 = Determines a store operation, transferring data from a source regis-
ter to memory

27 0 Determines instruction type as a load/store with register update opera-
tion.

28 JK Determines the IALU unit:
0 = Sets the J-IALU as the executing unit
1 = Sets the K-IALU as the executing unit

29 0 Determines that this is an operation to be executed by the IALU.

IALU Load/Store Instruction Format

C-30 ADSP-TS101 TigerSHARC Processor Programming Reference

The call for alternate access by load/store operations is identified in the
group field (five bits), and can only be performed on registers Jm/Km0:3
and the Uregs of the compute block. This frees three bits in the Jm/Km
operand field for an alternate access code. The compute block alternate
access register groups are as follows:

• Group 1 = Group 0 with alternate access (compute block X)

• Group 3 = Group 2 with alternate access (compute block Y)

• Group 5 = Group 4 with alternate access (compute block X and Y
— merge)

• Group 7 = Group 6 with alternate access (compute block Y and X
— merge)

• Group 9 = Group 8 with alternate access (compute block X and Y
— broadcast)

30 CC Condition bit. When set, specifies the execution of the instruction by
the condition instruction in this line.

31 EX When set, determines the instruction as the last in the instruction line.

Table C-15. IALU Load/Store Instruction Opcode Fields (Cont’d)

Bits Field Description

ADSP-TS101 TigerSHARC Processor Programming Reference C-31

Instruction Decode

For alternate access (using circular buffer, bit-reversed, DAB, or SDAB)
the Jm/Km operand field (bits[12:8]) is different and defines the access.
The field decoding is described in Table C-16, and the assembler syntax
for the different types of accesses is described in Table C-17.

Table C-16. IALU Load/Store with Alternate Access (Using Circular
Buffer, Bit-Reversed, DAB, or SDAB) Instruction Opcode Fields

Bits Field Description

9–8 Jm/Km Defines register Jm/Km between 0 and 3

12–10 Access Group Circular Buffer operations can only be used in post-modify address
modes. For more information, see “Circular Buffer Addressing” on
page 6-27. The access groups are:
000 = Determines normal circular buffer (CB) access
001 = Sets Bit Reverse option
010 = Sets DAB at normal-word misalignment and CB access
011 = Sets DAB at short-word misalignment and CB access

Table C-17. IALU Load/Store with Alternate Access (Using Circular
Buffer, Bit-Reversed, DAB, or SDAB) Instruction Assembler Syntax

Option Assembler Syntax

Circular buffer xyRsq = CB q[Jm += Jn]

DAB & circular buffer xyRsq = DAB q[Jm += Jn]

Short alignment DAB & circular buffer xyRsq = SDAB q[Jm += Jn]

Bit reverse xyRsq = BR q[Jm += Jn]

IALU Immediate Extension Format

C-32 ADSP-TS101 TigerSHARC Processor Programming Reference

IALU Immediate Extension Format
The instruction format for IALU immediate extensions is as shown in
Figure C-8 and Table C-18.

Figure C-8. IALU Immediate Extension Format

Table C-18. IALU Immediate Extension Opcode Fields

Bits Field Description

23:0 IMM EXT Specifies the value of the immediate extension.

29:24 110010 Determines that this is an IALU Immediate Extension instruction.

30 IALU Indicates the executing IALU:
0 = J-IALU
1 = K-IALU

30 Reserved Reserved

31 EX When set, identifies an instruction as the last one in a line.

Figure C-9. Examples

31 30 29:24

Immediate Extension110010

IA
L

U

E
X

Immediate Extension for IALU

23:0

J7 = 0x2A0;;

0…0 0010 1010 0000

0xA0 is included in the IALU add instruction
0x000002 is stored in the immediate extension
instruction as the immediate extension value.

⇒

ADSP-TS101 TigerSHARC Processor Programming Reference C-33

Instruction Decode

Sequencer Instruction Format
Sequencer instruction syntax and opcodes are covered in the following
sections:

• “Sequencer Flow Control Instructions” on page C-33

• “Sequencer Direct Jump/Call Instruction Format” on page C-34

• “Sequencer Indirect Jump Instruction Format” on page C-36

• “Condition Codes” on page C-39

Sequencer Flow Control Instructions
The sequencer instruction codes are listed in Table C-19.

Table C-19. Sequencer Flow Control Instruction Syntax
and Opcodes

Control flow instructions op_code

if cond1, JUMP <label> () (NP2) (ABS) 0x3000 nnnn
nnnn = immediate

if cond1, JUMP <rel label> () (NP)2 0x3100 nnnn
nnnn = immediate

if cond1, CALL <label> () (NP2) (ABS) 0x3080 nnnn
nnnn = immediate

if cond1, CALL <label> () (NP2) 0x3180 nnnn
nnnn = immediate

if cond1, CJMP (NP) (ABS)2 0x3300 8000

if cond1, CJMP (NP)3 0x3300 C000

if cond1, CJMP_CALL (NP) (ABS)2 0x3300 A000

if cond1, CJMP_CALL (NP)3 0x3300 E000

if cond1, RETI (NP) (ABS)2 0x3300 4000

Sequencer Instruction Format

C-34 ADSP-TS101 TigerSHARC Processor Programming Reference

Sequencer Direct Jump/Call Instruction Format
The instruction format for direct jump/call instructions is as shown in
Figure C-10 and Table C-20.

if cond1, RTI (NP) (ABS)2 0x3300 4040

if cond1, RDS 0x3300 0040

if cond1; (do, instr;;) 0x3300 0000

SF1/04 = cond1 0x3300 0400

SF1/04 += AND cond1 0x3300 1000

SF1/02 += OR cond1 0x3300 1400

SF1/02 += XOR cond1 0x3300 1800

1 In all examples the condition and NC are all zero. The condition codes are set in bits 21:16, and
the NC is set in bit 22.

2 Prediction is assumed “not taken” for prediction “taken” bit 30 should be set.
3 In CJMP relative and CJMP_CALL relative the prediction must be not taken.
4 In this example SF select is zero. if different, set bits 9:7 accordingly.

Figure C-10. Sequencer Direct Jump/Call Instruction Format

Table C-19. Sequencer Flow Control Instruction Syntax
and Opcodes (Cont’d)

Control flow instructions op_code

31 30 29:25 23 22 21:16

Immediate11000B
P

E
X

Direct Jump/Call: if cond, jump/call <label> (), (NP), (ABS)

ConditionN
C

C
L

R
L

24 15:0

ADSP-TS101 TigerSHARC Processor Programming Reference C-35

Instruction Decode

Table C-20. Sequencer Direct Jump/Call Instruction Opcode Fields

Bits Field Description

15:0 IMM Specifies the immediate value.

21:16 CONDI-
TION

Identifies the condition for the branch—see “Condition Codes” on
page C-39.

22 NC Determines the negate condition: 1= Condition is the NOT of the
indicated condition.

23 CL Indicates instruction type:
1 = Indicates that instruction is a call: next PC is written into the
CJMP register, thereby indicating the return address once the call has
completed.
0 = Instruction is a Jump

24 RL 0 = Target address is the absolute address in the immediate field plus
the immediate extension (if it exists), indicated with option (ABS)—
see “Sequencer Operations” on page 7-7 where absolute is 0 and rela-
tive is 1.
1 = Branch/call is program counter relative: target address is PC + imm
value.

29:25 11000 Determines that this is a direct jump/call instruction.

30 BP Indicates branch prediction:
1 = The BP bit is set to 1 by default and inserts the entry into the BTB
memory. The flow assumes that the branch is taken as default—for
example, true.
0 = The BP bit is cleared when the assembly syntax includes the NP
option and no branch is taken —see “Sequencer Operations” on
page 7-7.

31 EX When set, identifies an instruction as the last one in a line. If there is
more than one instruction in the line, the EX bit must be 0, since
jumps are always the first in the line.

Sequencer Instruction Format

C-36 ADSP-TS101 TigerSHARC Processor Programming Reference

Sequencer Indirect Jump Instruction Format
The instruction format for indirect jump instructions is as shown in
Figure C-11 and Table C-21.

Figure C-11. Sequencer Indirect Jump Instruction Format

Table C-21. Sequencer Indirect Jump Instruction Opcode Fields

Bits Field Description

5:0 Reserved These must be set to 00000.

6 RTI Indicates return from interrupt. In this case the PMASK register is
updated accordingly. Identifies the condition for the branch—see
“Condition Codes” on page C-39.
Note: The RDS opcode is OxB3080040, assuming this is the only
instruction in the line. It functions like the RTI with jump false.

