

Experience with the Cornell ERL Injector SRF Cryomodule during High Beam Current Operation

Matthias Liepe *Assistant Professor of Physics*

Cornell University

- Cornell is developing the technology for an Energy Recover Linac (ERL) based x-ray light source.
- An ERL injector prototype has been developed, fabricated, and is currently under commissioning.
- Design work on the main linac cryomodule has started.

High Current SRF Injector Prototype

ERL Injector: Technical Components

135 kW cw Klystrons (e2v)

The High Current Cornell ERL Injector

Nominal bunch charge 77 pC Bunch repetition rate **1.3 GHz** Beam power up to 550 kW Nominal gun voltage 500 kV SC linac beam energy gain 5 to 15 MeV Beam current 100 mA at 5 MeV

Bunch length 6.6 mm (rms) Transverse emittance < 1 mm-mrad

design parameters

33 mA at 15 MeV

Achieved so far

77 pC 50 MHz and 1.3 GHz 125 kW 425 kV 5 to 15 MeV 25 m A **World record for CW injector!**

Outline

- SRF Cryomodule for the ERL injector
	- Beamline components, module design and assembly
- Operational Highlights: Pushing the Envelope
	- SRF cavity and coupler performance
	- High current operation
- Summary and outlook

SRF Cryomodule for the ERL injector

Beamline components, module design and assembly

The Cornell ERL Cryomodule

 15 feet

HGRP system with 3 sections

Frequency tuner

HOM beamline absorber at 80K between cavities

Twin Input Coupler

1.3 GHz RF cavity

- **Number of 2-cell cavities 5**
- **Acceleration per cavity 1 – 3 MeV**
- **Accelerating gradient 4.3 – 13.0 MV/m**
- **R/Q (linac definition) 222 Ohm**
- **Q**_{axt} **4.6** \times **10⁴ 4.1** \times **10⁵**
- **Total 2K / 5K / 80K loads: 30W / 60W / 700W**
- **Number of HOM loads 6**
- **HOM power per cavity 40 W**
- **Couplers per cavity 2**
- **RF power per cavity 120 kW**
- **Amplitude/phase stability 10-4 / 0.1 (rms)**
- **ICM length 5 m**

ERL Injector SRF: Key Challenges

- 1. Limit emittance growth of the very low emittance beam in the injector module (essential for ERL x-ray performance)
- 2. Support high beam current operation up to 100 mA with short (2 ps) bunches
- 3. Transfer up to 100 kW of CW RF power per cavity to the beam
- 4. Provide excellent RF field / energy stability

Beam Line Components (I)

SRF cavities:

- Designed, fabricated, and tested at Cornell
- All cavities met 15 MV/m spec in vert. test (BCP only)

RF input couplers:

- Design by Cornell for high cw power > 50 kW
- 2 prototypes tested up to 60 kW cw, 80 kW pulsed

Beam Line Components (II)

HOM absorbers:

- Design by Cornell for strong, broadband HOM damping (1.5 GHz -> 100 GHz)
- >200 W power handling

Frequency tuners:

- Modification of the DESY/INFN blade tuner
- Added piezos for microphonics compensation (R&D)

ERL Injector Module Innovations (I)

- Tuner stepper replaceable while string is in cryomodule
- Rail system for cold mass insertion into Vacuum Vessel
- Gatevalve inside of module with outside drive

ERL Injector Module Innovations (II)

- Precision fixed cavity support surfaces between the beamline components and the HGRP \Rightarrow easy "self" alignment
- Cavity-subunits can be fine-aligned while cavities are at 2K (if required)

ERL Injector Module Assembly at Cornell

Beamline in clean room

Gate valve internal to cryomodule

Superconducting RF Workshop 2009, September 21–25, 2009 Cleanroom assembly fixturing **Exercise of Security Vacuum vessel int**

Cleanroom assembly fixturing The Cleanroom assembly fixturing

ERL Injector Module Assembly at Cornell

Cold mass rolled into vacuum vessel

Operational Highlights: Pushing the Envelope

SRF cavity and coupler performance High current operation

Emittance Preservation and Cavity Alignment

- Avoid transverse kick fields:
	- Symmetrized beam line in injector module

 $-$ Excellent cavity alignment (\pm 0.5mm required, **0.2mm achieved**)

Fixed High Precision Cavity Support and Alignment

- High precision supports on cavities, HOM loads, and HGRP for "self" alignment of beam line
	- Rigid, stable support
	- Shift of beamline during cool-down as predicted
- Cavity string is aligned to \pm 0.2 mm after cool**down!**

