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Lie series and invariant functions for analytic symplectic 
maps* 

Alex J. Dragt and John M. Finnt 

Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland, College 
Park, Maryland 20742 
(Received 3 March 1976) 

Symplectic maps (canonical transformations) are treated from the Lie algebraic point of view using Lie 
series and Lie algebraic techniques. It is shown that under very general conditions an analytic symplectic 
map can be written as a product of Lie transformations. Under certain conditions this product of Lie 
transformations can be combined to form a single Lie transformation by means of the 
Campbell-Baker-Hausdorff theorem. This result leads to invariant functions and generalizes to several 
variables a classic result of Birkhoff for the case of two variables. It also provides a new approach since the 
connection between symplectic maps, Lie algebras, invariant functions, and Birkhotrs work has not been 
previously recognized and exploited. It is expected that the results obtained will be applicable to the normal 
form problem in Hamiltonian mechanics, the use of the Poincare section map in stability analysis, and the 
behavior of magnetic field lines in a toroidal plasma device. 

1. INTRODUCTION AND NOTATION 

The purpose of this paper is to discuss canonical 
transformations from the Lie algebraic point of view 
using Lie series and Lie algebraic techniques, The 
study of canonical transformations or maps is impor­
tant for several reasons: As is well known, canonical 
transformations preserve Hamilton's equations of mo­
tion. 1-3 In this context, they can be used systematically 
to bring a Hamiltonian to a simpler form from which 
the solutions to the equations of motion can be more 
easily discovered. 4-6 Secondly, the canonical coordi­
nates p(t), q(t) at time t for any Hamiltonian system are 
related to their values Po, q 0 at time t = to by a canonical 
transformation, 1-3 In addition, the Poincare section 
map used to investigate stability behavior is canoni-
cal. 7,3 Finally, the behavior of magnetic field lines in 
a toroidal plasma device can be characterized by a 
canonical map, 9 We expect that our results will have 
application to all these areas. 

The most commonly used method of describing 
canonical transformations is by means of transforma­
tion functions of mixed variables. 1-3 As has been dis­
cussed by Deprit and others, this method has certain 
drawbacks which can be overcome by the use of Lie 
series. 10-12 In this paper we will employ a variant of 
the Lie series approach. 

The remainder of this section and Theorem 1 of the 
next section are devoted to a review of well-known 
material concerning Lie series and to a development 
of notation. 3,5,10-12 Our purpose is to make the material 
of this paper relatively self-contained. 

We shall be working with a phase space consisting of 
the 2n variables (q1 ' , 'qn, P1 •• 0 Pn). The Lie product of 
any two functions f and g of the phase space variables 
will be defined by the Poisson bracket operation, 

(1. 1) 

The set of all functions defined on phase space has an 
obvious linear vector space structure since it is closed 
under addition and scalar multiplication. Also the 
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"multiplication" rule (1. 1) satisfies all the require­
ments for a Lie product including the Jacobi condition 

[j, [g,hn + (g, [h,fJ] + (h, [j,gJ] = O. (1. 2) 

Consequently, functions on phase space may be viewed 
as elements in a Lie algebra. We remind the reader 
that the equations of motion generated by a Hamiltonian 
H can themselves be written in terms of Lie products, 

qj=[qt,H], Pt=[Pi,H]. (1.3) 

A canonical transformation to new variables Q(q,p), 
P(q,p) is defined to be any transformation satisfying 

[Qi' Qj) = [qi' qj) = 0, 

[p;, Pj] = [Pi,Pj] = 0, (1. 4) 

That is, canonical transformations are those transfor­
mations which preserve the Lie algebraic structure. 

At this point it is notationally convenient to collect 
the two sets of n variables q, P into a combined set of 
2n variables zl ••• z2n by the rule 

(1. 5) 

In terms of the z's the fundamental Poisson bracket 
rules (1. 4) become 

(1. 6) 

where J denotes the antisymmetric 2n x 2n matrix 

(1. 7) 

H ere each entry in J is an n x n block. We note that J 
has the properties 

J=-J, 

.fl = - I, (1. 8) 

detJ=I. 

The general Lie product (1. 1) is given in terms of the 
z's by the relation 
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(1. 9) 

Suppose we introduce new variables z(z) and require 
that the transformation be canonical. Combining (1. 4) 
and (1. 9) we find 

JIJ=[Z!'ZJ]=~(~) Jk/(~)' (1.10) 

Let M be the Jacobian matrix for the transformation 
going from z to Z, 

(1.11) 

Employing M, we find that (1. 10) can be written in the 
compact form 

MJM=J. (1. 12) 

This is just the condition that the matrix M must satisfy 
in order to belong to the symplectic group in 2n dimen­
sions. We conclude that the necessary and sufficient 
condition for a transformation to be canonical is that its 
Jacobian matrix be symplectic. 8,12,13 For this reason 
a canonical transformation is often called a symplectic 
map. 

In this paper we will study analytic symplectic maps. 
They are canonical transformations given by convergent 
power series. We write these power series as 

(1. 13) 

Here 0' denotes a collection of exponents (0'1' 0 °0'2n) and 

(1. 14) 

Note that in the sum (1. 13) we have purposely excluded 
constant terms by requiring 10' I> O. We do this to 
eliminate a possible nuisance later on and because we 
are not interested in transformations which simply 
translate the origin in phase space. 

More specifically, our purpose is to study the rela­
tion between transformations of the .form (1. 13) and Lie 
series. Lie series and Lie transformations will be 
defined in the next section. There we will also see that 
under certain conditions the transformation (1. 13) can 
be written as a product of Lie transformations. In Sec. 
3 we will apply our results to several symplectic maps 
studied previously by other authors. Section 4 is de­
voted to the development and application of various Lie 
algebraic tools including the Campbell-Baker­
Hausdorff formula. In Sec. 5 we apply the Campbell­
Baker-Hausdorff formula to produce invariant functions 
for the map (1.13). An invariant function is a functionf 
with the property f(Z) =f(z). The existence and form of 
an invariant function enables one to study the effect of 
applying the map (1. 13) many times in succession. We 
will learn that the determination of invariant functions 
is closely related to the determination of integrals of 
motion in Hamiltonian mechanics. In particular, invari­
ant functions tell us a great deal about the underlying 
map just as integrals of motion characterize trajec­
tories in mechanics. Our results are summarized in a 
final section. 
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2. LIE SERIES AND TRANSFORMATIONS 

For the remainder of this paper we adopt the nota­
tional convention that lower case letters f, g, etc., de­
note functions and capital letters F, G, etc., denote 
operators. 

Letf be a specified function on phase space, and let 
e be any function. We associate withf the linear differ­
ential operator F by the rule 

Fe = [j, e]. (2.1) 

For example, iff=zt, then F=a/azn+1• We shall call 
F the Lie operator associated with f. 

In general, Lie operators do not commute. Let F 
and G be the Lie operators associated with the functions 
f and g. We will denote their commutator by {F, G}, 

{F, G}=FG - GF. (2.2) 

Suppose h is the function defined by 

h=[j,g]. 

