
	

CBETA FAST SHUTDOWN
SYSTEM

Tommy	Tang,	Rob	Michnoff,	Rob	Hulsart,	Julio	Renta	

	
	 	

APRIL	8,	2020	
BROOKHAVEN	NATIONAL	LABORATORY	

Building	924	

1	
	

System	Description	..	3	

Hardware	System	...	3	

Schematic	...	6	

Function	Diagram	...	9	

FPGA	Firmware	..	10	

Setup	...	10	

Clock	Management	..	10	

I/O	Planning	..	10	

Output	Control	Signals	(or_gate	instance,	see	Figure-7	for	the	schematic)	10	

User	Enable	Control	for	Input	Signals	..	11	

Front	End	Control	Software	Interface	(See	Figure-9	for	the	block	diagram)	11	

Failed	Device	Alert	...	12	

Control	Software	...	13	

Parameters	...	Error!	Bookmark	not	defined.	

Records	...	Error!	Bookmark	not	defined.	

Enable	Records	...	14	

Input	Status	&	Latched	Status	Records	...	14	

Reset	Record	...	14	

Subroutine	Functions	...	15	

CS-Studio	GUI	...	15	

Reset	...	16	

Enable	Switches	..	16	

LED	Lights	..	16	

Raw	Status	..	16	

Latched	Status	..	16	

System	Mode	..	16	

Reference	...	19	

2	
	

MicroZed	Breakout	Carrier	Card	Zynq	System-on-Module	Hardware	User	
Guide:	...	19	

MicroZed	Schematic	Rev	G:	...	19	

Xilinx	7	Series	FPGA	Libraries	Guide	for	Schematic	Designs:	19	

EPICS	Build	Procedure	..	19	

EPICS	Manual	and	References:	..	19	

EPICS	Manual	and	References:	..	19	

EPICS	Manual	and	References:	..	19	

EPICS	Manual	and	References:	..	19	

EPICS	Manual	and	References:	..	19	

MicroZed	Hardware	User	Guide:	...	19	

MicroZed	Quick	Starter	Guide:	..	19	

BDF	files	for	downloading:	...	19	
	 	

3	
	

System Description
The	system	was	designed	to	serve	as	a	complimentary	component	for	fast	beam	loss	monitor.	There	
were	three	identical	fast	shutdown	chassis	in	the	system.	As	shown	in	Figure-1,	the	digital	output	of	two	
chassis	were	connected	to	the	inputs	of	the	third	chassis	while	both	were	connected	to	the	fast	beam	
loss	monitor	through	their	input	connectors.	The	purpose	of	the	system	was	to	combine	sixteen	single-
ended	input	signals	to	inhibit	the	beam	when	one	or	more	input	digital	signals	indicated	a	“Fail”	state.	
The	output	signals	were	expected	to	indicate	a	“Fail”	state	as	soon	as	any	one	of	the	connected	devices	
reached	a	logical	zero.	The	delay	was	expected	to	be	only	the	propagation	delay	from	the	cable	length	
and	the	electronics.	The	digital	output	signal	can	be	used	to	either	connect	to	the	machine	protection	
system	to	inhibit	the	beam	or	to	cascade	to	another	fast	shutdown	system	chassis.	In	the	initial	design	
scope,	the	system	was	a	complimentary	component	of	CBETA	fast	beam	loss	monitor	which	features	a	
Red	Pitaya	system	in	the	architecture.	Later	the	design	scope	was	expanded.	The	new	design	
implementation	created	some	leeway	for	other	MPS	devices	in	the	future	though	necessary	
modifications	might	be	needed	if	connected	MPS	devices	have	different	signal	behaviors.	

	

Figure	–	1		

Hardware System
The	electronics	are	housed	inside	a	customized	chassis.	The	chassis	has	sixteen	BNC	connectors	for	input	
devices,	two	BNC	connectors	for	BPM	signals,	two	BNC	connectors	for	output	signals,	one	ethernet	
connector	and	one	3.3V	power	jack.	The	MicroZed	FPGA	board	is	chosen	as	the	main	FPGA/processor	
for	the	hardware	system.	The	MicroZed	FPGA	used	for	the	system	is	MicroZed	7010	board	(See	Figure-
2).	For	more	details	about	MicroZed	board.	See	Reference[10]	&	Reference[11].		

