
2024-06-07
2024-06-12
2024-06-14

Scientific Computing @ CLASSE
Practical Orientation Sessions

https://wiki.classe.cornell.edu/Computing/SummerStudentOrientation

https://wiki.classe.cornell.edu/Computing/SummerStudentOrientation

Overview
• These sessions are a basic and practical introduction to computing at CLASSE

• Hands-on exercises will help you set up a hospitable environment for working on
your project’s software (bring your laptop!)

• 2024-06-07: The CLASSE Linux system

• Logging in, where to work, practice using the terminal

• 2024-06-12: Developing python code

• Environment management, jupyter, tips on how to write “good” python code

• 2024-06-14: Version control (git)

• What is version control, how to use git

2024-06-07

Scientific Computing @ CLASSE
The CLASSE Linux System

Overview
• CLASSE Linux computers

• How to log in

• Where to work on your projects

• Practice using the terminal

The CLASSE Linux System
Where to work — computers

• lnx201.classe.cornell.edu

• General purpose login node — a shared resource

• Use for file browsing, text editing, running code that doesn’t consume many resources

• CLASSE compute farm

• https://wiki.classe.cornell.edu/Computing/ComputeFarmIntro

• Use for running code that may consume a lot of resources

• Station computers: idxx.classe.cornell.edu

• Connected to station hardware (beamstops, motors, detectors, etc.)

• Use ONLY if you are controlling station hardware

• More guidance on where to work: https://wiki.classe.cornell.edu/Computing/WhichComputer

https://wiki.classe.cornell.edu/Computing/ComputeFarmIntro
https://wiki.classe.cornell.edu/Computing/WhichComputer

The CLASSE Linux System
Logging in

ssh — secure shell

• On Linux & mac terminals:

ssh <CLASSEID>@<host>

• For example:

ssh kls286@lnx201.classe.cornell.edu

On Windows: PuTTY

• https://wiki.classe.cornell.edu/
Computing/WinTunnelVncSSH

NoMachine — full desktop interface

• On any computer, open an web
browser and visit:

https://nomachine.classe.cornell.edu

• Be prepared for issues with speed,
copy/paste, and dropped
connections

Another CLASSE-specific option:
https://jupyter01.classe.cornell.edu

https://wiki.classe.cornell.edu/Computing/LinuxSupport#Logging_in
https://wiki.classe.cornell.edu/Computing/RemoteLinux#Remote_terminal_access
https://wiki.classe.cornell.edu/Computing/WinTunnelVncSSH
https://wiki.classe.cornell.edu/Computing/WinTunnelVncSSH
https://wiki.classe.cornell.edu/Computing/NoMachine
https://nomachine.classe.cornell.edu
https://jupyter01.classe.cornell.edu

The CLASSE Linux System
Exercise 1

 Open a terminal on lnx201 using one of the following options:

1. ssh from your computer’s terminal (for Mac and Linux users)

2. PuTTY (for Windows users)

3. https://nomachine.classe.cornell.edu

4. https://jupyter01.classe.cornell.edu

https://nomachine.classe.cornell.edu
http://jupyter01.classe.cornell.edu

The CLASSE Linux System
Where to work — directories

• HomeDisk (/home/<CLASSE-ID>) is limited to 1GB

• This is the landing point when you open a new terminal or log in with ssh

• Do not make a habit of working in your home directory!

• Recommended working space: /nfs/…

• For CHESS students:/nfs/chess/user/<CLASSE-ID>/

• For other students: ask your project mentor

• For these exercises, use /cdat/tem/<CLASSE-ID>/

• nfs stands for Network File System — if you put something in /nfs on lnx201, it will also be there on
the CLASSE Compute Farm nodes, the station computers, the computers in the CESR and CHESS
operations areas, etc.

https://wiki.classe.cornell.edu/Computing/HomeDisk

The CLASSE Linux System
Exercise 2

Make a symbolic link to your /nfs/chess/user/<CLASSE-ID>/ directory
inside your home directory.

1. In the terminal you opened before, run this command (make sure to
substitute appropriate values where something is enclosed in <> before
running):

ln -s /cdat/tem/<your CLASSE ID>/ ~/<your link name>

The CLASSE Linux System
Exercise 3

Start navigating in the same
terminal as before. Run the
following commands:

1. pwd

• “Print working directory” tells
you what the current working
directory is

2. ls

• Lists the contents of the
current working directory

3. ls -la

• Lists the contents of the current working directory with the
additional options:

•-l tells ls to show details about each file’s type, permissions,
size, etc. (“l” for “long”)

•-a tells ls to list hidden files, too (“a” for “all”)

•Individual options to ls like -l and -a can be shortened to -la

4. cd <your link name from Exercise 2>

• “change directory” changes your current working directory to the
specified destination

The CLASSE Linux System
Getting comfortable in the terminal

• A fantastic intro to Linux in general and at CLASSE:

https://xcitecourse.org/theme2/sf100/linux-commandline-scripting

• Thanks to our collaborators from X-CITE
(CyberInfrastructure Training and Education for
Synchrotron X-Ray Science)!