We find, using the Jacobi relation (1. 2), 

{F, G}e = [j, [g, e]] - [g, [f, e]] 

= [[j,g],e]=He, 

(2.3) 

(2.4) 

where H is the Lie operator associated with h. Since e 
is any arbitrary function we may rewrite (2.4) as 

H={F, G}. (2.5) 

Comparing (2.5) and (2.3), we see that Lie operators 
form a Lie algebra under commutation which is homo­
morphic to the Poisson bracket Lie algebra of the under­
lying functions. 14 In particular, we are guaranteed that 
the commutator of two Lie operators is again a Lie 
operator. This fact will be important in Secs. 4 and 5. 

We next consider infinite operator power series, 
called Lie series, of the form bil anFn with the conven­
tion F O =1. Of particular interest is the exponential 
series exp(F) defined as expected by 

~ 

exp(F) =6- Fn/n!. 
o 

(2.6) 

We shall call exp(F) the Lie transformation associated 
withf and generated by F. 

Lie transformations have two remarkable properties: 
Suppose d and e are any two functions. Then we find lO 

exp(F) (de) = (exp(F) d) (exp(F) e) (2.7) 

and 

exp(F) [d, e] = [exp(F) d, exp(F) e]. (2.8) 

These results follow from the properties of the exponen­
tial series and the relations 

F(de) = (Fd) e + d(Fe), 

F[d, e] = [Fd, e] + [d, Fe]. 

(2.9) 

(2.10) 

That is, F is a derivation with respect to both ordinary 
and Poisson bracket multiplication. 15 

We are ready to explore the relation between symplec­
tic maps and Lie transformations. The first result is 
immediate: 

A.J. Dragt and J.M. Finn 2216 



Theorem 1: If exp(F) is the Lie transformation as­
sociated with the analytic functionf, then the infinite 
series given by 

ZI = exp(F) Zi (2.11) 

is, providing it converges, an analytic symplectic map. 

Proof: We simply use (2.8) and (2.6) to find 

[Zi> Zj] = [exp(F) Zi, exp(F)zj] 

(2.12) 

The converse result is somewhat more difficult to 
s tate and to prove. We shall firs t state the result, and 
then work up to its proof in stages. 

Theorem 2: Suppose one is given an analytic symplec­
tic map in the form (1. 13). Let M(O) denote the matrix 
defined by (1.11) with all Zi =0. Assume that M(O) is 
joined to the identity matrix by a continuous one param­
eter subgroup of symplectic matrices. Or equivalently, 
assume that M(O) can be written in the form 

M(O) = exp(JS), (2.13) 

where 5 is a symmetric matrix. Then there exist homo­
geneous polynomials gz, g3, etc., of degree 2, 3, etc., 
and associated operators Gz, G3, etc., such that the 
map (1. 13) can be written in the infinite product form 

Zi = [exp(Gz) exp(G3) 0' 0 ] Zi' (2.14) 

The proof of this result is most easily accomplished 
by a series of lemmas. 

Lemma 1: A set of 2n functions fl •• 'fzn satisfying 

[Zi>fj] = [Zj,!i] (2.15) 

exists if and only if there is a function g such that 

fi = [g, ZI] = Gz i • (2.16) 

Proof: First suppose that eachfl is given by (2.16). 
Then we quickly verify (2.15): We find 

[zhfj] - [Zj,fi] = [Zj, [g, Zj]] - [Zj, [g, Zi]J 

=- [g, [Zj,Zj]J=- [g,Jjj]=O. 

Now suppose (2.15) is true. We introduce auxiliary 
variables z* by the rule 

(2.17) 

Because JJ = I, we can immediately write the inverse 
relation 

(2.18) 

Letf be any function, We find 

[Zi,f]=?2 (~;;) Jjk(a~) 
- 6 J (}f) -6 (jL)( azk

) - (~) 
- k Ik \az

k 
- k Ciz

k 
Cizt - Cizt 

(2.19) 

Because of this relation, the hypothesis (2.15) implies 

~ - .2t.L 
Cizt - Cizj 
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which means that L i fi dzt is an exact differential. 
Therefore the function g given by the path integral 

(2.20) 

is well defined, and satisfies [g, Zi] = - (Cig/Cizj) =fl' 
Using (2.17) we obtain the explicit formula 

(2.21) 

Lemma 2: Let gs be a homogeneous polynomial of 
degree s. That is, we have 

gs(z) = 6 b(a) ZO (2.22) 
lol:s 

for some set of coefficients. Also, let Ps denote the set 
of all homogeneous polynomials of degree s. Then, 
since the Poisson bracket operation involves multipli­
cation and two differentiations, we have for any two 
homogeneous polynomials gr' gs the relation 

[g"gs]E: Pr+s_z, (2.23) 

Lemma 3: A necessary and sufficient condition for a 
symplectic matrix N to lie on a continuous one param­
eter symplectic subgroup joined to the identity is that 
there exist a symmetric matrix 5 such that 

N=exp(JS). (2.24) 

Proof: Suppose N is a matrix of the form (2.24). 
Then we find by direct computation that N is symplectic, 

NJN = exp(JS) J exp(JSr = exp(JS) J exp(SJ) 

= exp(JS) J exp(- SJ) J-1J = exp(JS) exp(- JS) J = J. 

(2.25) 

A similar result holds for the matrix N(T) defined by 

N(T) = exp(TJS) (2.26) 

where T is a parameter. It follows that N lies on a con­
tinuous one parameter subgroup joined to the identity. 
Now assume the converse, namely that N does lie on a 
one parameter subgroup. Without loss of generality we 
assume that the group is parameterized in such a way 
that 

N(T1 + T2 ) =N(T1)N(T2 ), 

N(O) =1, 

N(l) =N. 

(2. 27a) 

(2. 27b) 

(2. 27c) 

Now differentiate (2. 27a) with respect to T1 and then set 
Tl = 0 and T2 = T to obtain the result 

N'(T) =N'(O)N(T). (2.28a) 

This equation with the initial condition (2. 27b) has the 
unique solution 

N(T) = exp[ TN'(O)]. (2. 28b) 

Let us write N'(O) = JS where 5 is an undetermined 
matrix. Next suppose T is small. Then 

N(T) = exp(TJS) ~I + TJS. (2. 29a) 

Enforcing the symplectic condition (1. 12) gives 

(1+ TJS)J(1+ TSJ) ~J. (2. 29b) 

Consequently, equating powers of T, we have 
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JSJ + i§J =0. (2. 29c) 

Finally, use of (1. 8) implies the expected conclusion 

(2.30) 

Now set T= 1. The result is a matrix written in the 
form (2.24). 

Cautionary remarl?: Not every symplectic matrix can 
be written in the form (2.24). A counter example in the 
2 x 2 case is the matrix given by 

N = ( -0
1 = ~ ) . (2. 31) 

Lemma 4: Suppose that M(O) is joined to the identity 
by a continuous one parameter subgroup. Then there 
exists a second degree homogeneous polynomial g2 such 
that 

(expG2) Zi =6 :VliJ(O) Zj' 
j 

(2.32) 

Proof: According to Lemma 3 we may write M(O) in 
the form 

M(O) = exp(JS). (2.33) 

We define g2 by the expression 

g2 = - t 6 Sik ZiZk, (2.34) 
i. k 

and find 

G2z i = [g2' Zi] =~ (JS)ijZj' (2.35) 
J 

The desired result (2.32) follows immediately by 
exponentiation. 