4	
	

	

Figure-2	

	

Figure-3	

5	
	

	

Figure-4	

	

Figure	-5		

It	is	placed	inside	the	chassis	and	connected	to	MicroZed	Breakout	Board	(Figure-3)	and	PCB	carrier	
board.	See	Figure-4.	The	Breakout	board	provides	a	simple	solution	to	access	I/O	pin	on	the	MicroZed	
board	externally.	It	is	connected	to	MicroZed	through	JX1	and	JX2	connectors.	There	are	two	60-pin	
headers	CON1	and	CON2.	The	pins	on	the	on	the	pin	headers	are	routed	to	designated	I/O	ports	through	
circuit	board.	The	PCB	carrier	board	is	designed	by	John	Dobbins,	an	electrical	engineer	from	Cornell	
University.	The	PCB	board	provides	necessary	circuitry	for	the	I/O	interface	between	the	external	signals	
and	the	boards.	The	input	I/O	circuit	consists	of	pull-down,	pull-up	resistors	and	Schmitt	triggers.	It	can	
take	up	to	3.3V	LVDS	signal	and	Schmitt	triggers	prevents	possible	spikes	in	the	input	signals	from	
disturbing	the	system	behavior.	However,	during	the	development,	a	parallel	of	pull-down	and	pull-up	
resistors	forced	the	input	voltage	level	to	be	at	mid-level	between	logic	0	and	logic	1	when	it	was	

6	
	

disconnected	or	not	connected,	thereby	creating	a	latch.	In	case	when	it	was	disconnected	when	it	was	
previously	in	a	high	state,	the	high	state	would	be	latched	and	failed	to	detect	potential	failure.	To	be	a	
safe	operation	system,	any	open	input	should	be	detected	as	a	“Fail”	state.	It	was	speculated	that	one	of	
the	reasons	that	there	was	a	pair	of	100-ohm	resistors	in	parallel	was	to	create	a	50-ohm	termination,	
but	it	was	not	entirely	essential	to	have	a	50-ohm	termination.	As	a	result,	as	Figure-5	shown,	the	pull-
up	resistor	to	3.3V	was	removed.	With	only	pull-down	resistor	being	present,	the	voltage	level	at	the	
inputs	when	there	was	no	signal	connected	would	be	pulled	down	to	low	level.	It	was	also	discovered	
that	the	resistors	value	for	two	of	the	sixteen	input	I/O	circuitry	were	wrong	and	were	replaced.	Also,	
the	label	on	the	front	panel	was	not	consistent	with	the	schematics	and	PCB	routing	to	the	FPGA	pins.	
Table-1	is	a	summary	of	connections	among	PCB	ports,	Zynq	AP	Soc	Pin	&	Connection.	See	Reference[1]	
and	Reference[2]	for	more	additional	information.	

Inputs/Outputs	 Zynq	AP	SoC	Pin	Name	 Zynq	AP	SoC	Pin	Connection	
IN0	 IO_L10P_T1_35	 Bank	35,	K19	
IN1	 IO_L10N_T1_35	 Bank	35,	J19	
IN2	 IO_L12P_T1_35	 Bank	35,	K17	
IN3	 IO_L12N_T1_35	 Bank	35,	K18	
IN4	 IO_L14P_T2_35	 Bank	35,	J18	
IN5	 IO_L14N_T2_35	 Bank	35,	H18	
IN6	 IO_L15P_T2_35	 Bank	35,	F19	
IN7	 IO_L15N_T2_35	 Bank	35,	F20	
IN8	 IO_L17P_T2_35	 Bank	35,	J20	
IN9	 IO_L17N_T2_35	 Bank	35,	H20	
IN10	 IO_L19P_T3_35	 Bank	35,	H15	
IN11	 IO_L19N_T3_35	 Bank	35,	G15	
IN12	 IO_L23P_T3_35	 Bank	35,	M14	
IN13	 IO_L22N_T3_35	 Bank	35,	L15	
IN14	 IO_L24P_T3_35	 Bank	35,	K16	
IN15	 IO_L24N_T3_35	 Bank	35,	J16	
OUT1	 IO_L6P_T0_35	 Bank	35,	F16	
OUT2	 IO_L6N_T0_35	 Bank	35,	F17	

Table-1	

Schematic
Figure-6	and	Figure-9	provide	the	schematic	for	the	hardware	system.	