9:7 SCF
SELECT

Selects the condition flag as source and result of the SCF operation:
000 = Control SF0
001 = Control SF1
<xy> = compute block (X, Y or both) and SCF0
<xy>1 = compute block (X, Y or both) and SCF1

31 30 29:23 21:16 15:14 9:7

1100110B
P

E
X

Indirect Jump if cond, cjmp/cjmp_call/rti/reti (np),(abs)

5:0

Condition
SCF

Reserved

sfb = psfb mod scond
N

C

13 12:10

SF Set:

22 6

C
LINDJ sel

cond
flag R

T
I

Conditional if cond; do <any instruction>

 op

ADSP-TS101 TigerSHARC Processor Programming Reference C-37

Instruction Decode

12:10 COND
FLAG OP

Together with the SF select fields, defines the result of the condition
flag: SF1/0 += logic_operation cond
The logic_operations are:
000 = No operation
001 = SF=cond; assigns condition to SF
100 = SF+=AND cond
101 = SF+=OR cond
110 = SF+=XOR cond

13 CL Specifies type of jump call:
1 = Indicates CJMP_CALL a computed call, where the next PC is
written into the CJMP register, thereby indicating the return address
once the call has completed.
0 = Regular computed Jump

15:14 INDJ Defines the type of indirect jump:
00 = Conditional instruction; no jump
01 = RTI/RETI – jump to address pointed by the value in the RETI
register. For RTI, update interrupt mask register PMASK
10 = CJMP – computed jump to absolute address; PC=CJMP
11 = CJMP – relative jump address; PC+=CJMP

21:16 CONDI-
TION

Identifies the condition for the branch—see “Condition Codes” on
page C-39.

22 NC Determines the negate condition:
1 = Condition is the NOT of the indicated condition.

29:23 1100110 Determines that this is an indirect jump instruction.

30 BP Indicates branch prediction:
1…The BP bit is set to 1by default and inserts the entry into the BTB
memory.

31 EX When set, identifies an instruction as the last one in a line. If there is
more than one instruction in the line, the EX bit must be 0, since
jumps are always the first in the line.

Table C-21. Sequencer Indirect Jump Instruction Opcode Fields (Cont’d)

Bits Field Description

Sequencer Instruction Format

C-38 ADSP-TS101 TigerSHARC Processor Programming Reference

Note that the basic instruction is:

if cond, jump… ; else, <any instruction>

The instruction if cond; do <any instruction> uses the same format as
the jump instructions. The other instructions in the line, which are condi-
tioned by the jump condition, are executed by the inverse of the
condition. To keep the assembler readable when using “if cond; do <any
instruction>;;”

the condition coded in the machine code is the inverse of the condition in
the assembler.

Two predicted jumps can not reside in the same quad-aligned
word. The BTB cannot distinguish between the two and will cache
them both to the same location. Thus, the execution will be wrong.
Since, prior to the linker, there is no way to tell if the two jumps
that are close to each other actually reside in the same quad-aligned
word, you must insure that there are at least three instructions
between any two jumps.

Another solution involves giving one of the jumps the NP option.
However, you will pay an up to six-cycle penalty every time the
jump is taken. For example:

if <cond1>, jump <label 1>; nop; nop; nop;;

if <cond2>, jump <label2;;

ADSP-TS101 TigerSHARC Processor Programming Reference C-39

Instruction Decode

Condition Codes
Condition codes for conditional instructions are covered in the following
sections:

• “Compute Block Conditions” on page C-39

• “IALU Conditions” on page C-40

• “Sequencer and External Conditions” on page C-40

Compute Block Conditions

The compute block condition is identified when the two MSBs ≠ 0 and
the four LSBs are less then 1011. The decode of the conditions is listed in
Table C-22:

Table C-22. ALU, Multiplier, and Shifter Condition Codes

Code Condition

<XY>0000 AEQ ALU result equals zero

<XY>0001 ALT ALU result less than zero

<XY>0010 ALE ALU result less than or equals zero

<XY>0011 MEQ multiplier result equals zero

<XY>0100 MLT multiplier result less than zero

<XY>0101 MLE multiplier result less than or equals zero

<XY>0110 SEQ Shifter result equals zero

<XY>0111 SLT Shifter result less than zero

<XY>1001 SF0 Static Condition Flag #0

<XY>1010 SF1 Static Condition Flag #1

1111XX Not Compute Block conditions

Sequencer Instruction Format

C-40 ADSP-TS101 TigerSHARC Processor Programming Reference

The <XY> field decode is similar to this field in compute block
instructions:

00 = None compute block condition

01 = Compute block X condition

10 = Compute block Y condition

11 = Both X and Y condition (excluding 1111XX)

IALU Conditions

The IALU conditions are identified by 000<JK> in the four MSBs. The
<JK> bit is similar to <JK> in the IALU instructions:

0 = J-IALU

1 = K-IALU

The condition codes are listed in Table C-23.

Sequencer and External Conditions

The external conditions refer to non-core conditions. These are identified
by 001 in three MSBs.

Table C-23. IALU Condition Codes

Code Condition

000<JK>00 JEQ/KEQ J-/K-IALU result equals zero

000<JK>01 JLT/KLT J-/K-IALU result less than zero

000<JK>10 JLE/KLE J-/K-IALU result less than or equals zero

ADSP-TS101 TigerSHARC Processor Programming Reference C-41

Instruction Decode

The codes are listed in Table C-24.

Sequencer Immediate Extension Format
The instruction format for Immediate Extensions for JUMP instructions is
as shown in Figure C-12 and Table C-25.

Table C-24. Sequencer and External Condition Codes

Code Condition

001000 TRUE

001001 iSF0 – IALU Static Flag #0

001010 iSF1 – IALU Static Flag #1

001011 BM – Bus master

001100 LC0E – Loop counter #0 is zero

001101 LC1E – Loop counter #1 is zero

1111<FLG> FLAG<n>_IN (n = 0 to 3) – external flag input 0 to 3

Figure C-12. Immediate Extensions (for JUMP Instruction) Format

31 30 29:22 21:16 15:0

11001110RE
X

Immediate Extension for Jump

R Immediate Extension

Miscellaneous Instruction Format

C-42 ADSP-TS101 TigerSHARC Processor Programming Reference

Miscellaneous Instruction Format
The instruction format for miscellaneous instructions is as shown in
Figure C-13 and Table C-26.

Table C-25. Immediate Extensions for JUMP Instruction
Opcode Fields

Bits Field Description

15:0 IMM EXT Specifies the value of the immediate extension.

21:16 Reserved Reserved

29:22 11001110 Determines that this is an immediate extension for a jump instruction.

31 EX When set, identifies an instruction as the last one in a line. Remember,
when more than one instruction is included in the instruction line,
this must be the second.

Figure C-13. Miscellaneous Instruction Format

Table C-26. Miscellaneous Instruction Opcode Fields

Bits Field Description

4:0 IMM Immediate – for TRAP instruction. Bit 0 is also used for option (LP) in
IDLE instruction.

17:5 Reserved Reserved

21:18 OPCODE Determines the operation code. See Table C-27 on page C-43.

29:22 11001111 Determines that this is an Other instruction type.

31 30 29:22

Reserved11001111E
X

17:5

Opcode

21:18

Imm

4:0

0

ADSP-TS101 TigerSHARC Processor Programming Reference C-43

Instruction Decode

The operation codes for this type of instruction are listed in Table C-27.

30 0 Constant 0 – no conditional for this group.

31 EX When set, identifies an instruction as the last one in a line.

Table C-27. Other Instruction Syntax and Opcodes

Instruction
Syntax

Type Opcode Comments

NOP 11001111 0000

IDLE 11001111 0001 Option (lp) is indicated by setting bit 0

BTBINV 11001111 0010 Use BTBINV when the code in internal
memory is changed, even small portions
of memory.

