
Software Infrastructure
Support for Analysis

Marc Paterno
Jim Kowalkowski
FNAL/CD/CEPA
CD-doc-435-v0

BTeV-doc-3278-v0

Contents

1 Introduction 1

2 Reconstruction and Analysis Frameworks 2

3 Data Formats Used in Analysis 4

4 Data Handling 7

5 Conclusion 8

What is not ordered to an end is not an effect.

— JOHN DUNS SCOTUS

1 Introduction

1.1 Motivation

CDF and DØ, the Run II experiments at Fermilab, provide the best laboratory for the study
of modern software practices in the context of the analysis of hadron collider physics data.
Experiments planned for the near future (within a few years of the time of this writing)1 may
benefit from analysis of these experiments’ experience in the development of software for data
analysis. We have written this document to collect and study the experience of CDF and DØ,
concentrating on subjects most relevant to the software written to support physics analysis by
physicists.

1.2 Scope and Coverage

We will primarily address final analysis, including the (often multi-step) transition from the out-
put of batch reconstruction to data formats used for physics analysis. We will tangentially ad-
dress reconstruction, as the core infrastructure software usually satisfies the needs of batch
reconstruction of data.

1July 2004.

1

mailto:paterno@fnal.gov
mailto:jbk@fnal.gov


2

To support final analysis, we must consider the various manners in which physicists prefer
to work. First, and perhaps most importantly, we recognize that there is no one solution preferred
by all. Different members of the community have different preferences in and requirements for
their analysis tools. While there is some broad commonality, too many of the specifics differ for
us to believe that any single solution will satisfy all members of a large collaboration. We believe,
therefore, that it is necessary for an experiment to support several mechanisms, to enable each
physicist to be most productive by working in the mode he prefers.

1.3 Purpose

To this end, we review the analysis methods in common use at CDF and DØ, describe how
data are currently transformed, explain the reasons for the common uses, and discuss what
infrastructure software is needed to support such analysis. We pay special attention to those
aspects of the systems that are most problematic—and perhaps most contentious—so that some
of these problems may be avoided in the future.

2 Reconstruction and Analysis Frameworks

2.1 Intended Role

The CDF and DØ experiments each have a modular reconstruction and analysis framework.
These frameworks were designed with the intent of being used in several environments:

• in the online trigger system,

• in the batch reconstruction farms,

• in the batch production of simluated sampples,

• in the batch re-processing (“correction”) of reconstructed data, and

• in the individual physicist’s analysis of data.

In particular, it was expected that the use and development of the “correction” algorithms
would be done in the context of the reconstruction and analysis framework. These corrections
were to be done in a module that was allowed to modify the event data, while an analysis module
was allowed to inspect, but not modify, the data.

In addition, it was expected that the physicists would produce analysis-level histograms in the
context of the framework. Viewing and fitting of histograms would be performed in an external
tool, and when creation of new histograms was needed, another pass through the data would be
taken using the framework. Each of the frameworks has “hooks” that were intended for use by
analysis modules, and these modules were expected to directly interrogate objects contained in
the reconstruction event-data model.

In practice, the frameworks were not used to this extent.

2.2 Actual Role

Relatively few of the CDF and DØ collaborators have used their respective analysis frameworks
for direct production of final-analysis level histograms. Many more use their experiment’s frame-
work as a tool for creating tuples of their favorite sort; these tuples are then used for the creation
of analysis-level histograms, and often for the development and application of “correction” code.
A majority of users avoided using the objects (of the event-data model) produced by the batch



Software Infrastructure 3

processing system. In some cases, professors thought they should “protect their students” from
the “complexities of the data” by transforming data from the event-data model into a tuple-like
structure. Since both experiments’ frameworks were designed with use for analysis in mind, it
is interesting to determine why they have not often been used for such.

Various reasons are put forth by the users:

• It is too hard to understand the data in the format of the event-data model; interacting with
the data is too complex.

• Building executables is too hard; there are too many steps involved.

• Building executables is too slow.

• The resulting executables are too large; too many libraries are needed.

• The resulting executables are too slow; processing data in the available format is too slow.