7	
	

	

Figure-6	

	

Figure-7	

8	
	

	

Figure-8	

	

Figure-9	

9	
	

Function Diagram

	

Figure-10	

The	red	lines	are	all	the	signals	associated	with	real-time	output.	

The	green	lines	are	all	the	signals	associated	with	enable.		

The	blue	lines	are	all	the	signals	associated	with	latched	output.	

The	black	lines	are	all	the	signals	associated	with	reset	and	input	port.	

The	dashed	region	shows	the	territory	of	hardware,	firmware	and	software	system.	

Only	four	instances	of	sixteen	instances	are	show	in	the	function	diagram	and	the	rest	of	them	are	
omitted	and	replaced	by	dots	and	curly	brackets.	

10	
	

FPGA Firmware
The	firmware	was	implemented	with	an	AND	gate	to	combine	all	16	one-bit	signals	logically	into	a	one-
bit	output	signal	so	that	if	one	of	the	signals	goes	low	(logical	zero),	the	output	of	the	AND	gate	will	go	to	
a	logical	zero.	With	current	firmware	configuration,	since	there	were	two	output	ports,	one	of	the	
outputs	was	an	“AND”	gate	of	16	raw	signals	from	the	I/O	ports,	and	the	other	one	was	an	“AND”	gate	
of	latched	signals	from	the	I/O	ports.	Strictly	speaking,	under	CBETA’s	fast	beam	loss	monitor	system,	
the	Red	Pitaya	issued	a	logic	level	change	in	the	signals.	Using	the	raw	port	signals	was	enough	to	
achieve	the	goal.	However,	with	a	boarder	scope	of	application	discussed	later,	using	the	latched	signals	
might	be	better	for	different	devices	in	different	applications.	The	current	firmware	setup	was	the	best	
for	not	only	the	demonstration	purpose	but	also	for	the	testing	purpose	as	it	had	a	combination	of	both	
types	of	the	signals.	Depending	on	what	application	and	devices	would	be	used	with	the	system,	this	
part	of	the	configuration	was	subject	to	change.		

Setup
Since	the	MicroZed	board	is	distributed	through	the	third-party	vendor	Avent,	Vivado	software	doesn’t	
have	the	board	description	file	in	the	folder.	The	board	description	file	can	be	downloaded	from	the	
Github	link	and	on	a	Windows	PC	system,	moved	the	folder	under	
<install_location>\Vivado\2019.2\data\boards\board_files.	

Clock Management
The	system	clock	is	a	100	MHz	PL-fabric	clock	derived	from	the	processor	block.	

I/O Planning
The	I/O	ports	must	be	configured	in	the	FPGA	to	give	firmware	their	accessibility.	There	is	a	total	of	
sixteen	inputs	and	two	outputs.	All	the	I/O	ports	are	located	at	Bank	35	of	the	I/O	bank	on	the	MicroZed.	
Based	on	Table-1	above,	the	digital	signal	is	assigned	to	the	correct	SoC	pin	name	and	configured	to	be	a	
single-ended	3.3V	LVCMOS	signal.	There	are	no	pull-down	or	pull-down	resistors	added	from	the	FPGA	
side	because	the	system	relies	on	the	ones	on	the	PCB	board.		

Output Control Signals (or_gate instance, see Figure-11 for the schematic)
The	firmware	uses	IBUF	instances	to	take	sixteen	external	digital	signals	from	the	I/O	connections	on	the	
hardware.	Each	signal	is	assigned	as	an	input	pin	going	into	the	or_gate	instance.	The	block	logically	
combines	all	sixteen	digital	signals	by	using	an	“AND”	gate	and	generates	two	digital	output	signals.		
With	the	current	implementation,	the	output	signals	will	immediately	respond	to	digital	level	changes	in	
any	one	of	the	sixteen	digital	signals.	These	two	digital	output	signals	are	passed	to	the	output	pins	on	
the	hardware	by	using	OBUF	instances.	Along	with	the	I/O	ports,	the	or_gate	block	also	requires	other	
control	pins	and	a	clock	pin.	It	also	generates	registers	going	into	the	software.			