Matthias Liepe, IPAC 2011, San Sebastian

Beam Emittance

beam core containing 90.0 % of the electrons

- At low bunch charge (at 5 MeV):
	- Normalized **emittance** is close to thermal limit at cathode for given laser size: **0.2 to 0.4 mm mrad**
- At higher bunch charge (10 MeV, 77 pC):
	- $\varepsilon_{N,90} = 1.6$ mm-mrad for 90% beam core
	- Increasing the gun voltage to 500 kV $\frac{2}{5}$ is expected to reduce this number is expected to reduce this number further

Operational Highlights

Operational Highlights

Matthias Liepe, IPAC 2011, San Sebastian Slide 19 and Slide 19

SRF Cavities and High RF Input Power

- SRF cavities meet gradient spec and have transferred >25 kW cw each to the beam
- Individual input couplers processed up to 25 kW cw
- Prototypes tested **up to 60 kW cw**, 80 kW pulsed

Operational Highlights

Highlights

Derational

SRF Cavity Intrinsic Quality Factor

- Measurements of cavity dynamic 1.8K head loads shows intrinsic Q's of 5.10^9 to 1.10^{10}
- Expected: $Q^{\sim}1.5\cdot10^{10}$
- Source of increased RF losses?

Cavity "Qo" vs. External Q_{ext}

- Measured impact of input coupler coupling on Q_0
	- -> found losses increase with coupling
- Note: Operate at very low Q_{ext} (high beam current)
	- -> large RF power/field in input coupler

RF Losses at Input Coupler Flange

- Exposed stainless steel near knife edge of input coupler Conflat flanges responsible for increased RF losses at strong couplings (confirmed by simulations)
- New **zero gap/impedance flange design** developed for ERL main linac cavity can be used to eliminate this extra loss

Operational Highlights

Highlights

Derational

LLRF Field Control and Field Stability

Highlight: Active Microphonics Control

Piezo Feedback on Tuning Angle/Cavity Frequency: Reduces rms microphonics by up to 70%! Important for ERL main linac, where $Q_i > 5.10^7$ **and** $P_{RF} \propto \Delta f$ **!**

Matthias Liepe, IPAC 2011, San Sebastian Slide 25

HOMs and High Current Operation

- Beamline HOM absorber between cavities very effective
- HOM damping and HOM spectra measurements confirm excellent damping with **typical Qs of a few 1000**

RF

Absorbing

High Current Cryomodule Operation

- Successfully operated injector SRF module with **beam currents of 25 mA**
	- No increase in 1.8K dynamic load observed
	- ΔT of HOM absorbers small (<0.5K). **Module should easily handle operation at >100 mA.**

Matthias Liepe, IPAC 2011, San Sebastian

Cryomodule Loss Factor

- HOM absorbers allow for calorimetric measurement of the total HOM power excited by the
- Heaters on the HOM loads used for calibration
- **Total HOM power measurement at ~20 mA gives longitudinal loss factor in good agreement with ABCI simulations (~20 V/pC** at $\sigma_b=1$ mm)

2-cell cavitv

78mm to 60mm

HOM Spectrum Measurements

- •8 HOM antennas per load:
	- Used as BPMs
	- Allow studying HOM spectrum

Jperational

HOM Spectrum: Scaling with Beam Current

- Changed bunch charge (and thus beam current), but kept bunch length and repetition rate constant
- Total HOM power: $P \propto I Q_D$ as expected

Operational Highlights

Operational Highlights

HOM Spectrum: Scaling with Bunch Repetition Rate

- Changed bunch repetition rate
- Total HOM power: $P \propto I Q_D$ as expected

Operational Highlights

Operational Highlights

HOM Spectrum: Comparison with ABCI Simulations

• Spectrum and total loss factor in good agreement with ABCI simulation results for given bunch length

Summary and outlook

Summary

- ERL injector cryomodule:
	- Designed, constructed, and successfully tested
	- **Cryogenics, cavity alignment, cavity voltage, input couplers, LLRF field control, and HOM damping all meet or exceed specs**
	- 25 mA cw beam accelerated to 5 MeV; should easily support 100 mA operation

Outlook

To come: **ERL main linac cryomodule** prototype

– First cavity fabricated and ready for test

– One cavity module: starting 2012, including beam test

 $-$ Full prototype main linac module in \sim 4 years

The End

Thanks for you attention!

ERL-SRF team: D. Hartill, G. Hoffstaetter, M. Liepe, S. Posen, P. Quigley, V. Shemelin, M. Tigner, N. Valles, V. Veshcherevich