TRAP (spvcmd) 11001111 0100 The “spvcmd” is an immediate indicated
by bits 4:0

EMUTRAP 11001111 1000

Table C-26. Miscellaneous Instruction Opcode Fields (Cont’d)

Bits Field Description

Miscellaneous Instruction Format

C-44 ADSP-TS101 TigerSHARC Processor Programming Reference

ADSP-TS101 TigerSHARC Processor Programming Reference I-1

I INDEX

Symbols
()/2 average operator, 8-8, 8-53, 8-206
* multiply operator, 4-11, 8-122,

8-138, 8-163
* += multiply-accumulate operator,

8-125, 8-130, 8-141, 8-146, 8-152,

8-156
** complex multiply operator, 4-3, 4-8,

8-152, 8-156
+ add operator, 8-3, 8-6, 8-36, 8-51,

8-89, 8-113, 8-202, 8-204
- negate operator, 8-13, 8-60
- subtract operator, 8-3, 8-6, 8-36, 8-51,

8-89, 8-202, 8-204
.D unit, See IALU or ALU
.L unit, See ALU
.M unit, See multiplier
.S unit, See shifter
[+] pre-modify operator, 1-12, 6-13,

6-29, 8-220, 8-221, C-29
[+=] post-modify operator, 1-12,

1-36, 6-13, 6-28, 6-29, 6-31,

8-220, 8-221, 8-222, 8-224, C-31

Numerics
16-bit short word, 2-22, 2-23
32-bit normal word, 2-23, 2-24

32-bit single-precision, 2-17
40-bit extended-precision, 2-19
64-bit long word, 2-24, 2-25
8-bit byte word, 2-20, 2-21

A
ABS (absolute address) option, 7-17,

7-78, 8-230, 8-232, 8-234, A-13,

C-33
ABS instruction, 2-4, 3-2, 3-19, 3-29,

3-30, 3-32, 6-42, 8-10, 8-32, 8-57,

8-212, A-2, A-3, A-4, A-10, C-5,

C-10
 See also X option

absolute address, 7-17, 7-78, 8-230,

8-232, 8-234, A-13, C-33
 See also ABS option

absolute value, See ABS instruction
AC (ALU carry) flag, See ALU status
access

quad data, 1-18, 6-2, 6-4
restrictions, 1-41, 1-43
types, 6-16

accumulate, See multiply-accumulate
ACS instruction, 3-3, 3-23, 3-25, 3-33,

7-58, 8-105, 8-113, A-6, C-13

INDEX

I-2 ADSP-TS101 TigerSHARC Processor Programming Reference

add compare select, See ACS
instruction

add instruction, 8-3, 8-36, 8-51, 8-89,

8-202
and accumulate See SUM instruction
and divide See ()/2 operator
and subtract See dual operation
 See also + operator
with average, 8-8, 8-206
with carry, 8-6, 8-204

additional literature, xix
address, from program label, 7-15
ADDRESS() assembler command,

7-73
addresses

absolute, 7-17, 7-78, 8-230, 8-232,

8-234, A-13, C-33
direct, 6-14, 6-29, 8-220, 8-221,

8-224, C-29, C-31
indirect, 1-12, 6-28, 6-29, 8-224,

C-29
relative, 1-16

address from program label, 7-73
addressing

direct, 1-14
indirect, 1-14
 See also bit-reversed addressing and

circular buffer addressing
AEQ (ALU equal zero) condition, See

ALU conditions
AI (ALU invalid) flag, See ALU status
ALE (ALU less or equal zero)

condition, See ALU conditions

algorithms, 3-24
CDMA, 3-21
digital filters, 1-13
FFT, 1-13
Fourier transforms, 1-13
turbo-code, 1-9, 3-21
Viterbi, 1-9, 3-21

ALT (ALU less than zero) condition,
See ALU conditions

ALU, 3-1, C-10, C-11
conditions, 3-14, 6-12, C-39
examples, 3-16
instructions, 8-2 to 8-90, C-4
instructions summary, 3-28
opcodes, C-5 to C-10
operations, 3-5
options, 3-7
quick reference, A-2
status, 3-11, 3-12, 3-15, B-2
sticky status, 3-12, B-2

AN (ALU negative) flag, See ALU
status

AND instruction, 3-2, 8-38, 8-213,

C-6
AND NOT instruction, 3-2, 8-38,

8-213, C-6
arbitration, 1-17
architecture

Static Superscalar, 1-7, 1-15
system, 1-4

Arithmetic Logic Unit, See ALU
arithmetic shift, See ASHIFT or

ASHIFTR instructions

ADSP-TS101 TigerSHARC Processor Programming Reference I-3

INDEX

ASHIFT instruction, 5-6, 5-21, 8-176,

A-9, C-18, C-20, C-21
ASHIFTR instruction, 6-42, 8-215,

A-10
assembly language, xix, A-1
AUS, AVS, AOS, AIS bits, B-2
AUS (ALU underflow, sticky) flag,

3-12
AV (ALU overflow) flag, See ALU

status
average, See ()/2 average operator
AVS (ALU overflow, sticky) flag, See

ALU sticky status
AZ (ALU zero) flag, See ALU status

B
base, circular buffer, 6-4
BCLR instruction, 5-7, 5-21, 8-192,

A-9, C-22
BFOINC instruction, 3-2, 3-30, 5-11,

5-12, 8-30, 8-187, A-3, C-8
BFOTMP register, 1-11, 5-4, 5-13,

8-187, 8-189, 8-199, C-23
BFP, See bit FIFO pointer
BF (shifter block floating-point) flag,

See shifter status
bit

clear/set/toggle, See BCLR, BSET,
and BTGL instructions

deposit, See PUTBITS instruction
mask, See MASK instruction
operations, 1-11, 5-3, 5-7, 5-8, 5-11
test, See BITEST instruction

BITEST instruction, 5-7, 5-21, 8-191,

A-9, C-22
bit FIFO increment, 3-2, 3-30, 5-11,

5-12, 8-30, 8-187, A-3, C-8
bit FIFO pointer (BFP), 8-187
bit-reversed addressing, 1-13, 1-44, 6-8,

6-9, 6-31, 6-32, 6-42, 6-43, 6-44,

8-202, 8-222, 8-224, A-10, A-11,

A-12, C-31
example, 6-33

bit wise barrel shifter, See shifter
BKFPT instruction, 5-22, 8-197, A-10,

C-23
block floating-point, See BKFPT

instruction
BM (bus master) flag, 7-45
BM condition, See bus master
booting, 1-19
branch, 7-16

CALL, 1-34, 1-36, 1-46, 7-16, 7-78,

8-230, A-13, C-33, C-41
CJMP, 1-31, 1-32, 7-17, 7-78, 8-232,

A-13, C-33
CJMP_CALL, 7-16, 7-17, C-33
cost, 7-45

 See also conditional branch, effects
on pipeline

in pipeline, 7-44
prediction, 1-15

INDEX

I-4 ADSP-TS101 TigerSHARC Processor Programming Reference

branch target buffer, 1-7, 1-13, 1-14,

1-15, 7-11, 7-34, 7-44
invalidate, 8-241
registers, B-33
 See also BTBINV instruction
set, 7-36
way, 7-36

BR (bit-reversed) option, 6-8, 6-9, 6-32
broadcast accesses, 6-16
BSET instruction, 5-7, 5-21, 8-192,

A-9, C-22, C-23
BTB, See branch target buffer
BTBEN bit, 7-34, B-20
BTBINV instruction, 7-34, 7-79,

8-237, 8-241, A-13, C-43
BTBLK bit, 7-34, B-20
BTGL instruction, 5-7, 5-21, 8-192,

A-9, C-22, C-23
bus, 1-17

lock, 7-22
master, 7-77
requests, 7-60

byte word data, 2-10, 2-19

C
C (clear) option, 4-14
CALL instruction, 1-34, 1-36, 7-16,

7-78, 8-230, A-13, C-33
carry, ALU, 3-12, 6-10
CB (circular buffer) option, 1-44, 6-8
CDMA algorithm, 3-21, 3-26

circular buffer addressing, 1-44, 6-8,

6-27, 6-42, 6-43, 6-44, 8-202,

8-222, 8-224, A-10, A-11, A-12,

C-31
circular buffer registers, B-12, B-13
circular buffers, 6-27
CJMP_CALL instruction, 7-16, 7-17,