11	
	

	

Figure-11	

User Enable Control for Input Signals
There	are	16	signals	used	for	the	enable	signals	to	control	the	port	signals.	When	the	enable	signal	is	a	
logical	zero,	the	port	signal	connects	to	the	I/O	port.	When	the	enable	signal	is	a	logical	one,	the	port	
signal	is	tied	to	a	logical	level	high.	A	logical	zero	indicates	an	enabled	input	from	the	user	input	whereas	
a	logical	one	indicates	a	disabled	input	from	the	user	input.	The	setup	guarantees	that	when	the	board	is	
first	initialized,	all	the	input	signals	will	be	enabled.	Users	have	a	choice	to	enable	or	disable	any	input	
channel	if	they	are	so	to	choose	not	to	connect	or	use	them.	

Front End Control Software Interface (See Figure-12 for the block diagram)
The	firmware	also	consists	of	a	customized	IP	block	which	has	the	hardware	registers	to	be	accessed	
from	the	software	side.	There	are	four	signals	connected	to	this	IP	block.	The	enable	signal	is	a	16-bit	
signal	that	each	enable	pin	for	the	port	signal	is	concatenated	to	form	a	16-bit	signal.	Likewise,	
ouput_status	and	out_signal	are	16-bit	signals	that	each	port	signal	and	each	latched	signal	is	
concatenated	into	two	16-bit	signals.	This	IP	block	serves	as	an	interface	between	firmware	and	
software	control.	With	the	AXI	interface,	the	IP	is	assigned	with	a	base	address	at	0x43C00000	by	using	
the	address	editor.	The	software	can	retrieve	the	value	of	a	register	by	accessing	its	hardware	address,	
and	depending	on	the	type	of	the	register,	the	software	can	either	write	to	or	read	from	the	hardware	
address.	See	more	details	in	the	next	chapter,	Control	Software.	

12	
	

	

Figure-12	

Failed Device Alert
The	system	latched	the	signal	from	the	I/O	ports	whenever	the	device	is	in	a	failed	state.	A	low-level	
(logical	zero)	signal	indicates	a	failed	state.	The	failed	state	will	be	latched	until	the	user	resets	it.	This	
feature	is	implemented	by	inferring	a	D-flip	flop	with	negative-edge	clock,	clock	enable	and	
asynchronous	preset	for	each	latched	signal.	The	asynchronous	preset	(PRE)	input	is	tied	to	the	user	
reset	to	release	the	latch.	The	asynchronous	user	reset	is	asserted	by	the	user	issuing	a	software	
command,	latched	high	for	three	clock	cycles	and	de-asserted	by	itself.	The	clock	enable	(CE)	is	always	
tied	to	high.	The	clock	is	connected	to	each	port	signal.	By	treating	the	port	signal	as	a	clock	signal,	the	
flip	flop	checks	the	falling	edge	of	the	port	signal	when	it	indicates	a	failed	state	from	the	device,	and	the	
falling	edge	stores/latches	the	value	of	the	data	which	is	zero	because	when	there	is	a	falling	edge	the	
output	should	be	latched	to	zero	until	the	user	releases	it.	The	data	pin,	as	a	result,	is	always	tied	to	a	
logical	zero.	Figure	13	shows	a	layout	of	this	type	of	D	flip	flop	and	Table-2	presents	its	logic	table.	

	

Figure-13	

Inputs	 Outputs	
PRE	 CE	 D	 C	 Q	
1	 X	 X	 X	 1	
0	 0	 X	 X	 No		Change	
0	 1	 D	 ↓	 D	

Table-2	

One	of	the	issues	occurred	for	this	implementation	is	that	since	it	only	looks	at	the	falling	edge	of	the	
port	signal,	after	the	latch	is	released	by	the	user	and	if	the	port	signal	still	stays	low,	without	a	falling	

13	
	

edge,	the	output	will	not	be	latched	to	zero	again.	To	fix	this	problem,	the	latched	output	will	only	be	
released	to	one	if	the	input	port	is	a	logical	one.	In	practice	it	creates	a	latch	in	addition	to	the	previous	
D	flip	flop.		