Lemma 5: Let r(> 1) denote a "remainder" series 
consisting of terms higher than first degree. Then, 
under the conditions of Theorem 2, 

exp(- G2) Zi = Zi + r(> 1). (2.36) 

Proof: From (1. 13) we have 

exp(- G2) Zi = 6 aj (a) exp(- G2) za + r(> 1). 
10 1=1 

(2.37) 

Since the first term on the right is of first order, we 
can also equivalently write 

exp(- G2) Zi =6 Alij(O) exp(- G2) Zj + r(> 1), 
j 

but from (2.32) we conclude 

exp(- G2 )Zj=6 (Arl)jkZk' 
k 

Combining (2.38) and (2.39) completes the proof. 

(2.38) 

(2.39) 

Lemma 6: There exist polynomials g3, g4, etc., such 
that when exp(- G3), exp(- &4), etc., are consecutively 
applied to (2.36), the order of the remainder term can 
be made arbitrarily large. 

Proof: We shall find g3' The higher order g's are 
found in the same fashion. Let us decompose the re­
mainder term r(> 1) in (2.36) into a second degree 
term fi (2;z) plus a higher order remainder r(> 2), 

(2.40) 
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Now form the Poisson bracket of (2.40) with the analo­
gous expression having the index set equal to j. Using 
(1. 10), (2.8), and (2.23) we find 

Jij = [Zi +fi(2) + r(> 2), Zj + f j (2) + r(> 2)], 

or 

J ij = J ij + [zi,fj(2)] + [ti (2), Zj] + r(> 1). 

Equating like powers of z, we get 

[Zi' f j (2)] + Lri(2), zJ] = O. 

(2.41) 

(2.42) 

It follows from Lemma 1 that there is a function g3 
such that 

(2.43) 

In fact, g3 can be found explicitly from (2.21), and is 
clearly homogeneous of degree 3. Using (2.43), we 
rewrite (2.40) as 

(2.44) 

Finally, we apply exp(- G3) to both sides of (2.44). The 
result is 

exp(- G3) exp(- G2 ) Zi = Zi + r(> 2). (2.45) 

We have all the necessary machinery to complete the 
proof of Theorem 2. Comparing (2.36) and (2.45), we 
find that we have been able to raise the order of the 
remainder term by 1. As stated in the last lemma, it 
is easy to see that the process can be repeated at will. 
That is, there exist further homogeneous polynomials 
g4, /{s,'" ,/{s such that 

exp(- Gs ) • o. exp(- G3) exp(- (;2) Zi =Zi + r(> s - 1) 

(2.46) 

for any value of s. Inverting the left-hand side of (2.46), 
we obtain the result 

Zi = exp(G2) • 0 0 exp(Cs ) Zi + r(> s - 1). (2.47) 

Now let s - 00. Then, if the remainder tends to zero, 
we obtain the advertised result (2.14). Otherwise the 
result is true only formally. In the latter case the in­
finite product is also divergent. 

We close this section with the remark that it is often 
more convenient to have a product representation, 
usually with different G's, in the opposite order, 

Zi = exp(C:l' '0 exp(Cf) exp(C2) Zi + r(> s - 1). (2.48) 

We will show in Sec. 4 that this is always possible pro­
viding (2.47) holds, and vice versa. 

3. EXAMPLES 

In this section we will apply the results of Sec. 2 to 
some maps studied previously in the literature by other 
authors. 

The first examples are Cremona maps. They are 
symplectic maps for which the power series (1. 13) 
terminates. 16 The simplest nontrivial Cremona map 
terminates at the second power. In the easiest case of 
two dimensions, where symplectic maps are merely 
area preserving maps, a suitable linear transformation 
brings the quadratic Cremona map into the forml7 
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(3.1) 

if the matrix M(O) for the original map has the real 
distinct positive eigenvalues X and X -t. (Note that for a 
symplectic matrix M, one always has detM =: 1, and 
hence the eigenvalues must be reciprocals in the 2 x 2 
case.) If the eigenvalues are exp(± ia), i. e., if they 
lie on the unit circle, then the quadratic Cremona map 
can be brought to the formt7 - 19 

ZI = zl cosa + z2 sina + z~ cosa, 

Z2 = - zl sina + Z2 cosa - z~ sina. 
(3.2) 

There are also other possibilities for the eigenvalues of 
M(O) which are of less interest. 

Let us apply our formalism. In the case (3. 1) we 
have 

M(O) = (~ l~J =: exp eOf _ l~gX) . (3.3) 

Therefore, using (2.33) and (2.34) we find 

g2 = - (logX) z1Z2' (3.4) 

Correspondingly, we have for G2 the expression 

G2 = (logX) (ZI a~1 - z2 a!2) . (3.5) 

Next we compute the li(2;z) following (2.40). We find 

exp(- G2) ZI = exp(- G2) {X[ZI + (ZI - Z2)2]) 

=Xexp(- G2)ZI +X[exp(- G2)Zt - exp(- G2)Z2]2 

=zl +X[X-tZt - XZ2F. 

Thus, we get for It(2;z) the expression 

It (2 ;z) = X -lzi - 2X ZtZ2 + X 3z~. 

Similarly, we find for 12(2;z) the result 

(2(2;z) =X-3 zi - 2X-1 z1Z2+ Xz~. 

(3.6) 

(3.7) 

(3.8) 

We are ready to apply (2.21) to find g3' The line 
integral is most easily evaluated along the path zi = TZ i 
with the parameter T ranging from zero to one. If the 
Ii are homogeneous polynomials, the integral can be 
evaluated immediately in the general case to give 

(3.9) 

In particular, for g3 we find the result 

g3(Z) = (X-1 zl - Xz2)3/3. (3.10) 

It follows that 

G3 = (X-
1
z1 - XZ2)2 (X-1 a!2 + X a!l) . (3.11) 

We must now continue on to compute the higher order 
remainder terms following (2,45). The calculation is 
simplified by the observation that 

G~Zi = 0 

and hence 

exp(- G3) zl = zl - X(X -1 ZI - XZ2f, 

exp(- (,.3)Z2 =Z2 - X-l(X-l z1 _ XZ2)2. 
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(3.12) 

(3. 13a) 

(3. 13b) 

Also, we have 

G3(X -IZ1 - XZ2)2 = 0 (3.14) 

and hence 

exp(- G3)(X-lz1 - Xz2)2 = (X-1z1 - XZ2)2. (3,15) 

We are ready. We find, using (3.6), (3.13), and (3.15) 
the result 

exp(- G3) exp(- G2) zl = exp(- G3)[ZI + X(X-1z1 - Xz2f] =zl' 

(3.16) 

That is, the remainder term vanishes! The same is 
true for Z2' Thus in this case, the higher order Lie 
operators G4, G5, etc., are all zero. We conclude that 
for the two-dimensional quadratic Cremona map in the 
case (3.1) we have 

exp(- G3) exp(- G2) Zi =zi, 

and hence 

(3.17) 

(3.18) 

The calculation in the case (3.2) can also be carried 
out with equal ease. The result is 

g2(Z) = - (a/2)(zi + z~), (3.19) 

G2 = - a (ZI _0_ - z2 ~) , 
aZ2 aZI 

(3.20) 

g3(Z) = - (zl sina + Z2 cosa)3/3, (3.21) 

G3 = - (ZI sina + z2 cosa)2 (sina il - cosO' ~) 
ilz2 (lzl • 

The higher order Lie operators again vanish, and 
Eq. (3.18) is exact. 