C-33
CJMP (computed jump) option, 7-55
CJMP instruction, 7-17, 7-78, 8-232,

A-13, C-33
CJMP register, 6-8, 6-9, 6-42, 7-16,

7-17, 8-202, A-10, B-13
clear, clear and round, See C and CR

options
clear bit, See BCLR instruction
CLIP instruction, 3-2, 3-30, 3-32, 8-24,

8-72, A-3, A-5, C-6, C-10
CLU, 1-9

data types and sizes, 3-22
examples, 3-21
instructions, 8-91 to 8-120, C-12

dependency, 7-57
opcodes, C-12
status, 3-28

combination constraints, See
restrictions

communication logic unit, See CLU
COMPACT instruction, 3-3, 3-4,

3-11, 3-31, 4-14, 4-26, 8-45,

8-171, A-4, A-8, C-8, C-17
compact multiplier result, See

COMPACT instruction

ADSP-TS101 TigerSHARC Processor Programming Reference I-5

INDEX

compare, See COMP, FCOMP, or
ACS instructions

COMP instruction, 3-2, 3-30, 6-42,

8-22, 8-208, A-3, A-10, C-6
complement, See negate or one’s

complement
complex multiply-accumulate, See

multiply-accumulate
complex numbers, 1-11, 2-7, 4-3
COM port, McBSP, See link ports
compress, See COMPACT instruction
compute block, 1-8, 2-1, 3-1, 4-1, 5-1

conditions, C-39
dependencies, 7-56
opcodes, C-32
pipeline, 7-29
registers, B-5, B-6, B-7
restrictions, 1-37
selection, 2-7
status, 2-4, 7-45, 7-77

computed jump/call, 8-232
conditional branch

CALL, 1-34, 1-36, 1-46, 7-16, 7-78,

8-230, A-13, C-33, C-41
CJMP, 1-31, 1-32, 7-17, 7-78, 8-232,

A-13, C-33
CJMP_CALL, 7-16, 7-17, C-33
effects on pipeline, 7-44
NP branch, 7-18, 7-37, 7-44, 7-50,

7-78, 8-230, 8-232, 8-234, A-13,

C-33
static flags, 8-239

conditional execution, 1-24, 7-12,

8-237, 8-238
DO, 1-24, 4-20, 6-12, 7-12, 7-78,

8-237, A-13
ELSE, 1-24, 7-13, 7-78, 8-238, A-13

conditional instruction, 1-24, 3-14,

4-20, 5-16, 6-12, 7-12, 7-13
conditional sequencing, 8-238
condition codes, 7-45, C-39
condition flags, 7-45, 8-239
conditions

ALU, 3-14, 6-12
dependency, 7-55
IALU, C-40
multiplier, 4-20
sequencer, C-40
shifter, 5-16
static flags, 8-239
TRUE, 7-45

conjugate, See (complex conjugate)
option

constraints, See restrictions
context switching, 1-16
control flow, See sequencer instructions
conventions, xxviii
conventions, instruction notation, 1-22

INDEX

I-6 ADSP-TS101 TigerSHARC Processor Programming Reference

conversion
32- to 40-bit floating-point, 3-2,

3-32, 8-68, A-5, C-11
40- to 32-bit floating-point, 3-2,

3-32, 8-70, A-5, C-11
fixed- to floating-point, 3-2, 3-32,

8-66, A-5, C-10
floating- to fixed-point, 3-2, 3-32,

8-64, A-5, C-10, C-11
COPYSIGN instruction, 3-2, 3-32,

8-74, A-5, C-10
counting ones, 8-28
CR (clear/round) option, 4-14, 4-15
customer support, xx

D
D unit, See IALU or ALU
DAB, See data alignment buffer
DAB (data alignment buffer) option,

1-29, 1-33, 1-41, 1-44, 2-1, 6-18,

6-23, 6-43, 8-222, A-11, C-31
data accesses, 1-18
data addressing, 6-2, 8-218, 8-222,

8-224
data alignment buffer, 1-18, 1-29, 1-33,

1-41, 1-44, 2-1, 6-18, 6-23, 6-26,

6-43, 8-222, A-11, C-31
accesses, 1-18, 6-23, C-31
load restrictions, 1-43
operation, 8-222

data move, 6-2, 8-218
data registers, 2-3, B-5, B-6, B-7, B-10,

B-11
data size, 3-4

data type, See numeric formats
DBGEN bit, B-20
DBGE register, 8-243, B-13
deadlock, 7-60
debug enable, B-20
DEC instruction, 3-2, 3-30, 8-20, A-3,

C-6
decode, 7-28
decrement, See DEC instruction
dependency, 7-55

compute block, 7-56, 7-62
condition, 7-55
IALU, 7-63, 7-64
load, 7-62, 7-63
resource and pipeline, 7-55

dependency condition, 7-55
deposit

bits, See PUTBITS instruction
field, See FDEP instruction

DESPREAD instruction, 1-9, 3-3,

3-21, 3-22, 3-26, 3-27, 3-33,

8-105, 8-106, A-6, C-13
difference

 See parallel absolute value of
 See - subtract operator

digital filters, 1-13
direct addressing, 1-12, 1-36, 6-13,

6-14, 6-28, 6-29, 6-31, 8-220,

8-221, 8-222, 8-224, C-29, C-31
direct calls, 1-14
direct jumps, 1-14
DO instruction, 1-24, 4-20, 6-12, 7-12,

7-78, 8-237, A-13
double register, 2-9

ADSP-TS101 TigerSHARC Processor Programming Reference I-7

INDEX

Dreg (data registers), 2-5
DSP architecture, 1-6
dual operation

add and subtract, fixed-point, 8-36
add and subtract, floating-point,

8-89
dynamic violations, See restrictions

E
edge sensitivity, B-20
ELSE instruction, 1-24, 7-13, 7-78,

8-238, A-13
EMCAUSE bit, B-22
EMUIR register, 8-243
emulation, 1-20, 7-11
EMUTRAP instruction, 8-237, 8-243,

C-43
EXCAUSE bit, B-22
exceptions, 7-22, 7-72
execution flow, 7-1 to 7-71
execution status, 7-78, 8-239, A-13,

C-34
ALU, 3-15, B-2
IALU, 6-13
multiplier, 4-21, B-2, B-3
shifter, B-2

expand, 8- or 16-bit, See EXPAND
instruction

EXPAND instruction, 3-3, 3-4, 3-11,

3-31, 8-40, A-4, C-7
EXP instruction, 5-21, 8-195, A-9,

C-23
exponent, extract, See EXP instruction

EXTD instruction, 3-2, 3-32, 8-68,

A-5, C-11
extend, field, See FEXT instruction
extended output range, ABS, See X

option
extended precision, 2-19
extended word, 8-68
extract

exponent, 8-195
fields, 8-181, 8-187
leading ones/zeros, 8-194
mantissa, 8-85

F
factor, scaling block floating-point,

8-197
FCOMP instruction, 3-32, 8-62, A-4,

C-11
FDEP instruction, 1-34, 5-3, 5-8, 5-21,

8-183, A-9, C-19, C-20
restrictions, 1-38

fetch, 7-28
fetch unit pipe, 7-28
FEXT instruction, 5-8, 5-21, 8-181,

A-9, C-18, C-19, C-20
FFT algorithms, 1-13
field

deposit, 8-183
extract, 8-181
mask, 8-185

fixed-point formats, 1-8, 2-19, 4-3
fixed- to floating-point conversion,

8-66

INDEX

I-8 ADSP-TS101 TigerSHARC Processor Programming Reference

FIX instruction, 3-2, 3-32, 8-64, A-5,

C-10, C-11
flag I/O, B-20, B-21
flags

condition, 7-45
TRUE, 7-45

flag update, 3-12, 3-28, 4-19, 5-16,

6-10
FLAGx_EN bits, B-20
FLAGx_OUT bits, B-21
FLG3–0 pin conditions, 7-45, 7-77
FLG bit, B-22
floating-point extended to normal

word conversion, See SNGL
instruction

floating-point normal to extended
word conversion, See EXTD
instruction

floating- to fixed-point conversion, See
FIX instruction

FLOAT instruction, 3-2, 3-32, 8-66,

A-5, C-10
format, See data format
Fourier transforms, 1-13
fractional

compaction, 8-45
data, 2-7
format, 3-11, 4-10, 6-7
mode, 3-7, 4-9, 6-7
multiplier, 4-10
option, See I option
results, 2-19

G
GETBITS instruction, 2-4, 5-12, 5-21,

8-187, 8-189, A-9, C-20
restrictions, 1-38

GIE bit, B-15
global interrupt enable, See GIE bit
global memory, B-44
GSCFx bits, B-22

I
I (integer-fractional) option, 3-11, 4-10
I (interleave) option, 8-105
IAB, See instruction alignment buffer
IALU, 1-12

conditions, 6-12, C-40
examples, 6-37
immediate extensions, 1-15, 6-36,

8-226, C-32, C-41
instructions, 8-200 to 8-227
instruction summary, 6-39
opcodes, C-3, C-24, C-25, C-27,