Control Software

The	control	software	is	built	on	the	EPICS	IOC	platform.	A	version	of	Petalinux	is	loaded	onto	the	SD	
card.	The	Petalinux	is	customized	and	rebuilt	to	have	necessary	network	features,	such	as	MAC	address,	
DHCP,	hostname	and	SSH.	The	IOC	was	built	in	/ride/EPICS/base-3.14.12.5/MZED.	Several	files	were	
changed	to	make	the	necessary	changes.	They	were	the	following:	

/ride/EPICS/base-3.14.12.5/MZED	/mzedApp/src/ReadData.c	

/ride/EPICS/base-3.14.12.5/MZED/mzedApp/src/bpm301.hxx	

/ride/EPICS/base-3.14.12.5/MZED/mzedApp/Db/Data.db	

/ride/EPICS/base-3.14.12.5/MZED/dbd/mzed_subroutines.dbd	

/ride/EPICS/base-3.14.12.5/MZED/iocBoot/iocMZED/autosave/asList.req	

ReadData.c	and	bpm301.h	were	changed	to	add	C	code	for	the	new	subroutine	functions	and	new	
memory	addresses.	Data.db	was	changed	to	add	more	records	and	subroutine	records.	mzed.dbd	was	
changed	to	incorporate	the	new	subroutine	functions	that	were	called	in	the	new	records.	asList.req	was	
changed	to	add	new	record	into	the	cache/initialization	file.	The	source	code	then	was	built	in	the	same	
directory.	The	mzed	binary	file,	Data.db	file,	mzed.dbd	file	and	asList.req	file	were	copied	into	MicroZed	
linux	system.	The	IOC	system	was	started	by	running	a	script	called	init.epics.	The	CS-Studio	application	
is	located	at	/ride/EPICS/base-3.14.12.5/cs-studio.	In	order	to	connect	CS-Studio	with	the	MicroZed,	the	
IP	address	of	MicroZed	was	configured	into	CS-Studio	application.		

Records
There	are	51	records	in	the	software	control	system.	Table-3	shows	a	brief	summary	followed	by	some	
detailed	implementation	in	the	next	sections.	

Number	
of	Records	

Name	of	a	Record	 States	of	a	
Record	

Function	of	a	Record	

16	 inputEna1S,	inputEna2S,	…..,	inputEna16S	 Normal,	Tripped	 Enable/disable	the	input	signals	
16	 inputStatus1S,	inputStatus2S,	…,	inputStatus16S	 Normal,	Tripped	 Indicate	the	real-time	signal	status	
16	 inputLatch1M,	inputLatch2M,	…,	inputLatch16M	 Normal,	Tripped	 Indicate	the	latched	signal	status	
2	 systemMode1M,	systemMode2M	 Normal,	Tripped	 Indicate	the	system	output	status	
1	 ChannelResetS	 Reset	 Reset	the	latched	signal	

Table-3	

Each	record	has	a	definition	of	FLNK	which	defines	a	forward	link.	According	to	the	EPICS	manual,	
reference	[5],	A	forward	link	allows	the	PV	to	scan	passively	the	record	in	the	forward	link	when	it	is	
processed.	In	each	record,	the	forward	link	is	linked	to	its	subroutine.	As	a	result,	every	time	the	record	
is	processed	its	forwarded	subroutine	will	be	processed.	The	record	type	for	the	records	is	mbbo	which	

14	
	

stands	for	multi-bit	binary	output.	According	to	the	EPICS	manual,	reference[7],	the	mbbo	record	takes	
either	a	zero	or	one	from	the	hardware	address	and	converts	it	into	a	statement	module.	In	this	case,	it	
can	be	“Normal”	or	“Tripped”	and	“Enable”	or	“Disable”.	In	addition,	the	mbbo	record	has	a	scan	
definition	which	processes	the	record	every	0.01	second	and	passively	processes	its	forward	link	
subroutine	every	time	when	it	is	processed.	