• The resulting executables take too long to initialize; the delay before the first event is seen
is inconvenient.

• It is too bothersome to write C++ code for simple analysis tasks.

• Handling ROOT histograms from a C++ program is harder than using the ROOT prompt.

• They want to use another environment (for example Python) to work with their data.

• Specifying the configuration and inputs of a framework job is too complex.

Some of these reasons are statements of user preference, and other are purported statement
of facts about the reconstruction and analysis core software. Our purpose is not to argue whether
such statements are true; the fact that such has been perceived, and such opinions are held, is
the point of our observation.

2.3 Summary

Experiments must work to avoid such perceptions where possible, but must also realize that
some such perceptions are inevitable. The requirements of an analysis system are different
from, and to some degree incompatible with, the requirements of a framework and event-data
model used in the trigger and reconstruction systems. CMS must therefore work to have the
core infrastructure software support the physicist’s wish to work in a software environment that
enables each physicist to perform data analysis to the greatest degree possible, given the finite
resources available.

A particularly bad effect of the perceived difficulty of working in the framework environment
is that fact that algorithmic code (“correction” code) has been introduced in the tuple-based
analysis environment. This is bad for several reasons:

• Metadata is not kept to indicate what corrections have been done, or what versions or
parameters have been used.

• The order in which corrections are done is often ill-controlled.

• When the order is well-controlled, this is because a private “mini-framework” has been
introduced.

• Because the corrections are not done in the production environment, the code is often not
under revision control, and the processing is not sufficiently well documented.

Becaue of these defects, the correction process is not sufficiently understood or reproducible.



4

3 Data Formats Used in Analysis

CDF and DØ differ in the format in which the output of batch reconstruction is written to per-
manent storage. DØ uses EVPACK, a modification of DSPACK; CDF uses ROOT files. Thus it is
not possible for DØ physicists to directly read reconstruction output files from a ROOT session2.
While it is technically possible to read CDF reconstruction output files from a ROOT session, this
is not a manner in which any significant number of physicists work.

In both collaborations, physicists transform the data from the format used for batch recon-
struction into a format which seems (to the individual performing the analysis) more suitable for
use in analysis. In this section, we discuss the data formats most widely used.

3.1 Simple structs

Simple struct s, or their equivalents, stored in a variety of formats, are widely popular. By
“simple struct ” we mean a data format that requires no experiment-specific software for its
interpretation. Some such constructs, widely used, are:

• Fortran commonblocks,

• C struct s, and

• C++ class es with only trivial “getter” and “setter” methods.

These are all similar in that they are tabular data, which may be easily stored, retrieved, and
manipulated, in a variety of file formats. The formats in use at CDF and DØ include:

• ROOT tuples3,

• PAW ntuples,

• Excel spreadsheets4,

• R dataframes5, and

• ASCII files.

3.1.1 Benefits

Direct manipulation of event-data objects in the reconstruction output requires understanding
many facilities of a complex language (C++). Manipulation of data in the form of simple struct s
requires understanding of far fewer features of the language, (or perhaps none, if direct data
inspection tools are used). Thus there is a much smaller learning curve associated with the use
of struct -like data. Of particular importance is the fact that these facilities may not all be useful
for doing analysis.

At DØ, users unfamiliar with C++ templates often found the template mechanism by which
access to objects in the event is obtained to be confusing. This mechanism was designed to make
such access easy, but because it used a feature of C++ unfamiliar to new users of the language,
it was a stumbling block for those new users. At CDF, the complex iteration mechanism used

2DØ has available, but does not current use, a ROOT-compatible version of their event-data model.

3We use the term ROOT tuples to include TTree and its subclasses, such a TNtuple and TNtupleD.

4Excel is the spreadsheet component of Microsoft Office

5R is the free implementation of the S programming language and data analysis environment; see http://www.r-
project.org/.

http://www.r-project.org/
http://www.r-project.org/


Software Infrastructure 5

to access objects in the event data was a stumbling block for new users. Being unfamiliar with
the common C++ iterator idioms, new users had a difficult time adjusting to the use of iterators
rather than direct use of collections.