C-28, C-29, C-31
operations, 6-5, 6-13
options, 6-6
quick reference, A-10
registers, 1-13, 6-3, B-10, B-11, B-12,

B-13
restrictions, 1-39
static flags, 6-13
status, 6-10

IDLE bit, B-22
IDLE instruction, 7-3, 7-79, 8-237,

8-240, A-13, C-42, C-43
IEEE 754/854 format, 1-20, 2-16

ADSP-TS101 TigerSHARC Processor Programming Reference I-9

INDEX

IEEE standards, exceptions, 1-20
IF...DO instruction, 1-24, 4-20, 6-12,

7-12, 7-78, 8-237, A-13
IF...ELSE instruction, 1-24, 7-13,

7-78, 8-238, A-13
ILAT register, 7-66, B-13
IMASK register, 7-66, 7-70, B-13
immediate data operations, 6-2, 8-218
immediate extension, 1-12, 1-13, 1-15,

1-34, 1-36, 1-46, 6-13, 6-28, 6-29,

6-31, 7-16, 7-78, 8-220, 8-221,

8-222, 8-224, 8-230, A-13, C-29,

C-31, C-33, C-41
format, JUMP (sequencer), C-42
format (IALU), C-41
opcode fields (IALU), C-32
operations, 1-15, 6-36
restrictions, 1-45

INC instruction, 3-2, 3-30, 8-20, A-3,

C-6
increment, See INC instruction
index, circular buffer, 6-4
indirect addressing, 1-12, 1-36, 6-13,

6-14, 6-28, 6-29, 6-31, 8-220,

8-221, 8-222, 8-224, C-29, C-31
indirect jump, 1-14
input, flag, B-20, B-21
instruction alignment buffer, 7-28,

7-31
instruction dispatch/decode, See

sequencer
instruction line, 1-20, 2-5, C-1
instruction notation conventions, 1-22
instruction parallelism rules, 1-24

instruction pipeline operations, 7-26
instructions

bit manipulation, 1-11, 5-3
combination constraints, 1-24
compute block, 2-1
conditional, 1-24, 3-14, 4-20, 5-16,

6-12, 7-12, 7-13
control flow, 1-13
dependency, 7-55
execution, 7-30
immediate extension, 1-13, 1-15
line, 1-20
quad, 1-15, 1-18
resource conflicts, 7-55
restriction, 1-36

instruction set, 8-1 to 8-244
instruction slot, 1-20, 2-5
integer

compaction, 8-45
data, 2-7
format, 3-11, 4-10, 6-7
mode, 3-7, 4-9
multiplier, 4-10

integer ALU pipe, 7-28, 7-29
Integer Arithmetic Logic Unit, See

IALU
intended audience, xvii
internal transfer, 1-18

INDEX

I-10 ADSP-TS101 TigerSHARC Processor Programming Reference

interrupt, 1-14, 1-16, 7-3
bus lock, 7-22
conditional instruction, 7-68
exception, 7-22
external, 7-23
interrupt disable, 7-70
pipeline, 7-66
sensitivity, B-20
software interrupt, 7-22
vectors, 7-22, B-41

interrupt masking, 7-21
invalid operation, ALU, 3-12
IRQ3–0 pins, 1-14
IRQx_EDGE bits, B-20
ISFx (integer static flag) conditions,

7-77
ITYPE field, C-2
IVT registers, B-41

J
J (complex conjugate) option, 4-16
J-IALU, See IALU
JTAG port, 1-20
JUMP instruction, 1-34, 1-46, 7-3,

7-16, 7-78, 8-230, A-13, C-33,

C-41

K
K-IALU, See IALU

L
L unit, See ALU
label to address conversion, 7-15
LCx register, B-13

LCxE (loop counter expired)
condition, 7-77

LDx instruction, 5-21, 8-194, A-9,

C-23
leading ones/zeros, extract, See LDx

instruction
least recently used (LRU), 7-34
left rotate, 8-217
length, circular buffer, 6-4
link interrupt, 7-23
link port, 1-3, 1-7
load, 1-12, 1-29, 1-30, 1-32, 1-33

opcodes, C-28, C-29, C-31
operations, 6-2, 8-218
register, 8-196, 8-199, 8-220, 8-222,

C-28, C-29, C-31
restrictions, 1-40, 1-43

load data
instruction, 8-226
opcodes, C-27
register, 8-222

logarithm, 3-2, 3-32, 8-87, A-5, C-11
LOGB instruction, 3-2, 3-32, 8-87,

A-5, C-11
logical

AND/AND NOT/OR/XOR/NOT,

8-38, 8-213
shift, 8-176
shift (integer), 8-215

logical operations
ALU, 8-38, C-6
IALU, 3-2, 8-213, C-6

long word accesses, 6-16
long word data, 2-10

ADSP-TS101 TigerSHARC Processor Programming Reference I-11

INDEX

loop, 7-3, 7-19
LP (low power) option, 8-240
LRU bit, See least recently used
LSHIFT instruction, 5-5, 5-21, 8-176,

A-9, C-18, C-20, C-21
LSHIFTR instruction, 6-42, 8-215,

A-10

M
M unit, See multiplier
MACs, See multiply-accumulate
magnitude, rotate, 8-179
MANT instruction, 3-2, 3-32, 8-85,

A-5, C-10
mantissa, See MANT instruction
manual

audience, xvii
contents, xviii
conventions, xxviii
new in this edition, xix
related documents, xxiii

mask, field, See MASK instruction
masked interrupt, 7-21
MASK instruction, 1-34, 5-3, 5-8,

5-21, 8-185, A-9, C-19, C-20
restrictions, 1-38

maximum, See MAX, VMAX, or
TMAX instructions

MAX instruction, 3-2, 3-10, 3-25,

3-30, 3-32, 3-33, 6-42, 8-14, 8-55,

8-92, 8-99, 8-210, A-2, A-4, A-5,

A-10, C-5, C-11, C-12

memory
access restrictions, 1-40
internal, 1-7, 1-16
 See also broadcast accesses, merged

accesses, and normal accesses
merge, See MERGE instruction
merged accesses, 6-16
MERGE instruction, 3-3, 3-31, 8-49,

A-4, C-8
MI (multiplier invalid) flag, See

multiplier status
minimum, See MIN or VMIN

instructions
MIN instruction, 3-2, 3-10, 3-30, 3-32,

6-42, 8-14, 8-55, 8-210, A-2, A-4,

A-10, C-5, C-11
MIS (multiplier invalid, sticky) flag,

See multiplier sticky status
MN (multiplier negative) flag, See

multiplier status
mode, 7-11

emulation mode, 7-11
supervisor mode, 7-11
user mode, 7-11

MODE bit, B-22
modifier, circular buffer, 6-4
MOS (multiplier overflow, sticky) flag,

See multiplier sticky status
move instruction, 8-226
move restrictions, 1-40
MR register, 4-5, 4-11, 4-15, 4-17,

4-18, 4-26, 8-165, A-7, C-17
multichannel buffered serial port,

McBSP, See link ports

INDEX

I-12 ADSP-TS101 TigerSHARC Processor Programming Reference

multiplier, 4-1, 4-2, 8-121
conditions, 4-20, C-39
examples, 4-21
instructions, 8-121 to 8-174, C-14
instruction summary, 4-23
integer, fractional, 4-10
opcodes, C-16
operations, 4-4
options, 4-8
quick reference, A-6
result register, 8-165
rounding, 4-14
saturation, 4-11, 4-12
static flags, 4-21
status, 4-18, 4-19, B-2
sticky status, B-3

multiply, See * operator
multiply-accumulate, 8-125, 8-130,

8-141, 8-146
complex, 8-152, 8-156

short word, 8-152
short word with move, 8-156

dual operation
normal word, 8-130
quad-short word, 8-146

normal word, 8-125
quad-short word, 8-141
 See also * += operator

multiply-accumulator, See multiplier
multiprocessing, 1-19

configurations, 1-19
enhanced capabilities, 1-19
system, 1-6

MU (multiplier underflow) flag, See
multiplier status

MUS (multiplier underflow, sticky)
flag, See multiplier sticky status

MV (multiplier overflow) flag, See
multiplier status

MVS (multiplier overflow, sticky) flag,
See multiplier sticky status

MZ (multiplier zero) flag, See
multiplier status

N
negate instruction, See - negate

operator
nested calls, 1-16
nibble, 8-117
NMOD bit, B-20
no operation, See NOP instruction
NOP instruction, 8-237, 8-244, C-43
normal accesses, 6-16
normal mode, B-20
normal word data, 2-10
notation conventions, instruction, 1-22
NOT instruction, 8-38, 8-213, C-6
not predicted branch, 7-18
not predicted (NP) branch, See NP

option or branch prediction
NP (not predicted) option, 7-18, 7-37,

7-44, 7-50, 7-78, 8-230, 8-232,

8-234, 8-235, A-13, C-33
numeric formats, 2-16

ADSP-TS101 TigerSHARC Processor Programming Reference I-13

INDEX

O
OEN bit, B-2
one’s complement, See - negate

operator
ones counting, See ONES instruction
ONES instruction, 3-2, 3-30, 8-28,

A-3, C-8
opcodes, xix

ALU instructions, C-7, C-10
CLU instructions, C-12
constructing, xix
IALU instructions, C-24, C-25,