Enable Records
There	are	sixteen	enable	records.	Each	record	has	a	scan	definition	of	0.01	seconds.	There	are	two	states	
in	the	record.	When	the	state	is	one,	it	is	displayed	as	“Enable”.	When	the	state	is	zero,	it	is	displayed	as	
“Disable”.	A	subroutine	record	which	provides	the	necessary	functionalities	to	the	mbbo	record	is	linked	
to	the	mbbo	record	through	a	forward	link.	The	subroutine	record	can	not	only	read	from	the	hardware	
address	when	the	value	is	changed	but	can	also	write	the	value	into	the	record.	In	order	to	achieve	this,	
the	subroutine	record	defines	a	field	called	SNAME	which	links	the	record	to	the	subroutine	function	
written	in	C	code.	In	addition,	the	OUT	field	is	defined	to	capture	the	scalar	or	array	values	pushed	out	
to	the	output	links	when	the	subroutine	record	writes	the	value	to	the	mbbo	record.	According	to	the	
EPICS	manual,	reference[9],	the	INPA	field	is	defined	to	fetch	the	values	from	the	record	when	a	record	
tries	to	read	from	the	mbbo	record.	Furthermore,	based	on	the	EPICS	manual,	reference[9],	INAM	field	
defines	an	initialization	routine	which	is	called	once	at	iocInit	function.	Since	the	subroutine	function	
accesses	the	hardware	address	through	mmap	operation,	the	ReadDataInit	function	in	the	INAM	field	is	
invoked	as	an	initialization	routine.	This	function	is	only	called	in	one	of	the	records.	

Input Status & Latched Status Records
There	is	a	total	of	32	records	for	the	input	status	and	the	latched	status.	All	of	them	are	identical	except	
that	their	names	and	notations	are	different.	Like	Enable	records,	each	record	is	a	mbbo	type	record.	
That’s	because	the	value	only	reads	the	logical	level	from	the	hardware	address	and	it	is	converted	into	
text	messages	that	the	user	can	understand.	They	are	scanned	every	0.01	seconds	and	have	a	forward	
link	connected	to	its	subroutine	record.	There	are	two	states	in	the	mbbo	record.	When	the	state	is	one,	
it	is	displayed	as	“Normal”.	When	the	state	is	zero,	it	is	displayed	as	“Tripped”.	Importantly	noted,	with	
the	current	software	implementation,	if	a	channel	is	enabled,	its	status	will	be	displayed	as	“Normal”.	
There	was	another	version	of	design	that	changes	the	display	to	“Disable”	when	the	channels	are	
disabled	but	under	current	special	circumstance,	that	version	though	was	better,	currently	
compromised	the	presentation	of	other	features	in	the	software.	Therefore,	to	illustrate	all	the	features	
in	the	system	for	now,	that	version	of	design	was	not	incorporated.	In	each	subroutine	record,	it	has	a	
definition	of	SNAME	which	links	the	subroutine	record	to	the	subroutine	function	written	in	C	code.	In	
addition,	the	subroutine	record	is	required	to	define	an	output	link	to	hold	the	scalars	or	arrays	that	are	
pushed	from	the	subroutine	function.	

Reset Record
There	is	an	additional	record	to	reset	the	latched	channel.	It	is	defined	as	a	mbbo	record.	The	record	
only	has	one	state	which	is	“Reset”	state.	It	has	a	forward	link	that	is	connected	to	its	subroutine	record.	
In	the	subroutine	record,	according	to	the	EPICS	manual,	reference[8],	SNAME	is	defined	to	connect	the	
subroutine	record	to	its	subroutine	function.	

15	
	

Subroutine Functions
The	subroutine	functions	interact	with	their	subroutine	records	and	records	with	the	definition	of	
SNAME.	The	first	initialization	function	uses	mmap	function	to	directly	make	the	hardware	addresses	
accessible	from	the	user	side.	There	are	four	hardware	registers	in	the	firmware.	The	register	addresses	
are	defined	in	the	header	file.	They	are	assigned	with	a	base	address	at	0x43C00000.	Each	register	has	
an	offset	of	four	bits	from	one	and	another.	See	Table-4	for	the	memory	map.		