(3.22) 

Another symplectic map which has received consid­
erable study is the ninth order Cremona map in two 
dimensions given implicitly by the relations20,21 

ZI=ZI+ aZ2- azL Z2=Z2- azl+ azl 
and explicitly by 

ZI =zl +az2 - az?, 

Z2 = Z2 - a(zl + aZ2 - az~) + a(zl + aZ2 - az~)3. 

(3.23) 

(3.24) 

Here a is a parameter. Due to algebraic complications, 
we have not attempted to express this map in the form 
(2.14) although we have verified that M(O) does lie on a 
continuous one parameter subgroup connected to the 
identity providing a is small enough. This task seems 
better suited to digital computers programmed to per­
form algebraic operations. However, we have dis­
covered that the map can be written in the form 

with 

12 = - (a/2) zL f4 = (a/4) z~, 

g2 = - (a/2) zi, g4 = (a/4) z~. 

(3.25) 

(3.26) 

We will see in the next section that, should it be desira­
ble, there are standard Lie algebraic manipulations 
which can be used to bring (3.25) into the form (2.14). 
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As mentioned by Moser, 22 two-dimensional Cremona 
mappings can be expressed as repeated products of lin­
ear transformations and shear mappings of the form 

(3.27) 

The shear mapping (3.27) can be expressed as a Lie 
series exp(F), where F is the Lie operator associated 
with the functionf given by 

/(ZI, Z2) == - F2 h(z') dz'. (3.28) 

Also, linear maps connected to the identity can be ex­
pressed as Lie transformations as seen earlier. It fol­
lows that quite generally Cremona maps can be ex­
pressed as products of Lie series. This factorization 
may be distinct from that of (2.14) since the functions 
given by (3.28) need not be homogeneous polynomials. 

In addition, some area preserving maps which are 
more general than Cremona maps can be factored in a 
similar way. For example, the mapping T given by23 

(3.29) 

can be expressed as a product of two shear mappings. 
We have 

T==/U, (3.30) 

where f<. and 5 denote the mappings 

(3.31) 

(3.32) 

The mapping T therefore has the representation 

2i == exp(F) exp(G) Zi, (3.33) 

where F and e are the Lie operators corresponding to 
the functionsf and g given by 

(ZI' Z2) == E cosz1, g(zl, Z2) == - zV2. (3.34) 

Similar results hold for the mapping 

(3. 35) 

studied by Froeschle. 18 It can be written in the product 
form Sf< provided the roles of zl and Z2 are 
interchanged. 

Finally, we close this section with a brief study of 
the four-dimensional map given by24 

21 == zl + al sin(zl + Z3) + b sin(zl + Z2 + 23 + Z4), 

22 = Z2 + a2 sin(z2 + 24) + b sin(21 + Z2 + 23 + 24), 

23=ZI +23, 

24=22 +24· 

(3.36) 

A routine calculation shows that M(z) given by (1. 11) 
is indeed a symplectic matrix so that (3.36) is a 
symplectic map. In particular, M(O) is given by the 
matrix 
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b 

(1 + a2 + b) 

o 
1 

(al + b) 

b 

1 

o 
(3.37) 

We next inquire whether M(O) lies on a continuous one 
parameter subgroup connected to the identity. We have 
not been able to treat the general case. However, we 
have been able to verify this condition if ai' a2, and b 
are sufficiently small. Details are given in Appendix A. 
Therefore Theorem 2 applies, and with sufficient effort 
the polynomials g2, g3, etc., can be computed. 

4. LIE ALGEBRAIC TOOLS 

The content of Theorem 2 is that under rather gen­
eral conditions a symplectic map can be written as a 
product of Lie transformations. Earlier, from Eqs. 
(2.2)-(2.5), we found that the Lie operators which 
generate Lie transformations also form a Lie algebra 
under commutation. The purpose of this section is to 
review some Lie algebraic tools which will enable us 
to manipulate the various Lie operators appearing in 
products of Lie transformations. 

We begin by introducing yet another Lie algebra, the 
adioint Lie algebra. 14 Let F be a given Lie operator 
and E an arbitrary Lie operator. We associate with F 
an operator i (which acts on Lie operators) by the rule 

iE={F,E}. (4.1) 

Here, as before, {, } denotes commutation. Next, let 
F and G be any two Lie operators. We define a Lie 
operator H by the rule 

Then we find 

{i, C} E = (iC - ei) E 

= {F, {G, E}}- {G, {F, En 

= {{F, G}, E} =HE. 

Here we have used the Jacobi identity 

{E, {F, en + {F, {e, En + {e, {E, F}} = 0 

(4.2) 

(4.3) 

(4.4) 

which always holds for commutators. Since E is arbi­
trary, we may rewrite (4.3) as 

(4.5) 

Comparison of (4.5) and (4.2) shows that the adjoint 
Lie algebra is homomorphic to the parent Lie algebra 
of Lie operators. 

Our discussion should have a familiar ring. It paral­
lels, in fact, the discussion surrounding Eqs. (2.1)­
(2.5). Reviewing these equations, we see that the com­
mutator Lie algebra of Lie operators is actually the 
adjoint Lie algebra of the underlying Poisson bracket 
Lie algebra. And, consequently, the "adjoint" we have 
been discussing is really the "adjoint-adjoint" of the 
basic Poisson bracket Lie algebra. 
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We now have the necessary notation to state the 
simplest theorem about the rearrangement of Lie 
transfor mations, 

Theorem 3: Let A and B be Lie operators. Then 

[exp(A)] B[exp(- A)] = (expA) B (4.6) 

and 

exp(A) exp(B) exp(-A) = exp[(expA) B]. (4.7) 

Proof: Let T be a parameter, and define C(T) by the 
equation 

C(T) = [exp(T A)] B[exp(- TA)]. 

Then we have the relation 

C(O) = B. 

Further, we find by differentiation 

dC ~ 
- =AC-CA=AC. 
dT 

(4.8) 

(4.9) 

(4.10) 

The solution to this differential equation with the bound­
ary condition (4.9) is 

C(T) = exp(TA) B. (4.11) 

Now set T=1 to obtain (4.6). We next observe that for 
any two operators Band C we have 

A(BC) ={A, BC}={A, B}C +B{A, C}= (AB)C + BAC. 

(4.12) 

It follows that A acts as a derivation on products, and in 
analogy to (2.7) and (2.9) we obtain 

(expA)(BC) = «expA) B)«expA) C). (4.13) 

This result is consistent with (4.6) and the observation 
that 

[exp(A)](BC)[exp(- A)] 

= [exp(A)] B[exp(- A)][exp(A)] C[exp(- A)]. (4.14) 

We conclude that 

[exp(A)] Bn[exp(- A)] = [(expA) B] n (4.15) 

for any power n. The desired result (4.7) now follows 
directly term by term. 