• A nice cheat sheet of Linux commands —>

• If you don’t know how to use a command, try running one
of the following to get a help menu / manual entry for it:

• <command> —h

• <command> —help

• man <command>

Linux/Unix Command Line Cheat Sheet - GettingGeneticsDone.blogspot.com

Command Description
pwd prints working directory (prints to screen, ie displays the full path, or your location on the filesystem)
ls lists contents of current directory
ls –l lists contents of current directory with extra details
ls /home/user/*.txt lists all files in /home/user ending in .txt
cd change directory to your home directory
cd ~ change directory to your home directory
cd /scratch/user change directory to user on scratch
cd - change directory to the last directory you were in before changing to wherever you are now
mkdir mydir makes a directory called mydir
rmdir mydir removes directory called mydir. mydir must be empty
touch myfile creates a file called myfile. updates the timestamp on the file if it already exists, without modifying its contents
cp myfile myfile2 copies myfile to myfile2. if myfile2 exists, this will overwrite it!
rm myfile removes file called myfile
rm –f myfile removes myfile without asking you for confirmation. useful if using wildcards to remove files ***
cp –r dir newdir copies the whole directory dir to newdir. –r must be specified to copy directory contents recursively
rm –rf mydir this will delete directory mydir along with all its content without asking you for confirmation! ***
nano opens a text editor. see ribbon at bottom for help. ^x means CTRL-x. this will exit nano
nano new.txt opens nano editing a file called new.txt
cat new.txt displays the contents of new.txt
more new.txt displays the contents of new.txt screen by screen. spacebar to pagedown, q to quit
head new.txt displays first 10 lines of new.txt
tail new.txt displays last 10 lines of new.txt
tail –f new.txt displays the contents of a file as it grows, starting with the last 10 lines. ctrl-c to quit.
mv myfile newlocdir moves myfile into the destination directory newlocdir
mv myfile newname renames file to newname. if a file called newname exists, this will overwrite it!
mv dir subdir moves the directory called dir to the directory called subdir
mv dir newdirname renames directory dir to newdirname
top displays all the processes running on the machine, and shows available resources
du –h --max-depth=1 run this in your home directory to see how much space you are using. don’t exceed 5GB
ssh servername goes to a different server. this could be queso, brie, or provolone
grep pattern files searches for the pattern in files, and displays lines in those files matching the pattern
date shows the current date and time
anycommand > myfile redirects the output of anycommand writing it to a file called myfile
date > timestamp redirects the output of the date command to a file in the current directory called timestamp
anycommand >> myfile appends the output of anycommand to a file called myfile
date >> timestamp appends the current time and date to a file called timestamp. creates the file if it doesn’t exist
command1 | command2 “pipes” the output of command1 to command2. the pipe is usually shift-backslash key
date | grep Tue displays any line in the output of the date command that matches the pattern Tue. (is it Tuesday?)
tar -zxf archive.tgz this will extract the contents of the archive called archive.tgz. kind of like unzipping a zipfile. ***
tar -zcf dir.tgz dir this creates a compressed archive called dir.tgz that contains all the files and directory structure of dir
time anycommand runs anycommand, timing how long it takes, and displays that time to the screen after completing anycommand
man anycommand gives you help on anycommand
cal -y free calendar, courtesy unix
CTRL-c kills whatever process you’re currently doing
CTRL-insert copies selected text to the windows clipboard (n.b. see above, ctrl-c will kill whatever you’re doing)
SHIFT-insert pastes clipboard contents to terminal
*** = use with extreme caution! you can easily delete or overwrite important files with these.