Register	Name	 Memory	Address	
Enable	 0x43C00000	
Reset	 0X43C00004	
Input	Status	 0X43C00008	
Input	Latched	Status	 0X43C0000C	

Table-4	

For	enable	register,	as	it	is	a	16-bit	register,	only	one	of	the	sixteen	bits	is	assigned	to	an	input	device	
(there	are	a	maximum	of	sixteen	devices	connected	to	the	system)	and	each	parameter	only	needs	to	
read	or	set	one	of	the	sixteen	bits.	To	read	or	set	a	correctly	assigned	bit	from	the	parameter	while	
reading	a	16-bit	register	altogether	from	the	firmware,	proper	bit-wise	operations	are	required	for	the	
function.	When	enabled,	the	set	operation	is	achieved	by	shifting	the	‘1’	bit	to	the	bit	position	that	it	is	
going	to	be	set	and	then	performing	an	“OR”	operation	with	the	original	value	at	the	address.	When	
disabled,	the	clear	operation	is	achieved	by	shifting	the	‘1’	bit	to	the	bit	position	that	it	is	going	to	be	set	
and	then	inverting	all	the	bits	and	lastly	performing	an	“AND”	operation	with	the	original	value	at	the	
address.		

Similarly,	for	input	status	and	latched	input	status,	each	parameter	checks	its	assigned	bit	among	the	16-
bit	register	read	from	the	firmware.	The	check	operation	is	achieved	by	first	masking	all	other	bits	
except	the	targeted	bit	and	then	shifting	the	bit	to	the	least	significant	bit.	If	the	least	significant	bit	is	
one	that	means	the	device	is	in	a	normal	state.	If	the	least	significant	bit	is	zero	that	means	the	device	is	
in	a	failed	state.		

For	the	reset	parameter,	the	subroutine	function	first	writes	a	‘1’	to	the	assigned	hardware	address	to	
assert	the	reset.	After	that	it	sleeps	for	1000	milliseconds.	Then	it	writes	a	‘0’	to	the	assigned	hardware	
address	to	de-assert	the	reset.	It	sleeps	for	another	500	milliseconds	for	the	next	reset.		

CS-Studio GUI
The	graphic	user	interface	was	designed	to	provide	a	better	presentation	for	the	system	control.	It	can	
also	help	the	user	manage	and	control	the	system	easier	with	the	text	displays	and	animation.	The	GUI	
page	was	specifically	designed	in	a	specific	CS-Studio	file	type	called	OPI,	where	selected	widgets	can	be	
dropped	on	the	panel	and	connected	to	their	PVs	in	the	EPICS	IOC	software	system.	There	are	three	
types	of	widgets	used	in	the	GUI	system.	The	text	update	is	used	to	display	the	status	of	each	channel.	
The	switch	buttons	are	used	to	set	the	parameters.	The	LED	lights	are	used	to	alert	the	status	of	each	
channel	visually.	The	detailed	functionalities	are	demonstrated	in	the	following.	In	addition,	the	graphic	

16	
	

user	interface	is	illustrated	in	the	Figure	14-Figure	17.	These	figures	show	the	possible	scenarios	under	
different	user	inputs.	

Reset
The	reset	button	is	an	action	button	on	the	top	left	corner	of	the	page.	The	tripped	input	can	be	
released	by	clicking	the	action	button.	The	reset	button	was	set	to	connect	to	MZED-ChannelResetA	
record.	It	is	enabled,	and	if	clicked,	it	will	invoke	the	subroutine	record	to	run	the	function	in	the	EPICS	
IOC	system.	

Enable Switches
The	enable	switches	are	illustrated	as	flip	switches.	The	flip	switches	enable	the	channels	when	they	are	
turned	on.	Likewise,	the	flip	switches	disable	the	channels	when	they	are	turned	off.	All	switches	are	
initialized	in	“ON”	mode	and	enabling	all	the	input	signals	when	the	system	starts	up	for	the	first	time.	
The	flip	switches	are	enabled	and	connected	to	MZED-inputEnaS.	