As an application of Theorem 3, let us consider the 
product exp(G2) exp(G3) which occurs in Eq. (3.18). We 
have 

exp(G2) exp(G3) = exp(G2) exp(G3 ) exp(- G2) exp(G2) 

= exp[(expG2) G3 ] exp(G2)· 

Let us define G~ by the expression 

G~ = (expG2) G3• 

(4.16) 

(4.17) 

Is there a polynomial g3 which has G3 as its associated 
Lie operator? We know there must be from the re­
marks following Eq. (2.5). Using the homomorphisms 
between the Lie algebras involved, we obtain 

(4.18) 

Consequently, for the first example of Sec. 3 we cal­
culate that 
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g5 = (Zl - zz)3/3 

and hence 

G5 = (zl - Z2)2 (0:2 + 0:1) • 

We have shown that 

exp(G2) exp(Gs) = exp(G3) exp(G2) 

with G3 given by (4.20). 

(4.19) 

(4.20) 

(4.21) 

We are now ready to move on to a far deeper result 
generally known as the Campbell-Baker-Hausdorff 
(CBH) formula. In its usual mathematical setting it pro­
vides the connecting link between Lie algebras and Lie 
groups. 14 We will use it to reexpress the product of two 
Lie transformations as a single Lie transformation, or 
more generally as a method of combining exponents. 

Theorem 4: Let A and B be any two operators, and 
let a and {3 be parameters. Then we can formally write 

exp(aA) exp({3B) = exp(C) (4.22) 

with 

C = aA + {3B + (0' {3/2){4, B} + (az{3/12) {A, {A, BH 

+ (a{32/12) {B, {B ,A}} + .... 

(4.23) 

The series for C mayor may not converge depending 
on the properties of aA and {3B. The really remarkable 
fact is that the right-hand side of (4.23) involves only 
Lie products. Thus, all we need to evaluate (4.23) is a 
knowledge of the Lie algebra generated by A and B, and 
we are guaranteed that C is contained in this Lie alge­
bra. The general form of all the coefficients in the 
series is not known. 25 However, the series can be 
formally summed to all orders in a and the first few 
orders in {3. Through first order in f3 we have 

A proof of these results and an expression for the 
quadratic term in {3 are given in Appendix B. 

(4.24) 

As a simple example of the use of the CBH formula, 
we will derive (2.48) starting from (2. 47L A more 
complicated example of its use will be given in the next 
section. Beginning with (2.47), we write 

exp(G2)'" exp(Gs ) = exp(Gz) ••• exp(G.) exp(- Gz) exp(Gz) 

= exp(G3) ... exp(G~) exp(Gz), 

(4.25) 

where 

G~ = exp(Gz) Gr. (4.26) 

Note that as in our earlier example, G; will be the Lie 
operator associated with the function g; given by 

(4.27) 

and that the degree of ~ is as indicated because of 
(2.23). Next we repeatedly use the CBH formula (4.23) 
to combine the various operators G~ to obtain an ex­
pression of the form 

exp(Gs) ... exp(G~) = exp(Hs + ... + Hs + •.. ). (4.28) 
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Observe that because of (2.23), only a finite number of 
terms in the series (4.23) are required in the calcula­
tion of each Hr. Again using the CBH formula, we 
may write 

exp(H3 + ' .. ) = exp(H3 + .•. ) exp(- H 3) exp(H3) 

= exp(H'; + ..• ) exp(H3). (4.29) 

This process can be repeated again and again to get 

exp(H3 + ... ) = exp(H:.j + ... ) exp(H~) •• ' exp(H3). 

(4.30) 

Combining (4.25), (4.28), and (4.29), we find 

exp(Gz)··· exp(G) Zj 

= exp(H~) ••• exp(H3) exp(G2) Zi + r(> S - 1). (4.31) 

Consequently, an expression of the form (2.47) implies 
an expression of the form (2.48). The converse can be 
proven analogously. 

5. CONSTRUCTION OF INVARIANT FUNCTIONS 

In the study of a symplectic transformation T arising 
from either a Poincare surface of section or from 
following the field lines in a toroidal plasma device, 
one is interested in studying the result of applying the 
map many times in succession. That is, we are inter­
ested in studying T"z for large n. This study is simpli­
fied if one can construct invariant functions f with the 
property 

fez) =f(z), (5.1) 

where 

z=Tz. (5.2) 

For if such functions can be found, one knows that the 
points generated by T"z, for various n must all lie on 
a surface of constantf. The more invariant functions 
one can find, the more one can say about the map and 
its powers. The situation is quite analogous to the role 
played by integrals of motion for Hamiltonian systems 
or magnetic surfaces in a toroidal plasma. We will see 
shortly that the analogy is more than coincidental. 

The problem of constructing invariant functions in 
the case of symplectic transformations in two variables 
was first considered in detail by Birkhoff. 26 We shall 
begin this section by proving some simple lemmas 
which will enable us to restate his result in our lan­
guage. We will then show how the same results can be 
obtainedfor any number of variables from the CBH 
formula. 

Lemma 7: Consider a one parameter family of 
symplectic maps. That is, we write 

Zi (s) = gj (z, s) (5.3) 

with the understanding that the new variables z(s) are 
symplectically related to the original variables z for 
every value of the parameter s. Then there exists a 
function h, which we shall call the generating function, 
such that 

aZi (s) I [(-) -] -a- = hz, s , Zi • 
S ~ 

(5.4) 
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Proof: Since the functions gj are viewed as given, we 
have by direct calculation 

OZj(s) _ agi(z, s) 
as - os (5.5) 

Next invert the transformation (5.3) to solve for the z's 
in terms of Z's, and substitute this result into the right­
hand side of (5.5) to obtain expressions of the form 

aZj(s) -f (- ) as - jZ,s. 

From Taylor's theorem we have 

Zj(s +~) =Zj(s) + Efi(Z, s) + O(E2). 

(5.6) 

(5.7) 

Take the POisson bracket of (5.7) with the analogous 
expression having the index set equal to j. The result 
is 

[Zi(S + E), Z/S + E)] = [Zi(S), Z,(s)] + d[Zj (s), fj(z, S)] 

+[ri(Z,S),z,(S)]}+O(E). (5.8) 

Using the first part of (1. 10) and equating powers of E, 

we find 

(5.9) 

Here we have written the subscript z to emphasize that 
the Poisson bracket is taken with respect to the varia­
bles z. However, as is well known, the Poisson bracket 
can also be taken with respect to the variables Z. For 
let u and v be any two functions. Then by the chain rule 
and (1. 12) we have 

[u(z), v(z)]~=.0 (aOU
) J jj (aav) 

i, Zi Zi 

Thus we may also write (5.9) in the form 

[Zi' fj(z, s));. + [Zj' fi(z, s)h = D. 

(5. 10) 

(5,11) 

The existence of the advertised generating function 
h(z, s) now follows from Lemma 1. 