Absolute vs relative paths.
Let’s say you are here: /home/turnersd/scripts/. If you wanted to go to /home/turnersd/, you could type: cd /home/turnersd/. Or you could
use a relative path. cd .. (two periods) will take you one directory “up” to the parent directory of the current directory.
. (a single period) means the current directory
.. (two periods) means the parent directory
~ means your home directory
A few examples
mv myfile .. moves myfile to the parent directory
cp myfile ../newname copies myfile to the parent directory and names the copy newname
cp /home/turnersd/scripts/bstrap.pl . copies bstrap.pl to “.” i.e. to dot, or the current directory you’re in
cp myfile ~/subdir/newname copies myfile to subdir in your home, naming the copy newname
more ../../../myfile displays screen by screen the content of myfile, which exists 3 directories “up”

Wildcards (use carefully, especially with rm)
* matches any character. example: ls *.pl lists any file ending with “.pl” ; rm dataset* will remove all files beginning with “dataset”
[xyz] matches any character in the brackets (x, y, or z). example: cat do[or]m.txt will display the contents of either doom.txt or dorm.txt

https://xcitecourse.org/theme2/sf100/linux-commandline-scripting

The CLASSE Linux System
Getting comfortable in the terminal

• Use tab completion so you don’t have to type out long file names or
commands

• DO make liberal use of your favorite search engine…but DO NOT copy /
paste commands you find on the internet without understanding what they do
and how they work.

• nano, emacs, and vi are good options for editing files in the terminal

• atom and gedit are good options for editing files with a GUI on CLASSE Linux
machines

The CLASSE Linux System
Summary

• Log in with ssh for terminal access, NoMachine for full graphical desktop

• Use lnx201 for everyday tasks, the CLASSE Compute Farm for resource-
intensive jobs

• For hardware control & other specialty tasks, ask your project mentor

• Do not put files in your home directory!

• CHESS students — work in /nfs/chess/user/<CLASSE-ID>/

• See https://xcitecourse.org/theme2/sf100/linux-commandline-scripting for
more guided materials on how to use the Linux command line at CLASSE

https://wiki.classe.cornell.edu/Computing/RemoteLinux#Remote_terminal_access
https://wiki.classe.cornell.edu/Computing/NoMachine
https://wiki.classe.cornell.edu/Computing/ComputeFarmIntro
https://xcitecourse.org/theme2/sf100/linux-commandline-scripting

1. Log on to lnx201

ssh kls286@lnx201.classe.cornell.edu

2. Change to a working directory

cd /nfs/chess/user/kls286/demo

3. Use emacs to write a “helloworld” script

4. Change the file mode of the script to be executable by the user who
owns it

chmod u+x helloworld.sh

5. Hop to an a compute farm node for interactive jobs

qrsh -q interactive.q

6. Change directories

cd /nfs/chess/user/kls286/demo

7. Run the script

./helloworld.sh

8. Log out of the compute farm

exit

9. Log out of lnx201

exit

Demonstration
The CLASSE Linux System

mailto:kls286@lnx201.classe.cornell.edu

2024-06-12

Scientific Computing @ CLASSE
Developing python code

Overview
• Managing python environments for development

• Introduction to jupyter

• Best practices: docstrings and style

Developing python code
Managing environments

System-wide default python

• No version options

• No permission to install packages
like numpy, scipy, matplotlib, etc.

• Can’t keep track of the
environment requirements for your
project

Your own python environment

• Use any version of python

• Permission to install any packages
your project needs

• Easy to keep track of the
environment requirements for your
project

Developing python code
Managing environments

conda

• Choose any python version

• Install packages, system libraries

• Install packages published for
conda or pip

• Can be slow

venv

• Must use the system default
python version

• Install only packages published for
only pip

• Usually faster

Developing python code
Exercise 1

To use conda, install miniforge and activate the base environment. On a terminal on the CLASSE Linux system, run:

1. cd /cdat/tem/<CLASSE-ID>

2. curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/
Miniforge3-Linux-x86_64.sh"

3. chmod u+x Miniforge3-Linux-x86_64.sh

4. ./Miniforge3-Linux-x86_64.sh

a. Accept license agreement

b. Specify new install directory: /cdat/tem/<CLASSE-ID>/miniforge3

c. DO NOT allow the installer to update your shell profile to automatically initialize conda

5. source miniforge3/bin/activate

Developing python code
Exercise 2

Create and activate an environment that contains the latest version of python. In the
same terminal used for exercise 1, run:

1. which python

2. conda create -n myenv python

a. respond to “Proceed ([y]/n)?” prompt with “y”

3. conda activate myenv

4. which python

5. Note the different outputs from the 1st and 4th commands!

Developing python code
Exercise 3

Execute some python code in your new environment. In the same terminal used
for the previous two exercises, run:

1. echo "print('hello world')" > helloworld.py

2. python helloworld.py

Developing python code
Exercise 4

Install a package in your new environment. In the same terminal used for the
previous three exercises, run:

1. python -c "import numpy"

2. conda install -y numpy

3. python -c "import numpy"