C-29, C-31
immediate extension instructions,

C-32
miscellaneous instructions , C-42
multiplier instructions, C-16
other instructions, C-43
sequencer instructions, C-35
sequencer instructions, C-33, C-36
shifter instructions, C-18, C-20,

C-21, C-22
operands, 2-10
operation mode, 7-11

emulation mode, 7-11
supervisor mode, 7-11
user mode, 7-11

OR instruction, 3-2, 8-38, 8-213, C-6
output, flag, B-20, B-21
overflow, 4-11, 8-3
overflow, See AV and MV flags

P
packed data formats, 2-19
parallel absolute value of difference,

8-32
parallel result register, 8-29
pass, See PASS instruction
PASS instruction, 3-2, 3-31, 3-32,

8-37, 8-78, A-3, A-5, C-6, C-10
PC register, 7-17
PC-relative address, 7-17
PERMUTE instruction, 3-3, 3-33,

8-117, 8-119, A-6
pipeline, 1-7, 1-14, 1-15

ALU, 1-12
branches, 7-44
compute block, 7-29
IALU, 7-28
illegal combinations, 7-45
operations, 7-26
restrictions, 7-45
stages, 7-6
stall, 7-55

post-modify addressing, 1-12, 1-36,

6-13, 6-28, 6-29, 6-31, 8-220,

8-221, 8-222, 8-224, C-31
post-modify and update, 6-14
power save mode, 8-240
predicted branch, 7-18
pre-modify addressing, 1-12, 6-13,

6-29, 8-220, 8-221, C-29
pre-modify no update, 6-14
product information, xxi
program fetch, See sequencer
program flow, 7-3

INDEX

I-14 ADSP-TS101 TigerSHARC Processor Programming Reference

program label to address, 7-15
program sequencer, See sequencer
PR register, 3-5, 3-19, 6-5, 8-29, 8-32,

8-34
purpose of this manual, xvii
PUTBITS instruction, 2-4, 5-12, 5-13,

5-21, 8-187, 8-189, A-9, C-20
example, 8-190
restrictions, 1-38

Q
quad access, 1-18
quad accesses, 1-18, 6-2, 6-16
quad instruction execution, 1-15
quad register, 2-9
quad word data, 6-16

R
RDS instruction, 7-24, 7-78, 8-236,

A-13, C-34, C-36
real data, 2-7
reciprocal, See RECIPS instruction
reciprocal square root, See RSQRTS

instruction
RECIPS instruction, 3-2, 3-32, 8-80,

A-5, C-10
reduce interrupt to subroutine, See

RDS instruction

registers
files, 1-9, 2-1, 2-5
file syntax summary, 2-13
saving and restoring, 1-16
SIMD, 1-41
width, 2-8, 2-9
writing to constraints, 1-36

related documents, xxiii
relative addresses, 1-16
relative addresses for relocation, 1-16
reset, software, B-20
resource conflict, 7-55
resources, 1-25
restriction, 1-36
restrictions, 1-26, 1-36, 1-46

access, 1-43
combination constraints, 1-24
compute block, 1-37
IALU, 1-39
immediate extension, 1-45
load, 1-40, 1-43
memory access, 1-40
move, 1-40
parallelism rules, 1-24
pipeline, 7-45
sequencer, 1-45
shifter, 1-38, 1-45

result flag, See ALU, multiplier, shifter,
IALU status

RETI instruction, 1-31, 1-32, 7-78,

8-234, A-13
RETI register, 7-44, 7-67, B-13, C-33
RETS register, B-13

ADSP-TS101 TigerSHARC Processor Programming Reference I-15

INDEX

return from interrupt, See RETI or RTI
instructions

rotate, 8-179
IALU, left, 6-42, 8-217, A-10
IALU, right, 6-37, 6-42, 8-217, A-10

rotate, See ROT, ROTL, and ROTR
instructions

ROT instruction, 5-21, 8-179, A-9,

C-18, C-20
ROTL instruction, 6-42, 8-217, A-10
ROTR instruction, 6-37, 6-42, 8-217,

A-10
round bit, 4-14
rounding, 4-14, 8-51
Round-to-nearest, 3-9, 4-12
Round-to-zero, 3-10, 4-13
RSQRTS instruction, 3-2, 3-32, 8-82,

A-5, C-11
RTI instruction, 7-78, 8-234, A-13,

C-34, C-36

S
S (saturation) option, 3-8, 4-11
S unit, See shifter
saturation, 3-7, 3-8, 4-9, 4-11, 4-12,

8-3, 8-6, 8-20
scalability and multiprocessing, 1-19
SCALB instruction, 3-2, 3-32, 8-76,

A-5, C-10
scale, floating-point, See SCALB

instruction
scaling factor, block floating-point, See

BKFTP instruction

SDAB (short DAB) option, 1-33, 6-18,

6-26, 6-43, 8-222, A-11, C-31
SDRCON register, B-30
SEQ (shifter equal zero) condition, See

shifter conditions
sequencer, 1-13

conditions, C-40
conditions , C-41
examples, 7-72
immediate extensions, 1-15, C-33,

C-42
instructions, 8-228 to 8-244, C-24,

C-33, C-34, C-36
instruction summary, 7-76
opcodes, C-33, C-35, C-36
operations, 7-7
quick reference, A-13
registers, B-13, B-20, B-21, B-22,

B-29, B-30, B-33, B-41
restrictions, 1-45
status, 7-45

SE (sign extended) option, 5-15
SE (sign extend) option, 8-183
set bit, 8-192
set bits, 5-7, 5-21, 8-192, A-9, C-22,

C-23
SFREG register, 8-239, B-22

 See also static condition flag
SFx (static flag) condition, 3-15, 4-21,

6-13, 7-78, 8-239, A-13, C-34
shift, See ASHIFT, LSHIFT,

ASHIFTR, and LSHIFTR
instructions

INDEX

I-16 ADSP-TS101 TigerSHARC Processor Programming Reference

shifter, 1-11
condition codes, C-39
conditions, 5-16
instructions, 8-175 to 8-199, C-18,

C-19, C-20, C-22
instruction summary, 5-19
opcodes, C-18, C-20, C-21, C-22
operations, 5-3
options, 5-14
quick reference, A-8
restrictions, 1-38
static flags, 5-17
status, 5-15, 5-16, B-2
status flags, B-2

shifter examples, 5-17
short word data, 2-10, 2-19
sideways sum, See SUM instruction
sign, copy, See COPYSIGN instruction
signed data, 3-8, 4-10
signed operation, 3-7, 4-9, 6-7
signed saturation, 3-8, 8-3, 8-6, 8-20
SIMD, See Single-Instruction,

Multiple-Data
Single-Instruction, Multiple-Data, 2-8

execution, 2-8
registers, 8-226, B-7

Single-Instruction, Single-Data, 2-8
single-precision, 2-16
Single-processor system, 1-4
single register, 2-9
SISD, See Single-Instruction,

Single-Data
SLT (shifter less than zero) conditions,

See shifter conditions

SNGL instruction, 3-2, 3-32, 8-70,

A-5, C-11
SN (shifter negative) flag, See shifter

status
software reset, B-20
SPVCMD bit, B-22
SQCTL register, 1-33, 7-8, 7-10, 7-11,