Lemma 8: Suppose the one parameter family in 
Lemma 7 is also a one parameter group. Without loss 
of generality, we may assume that the parameteriza­
tion is selected in such a way that it satisfies 

(5.12) 

and is additive, 

Zi(S! + S2) =gi(Z(Sj), S2)' (5.13) 

Then the generating function h is independent of s. 

Proof: Partially differentiate (5.13) with respect to 
S2 and then set S2 equal to zero. The result is a relation 
of the form (5.6) with 

(5.14) 
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Note, however, that in this casefl is independent of s. 
It follows from the remainder of Lemma 7 that the 
generating function h is independent of s. 

Lemma 9: If the generating function is independent 
of s, the differential equation 

OZj(s) _ [h(-) -] as - Z, Zj (5.15) 

with the initial condition (5.12) has the unique solution 

ZI(S) = exp(sH)zj. (5.16) 

We note that apart from a sign, (5.15) is analogous to 
Hamilton's equations of motion (10 3). 

Proof: Evidently (5.12) is satisfied. Now differentiate 
(5.16) with respect to s to get 

°o~ = exp(sH)Hz j = exp(sH)[h(z), ZI] 

= [exp(sH) h(z), exp(sH) Zi]. (5.17) 

Here we have used (2.8). Also, from (2.9) and (5.16) 
it follows that 

exp(sH) ZU = z(s)u. (5.18) 

Consequently, since polynomials are dense in the set 
of functions, we must have 

exp(sH) u(z) = u(Z) (5.19) 

for any function u. Employing (5.16) and (5.19) in 
(5.17), we see that the differential equation (5.15) is 
satisfied. 

Lemma 10: The function h(z) is an invariant function 
for the transformation (5.16). 

Proof: By (5.19) we have 

h(Z) = exp(sH) h(z) = h(z) + s[h, h] + ... = h(z), (5.20) 

since all the Poisson brackets are zero. 

We are now ready to appreciate the result of Birkhoff, 
which we summarize in the next theorem. 

Theorem 5: Denote by Zi (k) the result of applying the 
transformation (1. 13) k times in succession. We also 
adopt the convention (5.12). Evidently zj(k) has an 
expansion similar to (1.13). We write 

(5.21) 

with the explicit recognition that the coefficients aj will 
depend on k. Then, in the case of two variables and 
provided the eigenvalues of 211(0) satisfy certain condi­
tions, the dependence of the coefficients aj on k can be 
extended from integer values to all real values by 
analytic interpolation in such a way that the series 
(5.21) "behaves" as a one parameter group, as in 
Lemma 8, with k playing the role of a continuous 
parameter. We use the word "behaves" advisedly, be­
cause the series may not be convergent for nonintegral 
k even though a; (k, a) is well defined. That is, the group 
property may hold only as a formal relation between 
power series. 

The direct verification of Birkhoff's theorem is beyond 
the purpose of this paper. However, we pOint out that 
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his theorem, with the aid of Lemmas 9 and 10, produces 
a formal power series for an invariant function h. If the 
series is convergent, it yields a true invariant function; 
otherwise the result is a series which formally satis­
fies (5.20) term by term. 

We will now show that the same results can be de­
rived almost immediately for the case of any number 
of variables with the aid of the CBH formula. We as­
sume the conditions of Theorem 3 are satisfied, and 
begin by repeatedly applying the CBH formula to the 
terms exp(G3) exp(G4) exp(G5) ••• appearing in (2.14). In 
view of (2.23), we can combine the exponents into one 
grand exponent to find 

exp(G3) exp(G4) ... = exp(G~ + G,f + •.• ), (5.22) 

and each term G~ can be written as a sum of a finite 
number of commutators. Next we try to combine the re­
sult (5.22) with exp(Gz) to find 

exp(Gz) exp(G3) exp(G4) ••• = exp(Gz) exp(G3 + G,f + ... ) 

= exp(H2 + H3 + H4 + ..• ). 

(5.23) 

This last step is somewhat more problematical since, 
because of (2.23), we must now sum infinite series in­
yolving arbitrarily many commutators of Gz to find 
each of the terms H 3, H4 , •••• We will study this matter 
somewhat further in a moment. Assuming that the 
various series converge, we can formally write 

Zi = exp(H) Zi 

with 

(5.24) 

(5.25) 

Furthermore, because of the relations (2.3) and (2.5), 
we know that there must be functions hz, h3' "0 corre­
sponding to the operators Hz, H 3, etc. Thus, H is a 
Lie operator corresponding to h given by 

(5.26) 

Finally, from Lemma 10 (with s = 1) we conclude that 
the function h(z) constructed in this manner will be an 
invariant function of the transformation (2.14). 

It is easy to verify that the invariant function h we 
have obtained from the CBH formula is the same as 
would be found by Birkhoff's method. Let us apply the 
transformation (5.24) twice in succession. We write 

Zi = exp(H~) Zi' 

~I = exp(H i) Zj, 

(5. 27a) 

(5. 27b) 

and use subscripts to indicate exactly which variables 
occur in the various Poisson brackets. Expanding 
(5. 27b) we can write 

Zj = exp(Hi)z; =Zi + [h (z) , z;h+··· 
=Zj + [h(Z), z;L+ 0 0 ·=Zj + [h(z), ziL+··· 
= exp(H~) Zj . (5.28) 

Here we have used (5.10) and the fact that h is an invari­
ant function. Now substitute (5.28) into (5. 27a) to get 

'i; = exp(H~) exp(H~) Zi = exp(2H~) Zi. (5.29) 
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Employing the notation of Theorem 5, it is clear that 
(5.29) generalizes to 

z;(k) = exp(kH)z;. (5.30) 

Finally, (5.30) can be extended from integer values to 
all real values simply by replacing k with s to give 
(5.16). 

There is an interpretation of the result (5.30) which 
is worth emphasizing: We have already remarked that 
(5,15) is analogous to Hamilton's equations of motion. 
We now see that if Birkhoff's theorem, or equivalently 
the use of the CBH formula, is applicable, then the 
transformation (1. 13) can be viewed as the result of in­
tegrating Hamilton's equations of motion for the time 
independent Hamiltonian (- h) from the initial "time" 
s = 0 to the "time" s = 1. Subsequent iterations of the 
map are obtained by integrating on to successive integer 
values. 

So far, we have not discussed the convergence of the 
various procedures we have employed. This question is 
very difficult, and much remains to be learned. A 
theorem of Moser27 can be used in the simplest case of 
two variables Zt, z2 if M(O) can be brought to the form 
(3.3). In our language, he shows in this case by indirect 
methods that if T is the symplectic transformation in 
question, then there exists another symplectic trans­
formation U of the form 

U = exp(F3) exp(F4) exp(F5)··· 

such that 

U-tTU=exp(~ Q'nG2n) 

with 

(5.31) 

(5.32) 

(5.33) 

Both the infinite product (5.31) and the infinite series 
in (5.32) converge, By undoing the transformation U, 
one finds the desired result 

T =expH 

with 

ro 

H=U'6 cx nG2n U-l. 
1 

(5.34) 

(5.35) 

Thus, there are nontrivial classes of problems for 
which our methods (and also Birkhoff' s) succeed. 

