Progress Report

Matt Gordon September 7, 2018

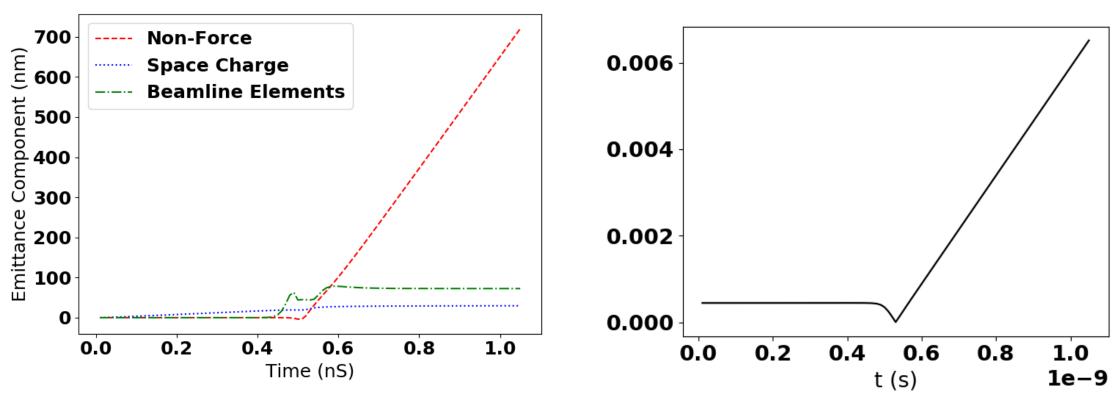
Geometric Aberration + Spacecharge Study

- Simple Test Case: Use emittance component tool to identify geometric aberration emittance growth from a current loop in simulation
- Emittance growth due to spherical aberration agrees within 1%
- Add spacecharge to simulation and see if theoretical emittance growth from geometric aberrations can still be extracted
- To get large charge while keeping energy spread in the beam small enough for GPT3DMesh to function properly, particle energy increased (gamma 1.92 -> 8)

Comparing to Theoretical Geometric Aberration Ellipsoid

• GPT emittance growth (68 nm) theoretical growth (44 nm) Spacecharge (charge: emittance growth) (1pC: 30 nm)

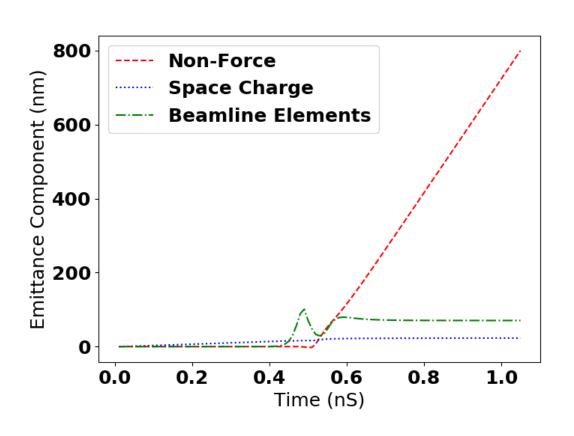
RMS Spot Size in m

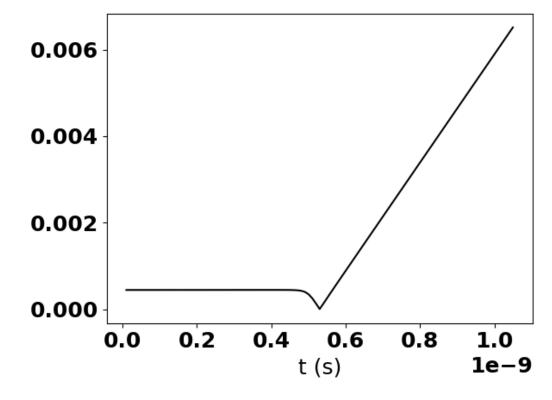


Comparing to Theoretical Geometric Aberration Cylinder

• GPT emittance growth (70 nm) theoretical growth (44 nm) Spacecharge (charge: emittance growth) (1pC: 22 nm)

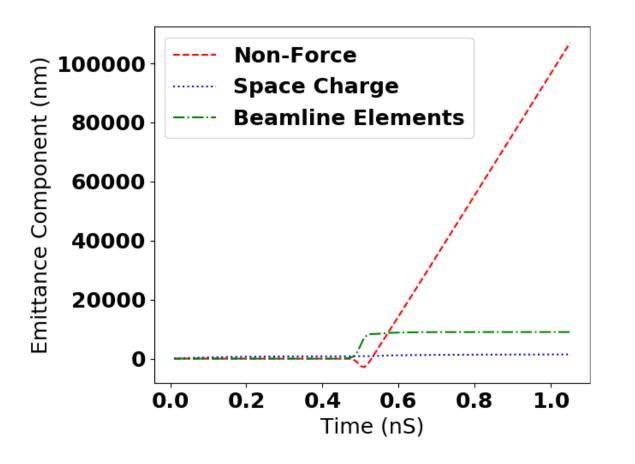
RMS Spot Size in m

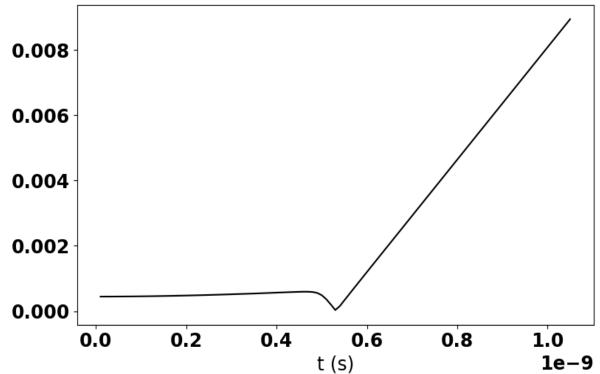




Higher Charge leads to problems

 RMS Spot size increases but not large enough to explain geometric emittance growth 9000 nm





Backup

Spherical Aberration Calculation

 Using simple current loop, calculating emittance growth due to spherical aberration from:

Kumar, Vinit & Phadte, Deepraj & Bhai Patidar, Chirag. (2011). A simple formula for emittance growth due to spherical aberration in a solenoid lens.

• The emittance growth of a azimuthally symmetric beam due to a solenoid in the thin lens approximation is simply related to the geometry of the solenoid and the beam

$$\varepsilon_{x y} = \frac{R^4}{2\sqrt{6} f_0} \sqrt{\frac{C_1^2}{12} + \frac{C_1 C_2}{5} R^2 + \frac{C_2^2}{8} R^4}$$

 Where C1 and C2 are reductions of the focal length due to the 3rd and 5th order spherical aberrations respectively

$$C_{1} = \frac{1}{2} \frac{\int_{-\infty}^{+\infty} \{B'(z)\}^{2} dz}{\int_{-\infty}^{+\infty} B^{2}(z) dz}, \quad C_{2} = \frac{5}{64} \frac{\int_{-\infty}^{+\infty} \{B''(z)\}^{2} dz}{\int_{-\infty}^{+\infty} B^{2}(z) dz}.$$