7-34, B-20
SQSTAT register, 1-33, 7-8, 7-10,

B-21
stall, 1-14, 1-25, 7-55

bus conflict, 7-59
compute block dependency, 7-56,

7-62
external memory dependency, 7-64
IALU load dependency, 7-63, 7-64
instruction pipeline, 7-30
us request, 7-59

static condition flag, 8-239
 See also SFREG register

static flags, 3-15, 4-21, 6-13, 7-78,

8-239, A-13, B-22, C-34
Static Superscalar, 1-7, 1-15, 1-24
status

ALU, 3-11, 4-18, 6-10, B-2
CLU, 3-27
compute block, 7-45
multiplier, B-2
shifter, 5-15, B-2

sticky status, 7-29
ALU, 3-12, 4-19, B-2
CLU, 3-27
multiplier, B-3

ADSP-TS101 TigerSHARC Processor Programming Reference I-17

INDEX

store, 1-12, 1-30, 1-31, 8-221, 8-224
opcodes, C-28, C-29, C-31
register, 8-224, C-28, C-29, C-31

stray pointers, 1-26
subroutines, 7-3
subtract instruction, 8-3, 8-36, 8-51,

8-89, 8-202
 See also - operator
with borrow, 8-6
with borrow, integer, 8-204

SUM instruction, 2-4, 3-2, 3-19, 3-20,

3-30, 8-26, 8-34, A-3, C-8, C-9
supervisor mode, B-20
support, technical or customer, xx
SWRST bit, B-20
SYSCON register, B-29
system

development enhancements, 1-4
multi-processor, 1-6
on-a-chip (SOC), 1-1
single-processor, 1-4

SZ (shifter zero) flag, See shifter status

T
T (truncation) option, 3-9, 4-12
technical or customer support, xx
technical support, xx
test bits, See BITEST instruction
timer, 7-11, 7-22, 7-23
timer run, B-20
TMAX instruction, 3-3, 3-23, 3-25,

3-33, 8-92, A-5, C-12, C-13, C-14
TMRxRN bits, B-20
toggle bit, See BTGL instruction

trap, See TRAP and EMUTRAP
instructions

TRAP instruction, 7-79, 8-237, 8-242,

A-14, C-42, C-43
trellis diagram, 3-25
trellis maximum, See TMAX

instruction
trellis overflow, See TROV and

TRSOV bits
TROV (trellis overflow) bit, See CLU

status
TROV (trellis overflow) flag, See CLU

status
TRSOV (trellis overflow, sticky) bit,

See CLU status
TRUE flag, 7-45
truncation, See rounding and T option
turbo-code algorithms, 1-9, 3-21
turbo decoding algorithm, 3-24
two’s complement, See - operator

U
U (unsigned/signed) option, 3-8, 4-10
UEN bit, B-2
unbiasing, 8-87
unconditional execution, 1-23
underflow, 8-3
underflow, See AZ, MZ, SZ, JZ, or KZ

flag
universal registers, 2-2, 6-35, 8-220,

8-221, 8-226
unmasked interrupt, 7-21
unsigned data, 3-8, 4-10, 6-8
unsigned operation, 3-7, 6-7

INDEX

I-18 ADSP-TS101 TigerSHARC Processor Programming Reference

unsigned saturation, 3-8, 8-3, 8-4, 8-6,

8-7, 8-20
Ureg (universal registers), 2-5

V
Viterbi algorithm, 1-9, 3-21, 3-24
Viterbi maximum, See VMAX

instruction
Viterbi Maximum/Minimum, 8-17
Viterbi minimum, See VMIN

instruction
VMAX instruction, 2-4, 3-2, 3-3, 3-19,

8-18, C-6
VMIN instruction, 2-4, 3-19, 3-30,

8-17, A-3, C-6

X
X (extended output range) option, 3-9,

8-10
X option, 8-10
XOR instruction, 3-2, 8-38, 8-213, C-6
XSCFx bits, B-22
XSTAT register, 2-4, 8-196
X/YSTAT register

restrictions, 1-38

Y
YSCFx bits, B-22
YSTAT register, 2-4, 8-196

Z
ZF (zero filled) option, 5-15, 8-183
Z (return zero) option, 3-10, 8-14

	Contents
	Preface
	Purpose of This Manual xvii
	Intended Audience xvii
	Manual Contents xviii
	What’s New in This Manual xix
	Technical or Customer Support xx
	Supported Processors xx
	Product Information xxi
	MyAnalog.com xxii
	Processor Product Information xxii
	Related Documents xxiii
	Online Technical Documentation xxiv
	Accessing Documentation From VisualDSP++ xxv
	Accessing Documentation From Windows xxv
	Accessing Documentation From the Web xxvi

	Printed Manuals xxvi
	VisualDSP++ Documentation Set xxvi
	Hardware Tools Manuals xxvi
	Processor Manuals xxvi
	Data Sheets xxvii

	Conventions xxviii

	Introduction
	DSP Architecture 1-6
	Compute Blocks 1-8
	Arithmetic Logic Unit (ALU) 1-9
	Multiply Accumulator (Multiplier) 1-11
	Bit Wise Barrel Shifter (Shifter) 1-11

	Integer Arithmetic Logic Unit (IALU) 1-12
	Program Sequencer 1-13
	Quad Instruction Execution 1-15
	Relative Addresses for Relocation 1-16
	Nested Call and Interrupt 1-16
	Context Switching 1-16

	Internal Memory and Other Internal Peripherals 1-16
	Internal Buses 1-17
	Internal Transfer 1-18
	Data Accesses 1-18
	Quad Data Access 1-18

	Booting 1-19
	Scalability and Multiprocessing 1-19
	Emulation and Test Support 1-20

	Instruction Line Syntax and Structure 1-20
	Instruction Notation Conventions 1-22
	Unconditional Execution Support 1-23
	Conditional Execution Support 1-24

	Instruction Parallelism Rules 1-24
	General Restriction 1-36
	Compute Block Instruction Restrictions 1-37
	IALU Instruction Restrictions 1-39
	Sequencer Instruction Restrictions 1-45

	Compute Block Registers
	Register File Registers 2-5
	Compute Block Selection 2-7
	Register Width Selection 2-8
	Operand Size and Format Selection 2-10
	Registers File Syntax Summary 2-13

	Numeric Formats 2-16
	IEEE Single-Precision Floating-Point Data Format 2-16
	Extended Precision Floating-Point Format 2-19
	Fixed-Point Formats 2-19

	ALU
	ALU Operations 3-5
	ALU Instruction Options 3-7
	Signed/Unsigned Option 3-8
	Saturation Option 3-8
	Extension (ABS) Option 3-9
	Truncation Option 3-9
	Return Zero (MAX/MIN) Option 3-10
	Fractional/Integer Option 3-11

	ALU Execution Status 3-11
	AN - ALU Negative 3-13
	AV - ALU Overflow 3-13
	AI - ALU Invalid 3-14
	AC - ALU Carry 3-14

	ALU Execution Conditions 3-14
	ALU Static Flags 3-15

	ALU Examples 3-16
	Example Parallel Addition of Byte Data 3-18
	Example Sideways Addition of Byte Data 3-19
	Example Parallel Result (PR) Register Usage 3-19

	CLU Examples 3-21
	CLU Data Types and Sizes 3-22
	TMAX Function 3-23
	Trellis Function 3-24
	Despread Function 3-26
	CLU Execution Status 3-27

	ALU Instruction Summary 3-28

	Multiplier
	Multiplier Operations 4-4
	Multiplier Instruction Options 4-8
	Signed/Unsigned Option 4-10
	Fractional/Integer Option 4-10
	Saturation Option 4-11
	Truncation Option 4-12
	Clear/Round Option 4-14
	Complex Conjugate Option 4-16

	Multiplier Result Overflow (MR4) Register 4-17
	Multiplier Execution Status 4-18
	Multiplier Execution Conditions 4-20
	Multiplier Static Flags 4-21

	Multiplier Examples 4-21
	Multiplier Instruction Summary 4-23

	Shifter
	Shifter Operations 5-3
	Logical Shift Operation 5-5
	Arithmetic Shift Operation 5-6
	Bit Manipulation Operations 5-7
	Bit Field Manipulation Operations 5-8
	Bit Field Conversion Operations 5-11
	Bit Stream Manipulation Operations 5-11
	Shifter Instruction Options 5-14
	Sign Extended Option 5-15
	Zero Filled Option 5-15

	Shifter Execution Status 5-15
	Shifter Execution Conditions 5-16
	Shifter Static Flags 5-17