By contrast, a theorem of Moser's on Cremona 
maps22 can be used to infer that the CBH series diverges 
for the example (3.2). The method of proof is again in­
direct. However, direct examination of the CBH series 
shows that it repeatedly contains terms of the form 

(5.36) 

and we will see that these terms can cause problems. 

Rather than examining (5.36), it is convenient to use 
the homomorphism between Lie algebras and their ad­
joints to work instead with the expression 

(5.37) 

We next observe from (2.23) that G2 maps Pn into itself, 
and hence the action of G2 on each Pn can be represented 
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by a matrix. Let Vt be a polynomial of first degree 
which is an eigenvector of G2• We write the eigenvalue 
as (- log A) so that we have 

G2Vt = (- 10gA) Vt 

and 

exp(- G2) Vt = AVt. 

Now suppose In is a polynomial of the form 

In = (Vt)"· 

Then we find 

(5,38) 

(5.39) 

(5.40) 

Here we have used (2,7). In this case we find for (5,37) 
the result 

(5,42) 

Suppose A lies on the unit circle as it does for the 
example (3.2). Then the expression (1- Antt either is 
infinite for some n [if Ci. = i logA is a rational multiple 
of 27T), or becomes arbitrarily large with increasing 
n [if cx is an irrational multiple of 27T). What we are ob­
serving here is a manifestation of the classic problem 
of "small denominators" which has been known to 
celestial mechanicians in connection both with perturba­
tion theory and mapping problems since the time of 
Poincare. 28,29 We see that it may also occur in the Lie 
algebraic approach in such a way as to spoil the con­
vergence of the CBH series, and that this problem can 
potentially occur if any of the eigenvalues of M(O) lie 
on the unit circle. 

There is one last topic we wish to discuss. We have 
used the CBH series to obtain an invariant function h. 
In the case of sympletic transformations in two varia­
bles, a single invariant function suffices to characterize 
the map, and all other invariant functions are Simple 
functions of h. However, in the case of four or more 
variables, e. g., (3.27), there may be additional in­
variant functions beyond h. 

In view of (5.19), I will be an invariant function if it 
satisfies the relation 

Hf= [h,/l = O. (5.43) 

Consequently, the problem of finding further invariant 
functions is equivalent to the classical mechanics prob­
lem of finding integrals of motion for a system having 
(- h) as a Hamiltonian. By analogy to classical mechan­
ics, we expect to be able to find at most 2n - 1 func­
tionally independent invariant functions including h 
itself. 

There is as yet no fully developed algorithm for 
finding integrals of motion for any specified Hamiltonian 
ho However, there is a germ for such an algorithm in 
Birkhoff's procedure of attempting to bring Hamiltonians 
to a normal form. 4,5 In our notation, one attempts in 
this procedure to find polynomials g3, g4, etc., such 
that the Hamiltonian h' given by 

(5.44) 

has a particularly simple form. If the form is simple 
enough, one can read off the integrals of motion direct-
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ly. This method has been applied successfully by 
Gustavson and others5,6 to the case of several variables 
provided h2 has the form 

(5.45) 

with all Ci I > O. The case with some Ci I = 0 can also be 
treated. 17 An analysis which we intend to publish later 
shows that what is essential to this whole procedure is 
a detailed treatment of the range and null spaces of the 
operator H 2• 

Now suppose thatf' is an integral of h', 

(h', f') = o. (5.46) 

We define f by the rule 

f= exp(- G3) exp(- G4 ) •• ·f'· (5.47) 

Then we find 

(h,f) = [exp(- G3) exp(- G4 )" 'h', exp(- G3) exp(- G4)" 'f'] 

= exp(- G3) exp(- G4 ) ... [h' ,t'] = 0, 

(5.48) 
which shows that f is an integral. Usually f' can be 
taken to be a second degree polynomial. However the 
series f given by (5.47) will generally contain an infinite 
number of terms and may not converge. In the latter 
case, (5.43) is only satisfied term by term, andf is 
only a formal series. We expect the case of divergent 
series to be the most common. This is because if the 
series were to converge, it would produce an analytic 
global integral for the Hamiltonian h. However, most 
Hamiltonians do not possess global analytic 
integrals. 7,29 

6. CONCLUDING SUMMARY 

In Sec. 2 it was shown that the Lie transformation 
associated with an analytic function produces an analytic 
symplectic map, and that conversely, under certain 
general conditions, an analytic symplectic map can be 
written as a product of Lie transformations, Section 3 
treated several examples of analytic symplectic maps 
that had been studied previously by other authors, The 
discussion then turned in Sec. 4 to a further develop­
ment of Lie algebraic tools and culminated with the 
Campbell-Baker-Haudsdorff formula. Next, after 
some preliminary background work, it was shown in 
Sec. 5 that the CBH formula can be used to formally 
combine a product of Lie transformations into a single 
Lie transformation, and that in so doing one obtains a 
generalization of Birkhoff's theorem for the construc­
tion of invariant functions. Thus, the existence of in­
variant functions is intimately related to the conver­
gence of the CBH formula, and vice versa, Finally, 
in the case of symplectic maps involving more than two 
variables, the construction of additional invariant func­
tions was shown to be analogous to the construction of 
integrals of motion in Hamiltonian dynamics, 
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APPENDIX A 

The purpose of this appendix is to demonstrate that 
M as given by (3.37) lies on a one parameter subgroup 
connected to the identity. We begin by observing that 
M can be written as a product of two symplectic 
matrices Nand R, 

M=NR, (Al) 

where 

N~( 
1 0 a, +b b) 
0 1 b a2 +b 

0 0 1 0 

0 0 0 1 

(A2) 

(1 
0 0 

o· 1 0 
R= 0 1 

1 0 

(A3) 

Each of these matrices can be written in exponential 
form, and use of Lemma 3 reveals that they lie on one 
parameter symplectic subgroups continuously connected 
to the identity, 

(A4) 

R=exp (~ ~) , (A5) 

H ere each block is a 2 x 2 matrix, and Q denotes the 
matrix 

Q= (~b+b a,:b) (A6) 

The next step is to try to combine the two exponents 
by using the CBH formula. For this purpose we note 
that the two exponents occurring in (A4) and (A5) can be 
written in the respective forms 

logN=Q@(a1 +i( 2)/2 

logR = I @(a1 - ia2)/2. 

(A7) 

(A8) 

Here the symbols ai denote the Pauli matrices,l and 
"@" indicates that we have taken a tensor product. 30 

For example, 

Q@ (a1 +ia2)/2=Q@ (~ ~) = (~ 6) . (A9) 

It is easily verified that the tensor product operation 
obeys the multiplication rules 

and the addition rules 

(A +B)® aj=A@a,+B@ai , 

A @ (aa, + /3ak ) = CiA@ a, + /3A@ ak' 

(AIO) 

(All) 

(Al2) 

Consequently, from the CBH formula we conclude that 
logM must be given by an expression of the form 

(A13) 
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where I, g, and h are power series in the matrix Q. 
This is because I and powers of Q all commute, and the 
Pauli matrices are closed under commutation. Further­
more j, g, and h must be the same series that occur in 
the expression 

exp[a (0'1 + ia2)/2] exp[(G1 - i G2)/2] 

(A14) 

where a is a parameter. 