LED Lights
The	LED	lights	are	a	visual	presentation	of	the	status	of	each	channel.	If	the	channel	is	in	a	“Normal”	
state,	the	LED	lights	are	green.	If	the	channel	is	in	a	“Tripped”	state,	the	LED	lights	are	red.	The	LED	lights	
are	enabled	and	connected	to	MZED-inputLatchM.	

Raw Status
The	raw	status	fields	are	text	updates	that	report	the	status	of	each	channel	from	the	hardware	address.	
They	display	either	“Normal”	to	indicate	that	the	channels	are	in	a	“Normal”	state	or	“Tripped”	to	
indicate	that	the	channels	are	in	a	“Tripped”	state.	The	raw	status	fields	are	enabled	and	connected	to	
MZED-inputStatusM.	

Latched Status
The	latched	status	are	text	updates	that	report	the	latched	status	of	each	channel	from	the	hardware	
address.	Similar	to	raw	status,	they	also	display	either	“Normal”	to	indicate	that	the	channels	are	in	a	
“Normal”	state	or	“Tripped”	to	indicate	that	the	channels	are	in	a	“Tripped”	state.	The	latched	status	
fields	are	enabled	and	connected	to	MZED-inputLatchedM.		

System Mode
The	system	mode	is	text	update	that	report	the	status	of	the	entire	system.	If	any	of	the	channels	is	
tripped,	it	will	display	“Tripped”	and	if	everything	is	normal	it	will	display	“Normal”.	It	is	enabled	and	
connected	to	MZED-systemMode1M	and	MZED-systemMode2M.		It	is	served	as	a	validation	check	that	
the	output	status	of	the	system	is	consistent	with	the	status	of	individual	channels.		

17	
	

	

Figure-14	The	figure	shows	when	one	of	the	devices	was	tripped,	both	outputs	were	tripped.	When	the	input	
was	tripped,	the	latched	output	was	tripped	immediately.	Both	System	status	1	and	2	are	changed	to	

“Tripped”	

	

Figure-15	The	figure	verifies	all	the	channels	were	working	as	expected.	

18	
	

	

Figure-16	The	figure	shows	when	the	raw	status	became	normal,	the	latched	status	was	tripped	until	the	
reset	was	pressed.	The	system	status	2	which	is	based	on	the	latched	status	was	still	tripped.	All	the	channels	

were	working	as	expected	

	

Figure-17	When	the	reset	was	asserted,	the	latched	status	was	released	and	followed	the	raw	status	to	show	
the	“Normal”	state.	Both	system	status	1	and	2	were	changed	to	“Normal”	

19	
	

Reference
1. MicroZed Breakout Carrier Card Zynq System-on-Module Hardware User

Guide:
http://zedboard.org/sites/default/files/documentations/5271-UG-MBCC-BKO-V1.2.pdf	

2. MicroZed Schematic Rev G:
http://zedboard.org/sites/default/files/documentations/Schematic_G-04-02.zip	

3. Xil inx 7 Series FPGA Libraries Guide for Schematic Designs:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/7series_scm.pdf	

4. EPICS Build Procedure
https://www.cadops.bnl.gov/Instrumentation/InstWiki/index.php/EPICS-V301	

5. EPICS Manual and References:
https://epics.anl.gov/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-6.html	

6. EPICS Manual and References:
https://epics.anl.gov/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-23.html	

7. EPICS Manual and References:
https://epics.anl.gov/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-25.html	

8. EPICS Manual and References:
https://wiki-ext.aps.anl.gov/epics/index.php/RRM_3-14_Array_Subroutine	

9. EPICS Manual and References:
https://epics.anl.gov/EpicsDocumentation/AppDevManuals/RecordRef/Recordref-6.html	

10. MicroZed Hardware User Guide:
http://zedboard.org/sites/default/files/documentations/5276-MicroZed-HW-UG-v1-7-V1.pdf	

11. MicroZed Quick Starter Guide:
http://zedboard.org/sites/default/files/documentations/QSC-Z7MB-7Z010-G-V1.pdf	

12. BDF f i les for downloading:
https://github.com/Avnet/bdf	

	