Developing python code
https://jupyter01.classe.cornell.edu

• Another way to interact with the CLASSE filesystem

• Open a terminal, create / edit files, or use jupyter notebooks

• Notebooks can be a friendly option for developing python code if you’re not
comfortable using the terminal, but…

• There’s a time and place for notebooks. Your project mentor can tell you if a
jupyter notebook is an acceptable form for the final version of your code

• https://wiki.classe.cornell.edu/Computing/JupyterHub

https://jupyter01.classe.cornell.edu
https://wiki.classe.cornell.edu/Computing/JupyterHub

Developing python code
https://jupyter01.classe.cornell.edu

• jupyter01’s file browser provides access to your /home/<CLASSE-ID>
directory

• Recall: your work belongs somewhere in /nfs/…, NOT  
/home/<CLASSE-ID>

• Solution: use the symbolic link created in an exercise from the previous
section to navigate to an appropriate directory for your project files

• To make a python environment available for use in jupyter, one must install an
“ipykernel” for it.

https://jupyter01.classe.cornell.edu

Developing python code
Exercise 4

Install an ipykernel for the environment you created in exercise 2

1. pip install ipykernel

2. python -m ipykernel install --user --name=my-python-env
--display-name "My Python Env"

3. In https://jupyter01.classe.cornell.edu, open a new python notebook in select
“My Python Env” for the kernel

https://jupyter01.classe.cornell.edu

Developing python code
Exercise 5

Write and run some code in your new python notebook. The code should print
“hello world” when the cell is run.

Developing python code
Best practices — docstrings

• Docstring conventions — https://peps.python.org/pep-0257/

• Every module, class, and function in your project should have a docstring

• Docstrings should be written with python’s built-in help(object)function and
automatically-generated human-readable API documentation in mind

• Pick a canonical format for your docstrings and stick with it. If you don’t already
have one picked out, I recommend choosing the sphinx docstring format

• TIP: write docstrings for each module, class, and function BEFORE you write the
actual code that goes inside

• …but if you don’t, ChatGPT usually does a good job at writing docstrings if you ask nicely

https://peps.python.org/pep-0257/
https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html

Developing python code
Docstrings & help(obj) example

def func_no_docstring(x, y=None):

 # Describe what the function does.

 # describe what the argument `x` represents

 # describe what the argument `y` represents

 # describe what this function returns

 return None

def func_with_docstring(x, y=None):

 """Describe what the function does.

 :param x: describe what the argument `x` represents

 :type x: object

 :param y: describe what the argument `y` represents,

 defaults to None

 :type y: object, optional

 :return: describe what this function returns

 :rtype: object

 """

 return None

> help(func_no_docstring)

Help on function func_no_docstring in module __main__:

func_no_docstring(x, y=None)

> help(func_with_docstring)

Help on function func_with_docstring in module __main__:

func_with_docstring(x, y=None)

 Describe what the function does.

 :param x: describe what the argument `x` represents

 :type x: object

 :param y: describe what the argument `y` represents,

 defaults to None

 :type y: object, optional

 :return: describe what this function returns

 :rtype: object

Developing python code
Best practices — style

• Style conventions — https://peps.python.org/pep-0008/

• Variable / function names: snake_case

• Class names: CamelCase

• Line widths: 79 or 99 characters (code) or 72 characters (comments & docstrings)

• …and many more guidelines that you are encouraged to follow

• You may break a guideline in PEP8 “when applying the guideline would make the
code less readable, even for someone who is used to reading code that follows
this PEP.”

https://peps.python.org/pep-0008/

Developing python code
Exercise 6

Copy the following code into a cell in your new jupyter notebook, then edit it so
that it adheres to best practices:

Prompt: problem 1 from Project Euler https://projecteuler.net/problem=1
def Sum_MultiplesofThreeor_five_below(n):
 Result=0
 for I in range(n):
 if I%3 == 0 or I % 5==0:
 Result +=I
 return Result
print(Sum_MultiplesofThreeor_five_below(1000))

2024-06-14

Scientific Computing @ CLASSE
Version control

Overview
• What is version control

• What is git

• Where to host your project’s code repository

• Practice using git

Version control

• Description of version control, and the motivation for having sophisticated
tools to help us do it: https://xcitecourse.org/theme1/pe103/vcs#why-do-we-
need-version-control

What is version control?

https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control

Version control

• Description of version control, and the motivation for having sophisticated
tools to help us do it: https://xcitecourse.org/theme1/pe103/vcs#why-do-we-
need-version-control

What is version control?

https://phdcomics.com/comics/archive.php?comicid=1531

https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://xcitecourse.org/theme1/pe103/vcs#why-do-we-need-version-control
https://phdcomics.com/comics/archive.php?comicid=1531

Version control

• git: the near-ubiquitous choice for version control software

• git: command-line tool for interacting with git repositories

• git repository: a copy of your project files and the history of changes you made to them. It helps you:

• Preserve snapshots of your project at different stages of development

• Develop different versions of your project that branch from a common root

• Merge branching versions of your project back to a common root

• A git repository can be hosted remotely using tools like github or gitlab. These help you:

• Share / distribute / deploy your project

• Track issues

• Publish documentation

What is git?