It remains to be shown that the series I, g, and h 
converge for Q sufficiently small. Or equivalently, we 
must show thatf(a), g(a), and heal are all analytic and 
have nonzero radii of convergence in the complex vari­
able a. A short calculation for the group SL(2, C) gives 
the multiplication rule 

exp(n1 • 0') exp(n.z .0') = exp(n3 • 0'), 

with n3 given by the formulas 

T3 = (Tl + T2 + iTl X T2)/(1 + Tl • Tz), 

T j = nj(tanh ..Jnj· nj / ..Jnl 'n,) 

=n.(1--3
1 n,·n.+···) 1 J 1 • 

For the case in question, Eq. (A14), we have 

nl = a (el + ie2)/2, n.z = (el - iez)/2. 

(A15) 

(A16) 

(A17) 

(A1S) 

Inserting this information into (A16) and (A17) gives 
the result 

T3 = [el (1 + a )/2 + ie2(a - 1)/2 + e3a/2]/[1 + 0'/2]. 

(A19) 

Now we need to solve for n3' Combining (A19) and (A17) 
we find 

T3' T3 = 0'(1 + 0'/4)/(1 + 0'/2)z:= (tanh ..Jn3 • nsJ2 

= n3 • n3 - %(11:1 • n3)Z + •••. 

Consequently, 

(..Jns • n3/tanh v'n3 • n3) = 1 + (0'/3) + .. '. 

Finally, from the relation 

we find 

1(0'):= (1/2) + (50'/12) +"', 

R"(O') = (- i/2) + (7iO'/12) +"', 

h(O') = (0'/2) - (a 2/12) + .... 

(A20) 

(A21) 

(A22) 

(A23) 

It is clear from (A19)-(A22) that the series for I, g, 
and h all have nonzero radii of convergence. 

APPENDIX B 

The purpose of this appendix is to prove Theorem 4. 
Writing (4.22) a bit more explicitly, we have 

exp[C(O', (J)] = exp(aA) exp(f3B). (El) 

The first result we will need is that C obeys the differ­
ential equation 

ac A A 2F =C[l- exp(- C)]-lB. (B2) 

2226 J. Math. Phys., Vol. 17, No. 12, December 1976 

To see how this comes about, let us differentiate both 
sides of (Bl) with respect to (J. The derivative of the 
right-hand side is easily computed, 

a 
a{J exp(O'A) exp(/3B) == exp(aA) exp(j3B) B = exp(C) B.(B3) 

Computation of the derivative of the left-hand side re­
quires more work. We find through first order in 0{J 
that 

exp(C(a, (J + 0{J)] =exp (C(O', (J) + 013 a~ C(O', (3)) 

~ ( a)" =~ (l/nl) C(O',{J)+o{J i'J{3 C(O',{3) , 

(B4) 
Now expand the power series and retain zero and first 

order terms. The result through first order is 

exp[C(a, f3 + 0{J)] 

=exp(C)+0{36 LJ (l/nl)cm - c"-m-l, ~ ~ (ac) 
"=1 m.O a (J 

(B5) 

Here we have paid careful attention to the possibility 
that C and ac/a/3 may not commute. From (B5) we 
conclude 

(a) '" "-1 
a{J exp(C) = E E (B6) 

Next change the order of summation in (B6) to obtain 

(a) ~ ~ (ac) a{3 exp(C)= L! ~ [1/(Z+m+1)I]C m a Q Cl, 
m.O l-O /J (B7) 

It is a remarkable fact that the series (B7) has an inte­
gral representation, 

~o to [l/(l+m+l)l] cm(~~) C
l 

= 11 dyexp[(l-r)C](~~) exp(yC). 
o 

(BS) 

This is easily verified by expanding out the two exponen­
tials and integrating term by term. 

Only a few more steps are required. We write 

[1 dyexp[(l-y)C] (~~) exp(yC) 
o 

= exp(C) j1 dy exp(- yC) (~~.) exp(yC) 
o 

f 1 A (ac) == exp(C) dy exp(- yC) ai3 
o 

= exp(C) {[1- exp(- eWe} (~~). (B9) 

Here we have used (4.6). Also, the last integration over 
y was performed by expanding exp(- yC) in a power 
series, integrating term by term, and then resuming 
the result. We conclude that 

(a~) exp(C)==exp(C){[l-exp(-C)]/C} (~~). (BI0) 

We note for future use that Eqs. (B4)-(BI0) hold quite 
generally, and make no use of any special form C might 
have. 
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The differentiation of both sides has been completed. 
Comparing (B3) and (B10) and cancelling the common 
factor exp(C), we find 

{[1 - exp(- cWC} ~~ = B. (Bll) 

This expression, when solved for ac /a{3, gives the 
advertised result (B2). 

The proof of Eq. (4.22) now follows immediately. 
Make the expansion 

(B12) 

and substitute it into (B2) with the observation that 

C(a, 0) = aC 10 = aA, 

C(O, f3) = {3C o1 ={3B. 

(B13) 

(B14) 

A comparison of coefficients of like powers of Cim{f' 
gives the series (4.23). 

To prove Eq. (4.24) we write a Taylor expansion of 
C with respect to {3, 

C({3) = C(O) + (3C'(O) + ({32/2) C"(O) + •.•. (B15) 

Here we have suppressed the dependence of C on a for 
notational convenience. The quantity C(O) is already 
known from (B13), and C'(O) can be found from (B2') with 
{3 set equal to zero. The result is 

C'(O) = a..4[l - exp(- a A)]-lB. (B16) 

Insertion of (B13) and (B16) into (B15) gives the desired 
result (4.24). 

The computation of successively higher derivatives 
becomes increasingly more complicated. To find C"(O), 
we write equation (Bll) in the form 

P({3) c' ({3) = B, (B17) 

where P({3) denotes the operator 

P({3) == [1- exp(- cWC = 101 dvexp(- vt). (B1B) 

Next we differentiate both sides of (B17) with respect to 
(3 to find 

P'C' + pC" = 0, 

and hence 

C"(O) == - P-l(O) P'(O) C'(O). 

From the integral representation (B1B) we find 

P'({3) == - 101 dvexp(- vC) 101 dyexp(yvC) 

x vC'({3) exp(- yvC). 

(B19) 

(B20) 

(B21) 

Here we have also uspd (B4)-(BB) and part of (B9) to 
differentiate exp(- vC). It follows that 

-P'(O)C'(0)=fo1 101 vdvdyexp(-va...1)exp(yvaA) 

x C'(O) exp(- yv a..4) C'(O). 

We also observe that 
(B22) 

C'(O) exp(- yv a A) C'(O) 

= {C'(O), exp(- yv Ci A) C'(O)} 

= exp(- YVCi.4) {exp(yv a A) C'(O), C'(O)}. (B23) 
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In obtaining the last expression we have used a result 
analogous to (20 B). By combining (B1B), (B20), (B22), 
and (B23) we find the final result 

C"(O)=aA[l-exp(-aA)]-l J/ 101 vdvdyexp(-vaA) 

x {exp(yv a..4) C'(O), C'(O)}o 

(B24) 
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