	Shifter Examples 5-17
	Shifter Instruction Summary 5-19

	IALU
	IALU Operations 6-5
	IALU Arithmetic, Logical, and Function Operations 6-5
	IALU Instruction Options 6-6
	Integer Data 6-7
	Signed/Unsigned Option 6-8
	Circular Buffer Option 6-8
	Bit Reverse Option 6-9
	Computed Jump Option 6-9

	IALU Execution Status 6-10
	JN/KN-IALU Negative 6-11
	JV/KV-IALU Overflow 6-11
	JC/KC-IALU Carry 6-11

	IALU Execution Conditions 6-12
	IALU Static Flags 6-13

	IALU Data Addressing and Transfer Operations 6-13
	Direct and Indirect Addressing 6-14
	Normal, Merged, and Broadcast Memory Accesses 6-16
	Data Alignment Buffer (DAB) Accesses 6-23
	Circular Buffer Addressing 6-27
	Bit Reverse Addressing 6-31
	Universal Register Transfer Operations 6-35
	Immediate Extension Operations 6-36

	IALU Examples 6-37
	IALU Instruction Summary 6-39

	Program Sequencer
	Sequencer Operations 7-7
	Conditional Execution 7-12
	Branching Execution 7-16
	Looping Execution 7-19
	Interrupting Execution 7-20

	Instruction Pipeline Operations 7-26
	Instruction Alignment Buffer (IAB) 7-31
	Branch Target Buffer (BTB) 7-34
	Conditional Branch Effects on Pipeline 7-44
	Dependency and Resource Effects on Pipeline 7-55
	Stall From Compute Block Dependency 7-56
	Stall from Bus Conflict 7-59
	Stall From Compute Block Load Dependency 7-62
	Stall From IALU Load Dependency 7-63
	Stall From Load (From External Memory) Dependency 7-64
	Stall From Conditional IALU Load Dependency 7-64

	Interrupt Effects on Pipeline 7-66
	Interrupt During Conditional Instruction 7-68
	Interrupt During Interrupt Disable Instruction 7-70

	Exception Effects on Pipeline 7-72

	Sequencer Examples 7-72
	Sequencer Instruction Summary 7-76

	Instruction Set
	ALU Instructions 8-2
	Add/Subtract 8-3
	Add/Subtract With Carry/Borrow 8-6
	Average 8-8
	Absolute Value/Absolute Value of Sum or Difference 8-10
	Negate 8-13
	Maximum/Minimum 8-14
	Viterbi Maximum/Minimum 8-17
	Increment/Decrement 8-20
	Compare 8-22
	Clip 8-24
	Sum 8-26
	Ones Counting 8-28
	Parallel Result Register 8-29
	Bit FIFO Increment 8-30
	Parallel Absolute Value of Difference 8-32
	Sideways Sum 8-34
	Add/Subtract (Dual Operation) 8-36
	Pass 8-37
	Logical AND/AND NOT/OR/XOR/NOT 8-38
	Expand 8-40
	Compact 8-45
	Merge 8-49
	Add/Subtract (Floating-Point) 8-51
	Average (Floating-Point) 8-53
	Maximum/Minimum (Floating-Point) 8-55
	Absolute Value (Floating-Point) 8-57
	Negate (Floating-Point) 8-60
	Compare (Floating-Point) 8-62
	Floating- to Fixed-Point Conversion 8-64
	Fixed- to Floating-Point Conversion 8-66
	Floating-Point Normal to Extended Word Conversion 8-68
	Floating-Point Extended to Normal Word Conversion 8-70
	Clip (Floating-Point) 8-72
	Copysign (Floating-Point) 8-74
	Scale (Floating-Point) 8-76
	Pass (Floating-Point) 8-78
	Reciprocal (Floating-Point) 8-80
	Reciprocal Square Root (Floating-Point) 8-82
	Mantissa (Floating-Point) 8-85
	Logarithm (Floating-Point) 8-87
	Add/Subtract (Dual Operation, Floating-Point) 8-89

	CLU Instructions 8-91
	Trellis Maximum (CLU) 8-92
	Maximum (CLU) 8-99
	Trellis Registers (CLU) 8-104
	Despread (CLU) 8-106
	Add/Compare/Select (CLU) 8-113
	Permute (Byte Word, CLU) 8-117
	Permute (Short Word, CLU) 8-119

	Multiplier Instructions 8-121
	Multiply (Normal Word) 8-122
	Multiply-Accumulate (Normal Word) 8-125
	Multiply-Accumulate/Move (Dual Operation, Normal Word) 8-130
	Multiply (Quad-Short Word) 8-138
	Multiply-Accumulate (Quad-Short Word) 8-141
	Multiply-Accumulate (Dual Operation, Quad-Short Word) 8-146
	Complex Multiply-Accumulate (Short Word) 8-152
	Complex Multiply-Accumulate/Move (Dual Operation, Short Word) 8-156
	Multiply (Floating-Point, Normal/Extended Word) 8-163
	Multiplier Result Register 8-165
	Compact Multiplier Result 8-171

	Shifter Instructions 8-175
	Arithmetic/Logical Shift 8-176
	Rotate 8-179
	Field Extract 8-181
	Field Deposit 8-183
	Field/Bit Mask 8-185
	Get Bits 8-187
	Put Bits 8-189
	Bit Test 8-191
	Bit Clear/Set/Toggle 8-192
	Extract Leading Zeros 8-194
	Extract Exponent 8-195
	XSTAT/YSTAT Register 8-196
	Block Floating-Point 8-197
	BFOTMP Register 8-199

	IALU (Integer) Instructions 8-200
	Add/Subtract (Integer) 8-202
	Add/Subtract With Carry/Borrow (Integer) 8-204
	Average (Integer) 8-206
	Compare (Integer) 8-208
	Maximum/Minimum (Integer) 8-210
	Absolute Value (Integer) 8-212
	Logical AND/AND NOT/OR/XOR/NOT (Integer) 8-213
	Arithmetic Shift/Logical Shift (Integer) 8-215
	Left Rotate/Right Rotate (Integer) 8-217

	IALU (Load/Store/Transfer) Instructions 8-218
	Universal Register Load (Data Addressing) 8-220
	Universal Register Store (Data Addressing) 8-221
	Data Register Load and DAB Operation (Data Addressing) 8-222
	Data Register Store (Data Addressing) 8-224
	Universal Register Transfer 8-226

	Sequencer Instructions 8-228
	Jump/Call 8-230
	Computed Jump/Call 8-232
	Return (from Interrupt) 8-234
	Reduce (Interrupt to Subroutine) 8-236
	If - Do (Conditional Execution) 8-237
	If - Else (Conditional Sequencing and Execution) 8-238
	Static Flag Registers 8-239
	Idle 8-240
	BTB Invalid 8-241
	Trap 8-242
	Emulator Trap 8-243
	No Operation 8-244

	Quick Reference
	ALU Quick Reference A-2
	Multiplier Quick Reference A-6
	Shifter Quick Reference A-8
	IALU Quick Reference A-10
	Sequencer Quick Reference A-13

	Register/Bit Definitions
	Instruction Decode
	Instruction Structure C-1
	Compute Block Instruction Format C-3
	ALU Instructions C-4
	ALU Fixed-Point, Arithmetic and Logical Instructions (CU=00) C-5
	ALU Fixed-Point, Data Conversion Instructions (CU=01) C-7
	ALU Floating-Point, Arithmetic and Logical Instructions (CU=01) C-10
	CLU Instructions C-12

	Multiplier Instructions C-14
	Shifter Instructions C-18
	Shifter Instructions Using Single Normal-Word Operands and Single Register C-18
	Shifter Instructions Using Single Long-Word or Dual Normal-Word Operands and Dual Register C-19
	Shifter Instructions Using Short or Byte Operands and Single or Dual Registers C-20
	Shifter Instructions Using Single Operand C-22

	IALU (Integer) Instruction Format C-24
	IALU Move Instruction Format C-25
	IALU Load Data Instruction Format C-27
	IALU Load/Store Instruction Format C-28
	IALU Immediate Extension Format C-32
	Sequencer Instruction Format C-33
	Sequencer Flow Control Instructions C-33
	Sequencer Direct Jump/Call Instruction Format C-34
	Sequencer Indirect Jump Instruction Format C-36
	Condition Codes C-39
	Compute Block Conditions C-39
	IALU Conditions C-40
	Sequencer and External Conditions C-40

	Sequencer Immediate Extension Format C-41
	Miscellaneous Instruction Format C-42

	Index