Version control (git)

• CHESS students:

• Your project’s git repository will be hosted in one of two places:

• For projects that should be public:

https://github.com/CHESSComputing

• For projects that should be shared only within CLASSE:

https://gitlab01.classe.cornell.edu

• There is a “correct” place to host every one of your projects. Ask your mentor if you are
unsure where your project belongs.

• All other students: ask your project mentor

Where to host your repository

https://github.com/CHESSComputing
https://gitlab01.classe.cornell.edu

Version control (git)

• repository: a collection of files with a history of developer-created checkpoints that preserve
the state of those files at different stages (e.g. commits)

• remote repository: a repository accessible via URL (i.e. the version hosted on github/gitlab)

• local repository: a repository on your local filesystem

• clone: a local repository that is a copy of a remote repository

• pull: an act that updates your local repository with any new changes on the remote repository

• commit: an entry / checkpoint in the preserved history of a repository

• push: an act that updates a remote repository with changes (like commits) made on a local
repository

Vocabulary

Version control (git)
Exercise 1

Set up a blank repository:

1. Log on to https://gitlab01.classe.cornell.edu

2. Create a new repository for your project

1. In upper righthand corner, click “New Project”

2. Create a blank repository (see screenshot —>)

3. Run:

1. git clone <https://gitlab01.classe.cornell.edu/kls286/myproject.git>

2. cd myproject

3. git checkout -b main

https://gitlab01.classe.cornell.edu
https://gitlab01.classe.cornell.edu/kls286/myproject.git

Version control (git)

• At any point:

• Use git status to examine the state of your local clone

• Use git diff to examine the differences between files in
the local clone and their “official” copy

• To make changes:

1. Create / modify files in a local clone

2. git add the files whose changes you want to keep

3. git commit the additions

4. (optional) repeat steps 1-3

5. git push the commits

Basic development workflow

Version control (git)
Exercise 2

Practice committing & pushing a change to the repo created in Exercise 1. Run:

1. git status

2. touch README.md

3. git status

4. git add README.md

5. git status

6. git commit -m "add README"

7. git status

8. git push --set-upstream origin main

9. git status

Version control (git)
Exercise 3

Practice pulling changes to your local clone of the repo created in Exercise 1.

• In the gitlab web interface, edit README.md

• In the terminal, run:

1. git fetch

2. git status

3. git pull

4. git status

Version control (git)

• Commit early and often so you can go back to previous versions of your
project if needed

• Each commit should represent one incremental change to your project
(e.g. don’t fix a bug and update the documentation in the same commit)

• Every commit needs a message that describes the changes you’re making

• To make the commit history easy to read, stick to conventions

commits

Version control (git)

• Use the imperative mood (e.g. “Fix bug”, NOT “Fixed bug” or “Fixes bug”)

• Format your commit messages:

• Some common commit types and their descriptions:

commit message conventions

type: short summary (50 chars or fewer)

More detailed description wrapped to 72 chars wide (optional)

feat: addition of some new features
add: changes to add new capability or functions
cut: removing the capability or functions
fix: a bug fix
bump: increasing the versions or dependency versions
build: changes to build system or external dependencies
make: change to the build process, or tooling, or infra
ci: changes to CI configuration files and scripts
doc: changes to the documentation
test: adding missing tests or correcting existing tests
chore: changes for housekeeping (avoiding this will force more meaningful message)
refactor: a code change that neither fixes a bug nor adds a feature
style: changes to the code that do not affect the meaning
perf: a code change that improves performance
revert: reverting an accidental commit

Subject line will be previewed in github / gitlab UIs

Blank line
Commit message body is optional — be as detailed
as is appropriate, and use Markdown syntax if it
helps legibility

Version control (git)

• Never keep passwords, API keys, or other “secrets” in regular files in any git
repository

• Never keep CLASSE hostnames, addresses, or file paths in a git repository
not hosted on gitlab01.classse.cornell.edu

• If you are unsure: ask your project mentor

Some security considerations

http://gitlab01.classse.cornell.edu

End