ROOT’s TBrowser class, its TTree class’s “full split” mode (a struct -level column-wise ntuple)
and the Draw language6 work best with simple struct s—not objects with private data. This is
because private data often has a compact nature, it not labeled for convenient use, and may not
be meaningful without the manipulation of the public interface of the class.

Because the Draw language is not sufficient for all tasks, ROOT makes available the CINT
language7 can be used for more complex tasks. For still more complex tasks, one can write
C++ code, which can be compiled and dynamically loaded using ACLiC 8 Neither of these is a
feature of the struct -like data format. Some users view writing their own simple event loop
inside of a CINT macro or C++ function to be preferable to use of the event loop provided by the
reconstruction and analysis framework.

Typically, no language-specific or experiment-specific code is needed to understand data
stored in such a format. An off-the-shelf version of the chosen analysis tool (often ROOT) suffices.

The storage of data in simple struct s facilitates access to those data from other software
systems. Some such systems are: other analysis toolkits (such as Java Analysis Studio (JAS)
or R), scripting languages (such as Python or Ruby), relational database management systems
(RDBMS, such as Oracle, MySQL, PostgreSQL, and SQLite), and from any software tool with a
C-language interface.

3.1.2 Drawbacks

Lack of abstraction ability makes handling of complex tasks more complex—this argument is
essentially the argument for object-oriented design. In particular, such things as “correction
code” becomes a significant maintenance burden. Algorithmic code that uses these struct s
is often hard to analyze, and thus hard to optimize, if it is slow. Furthermore, such code is
sometimes unreliable, because code that is hard to analyze is hard to test, and to prove correct.

During the CMS DST 2004 workshop, opponents of struct -like formats noted the lack of
metadata. Much of the use of this data format by CDF and DØ is consistent with this observation.
This lack of metadata is not an inherent feature of struct -like data; it is a feature of such data
being an afterthought, without sufficient design.

3.2 Object Instances in ROOT Files

Object-like data consists of instances of non-trivial classes. In general, these contain private
data, which are in a format convenient for implementation of the object, and which are often not
convenient for direct manipulation. Such objects are intended to be used through an interface,
which manipulates the private data. This manipulation can include non-trivial transformations,
and may allow for multiple views of the data. language-specific navigation methods may be
presented to associate related objects.

6The Draw language is the special language implemented by the TTree class’s Draw function. The ROOT documentation
does not name this language; we name it Draw for reference in this document.

7The CINT language is the language implemented by the CINT interpreter embedded in ROOT. This language is related
to, but differs in significant ways from, the ISO C++ programming language. The ROOT documentation often refers to this
language as C++, but we find it convenient to distinguish between the two.

8ACLiC is ROOT’s “Automatic Compiler of Libraries for CINT,” which uses the same C++ compiler used to build ROOT
to build dynamic link libraries containing arbitrary C++ code which may then be called from the ROOT prompt.



6

In contrast to struct -like data, which can be stored in a variety of formats and has been
used with a variety of tools, ROOT is the only object persistency mechanism in wide use in the
HEP community.

3.2.1 Benefits

Class design provides for more sophisticated functionality—again, this is the argument for object-
oriented design. When used well, this eases the development and maintenance burden. This style
of analysis often helps in the creation of more sophisticated “correction” algorithms, where the
advantages of object-oriented have been seen as valuable.

For example, DØ uses a format in which most reconstructed objects (electrons, tracks, jets,
etc.) share a common implementation, and so can be used polymorphically. This has made it
easier for physicists performing analysis to understand the different objects. It also makes it
possible to write analysis software than can manipulate any of the physics objects, and thus
makes sharing—and collaborative improvement—of code possible.

3.2.2 Drawbacks

Use of the additional power of classes generally requires CINT code, or when speed or reliability
is required, writing C++. ACLiC makes the integration of such code into a ROOT session easier,
but many physicists do not like writing analysis code in C++.

The Draw language is much less useful when dealing with real objects (as opposed to struct s),
because it does not support the use of general C++ constructions.

Code produced at an interpreter prompt (such as CINT or Python) often lacks design. No
useful abstracts are identified, no increase in understandability of the code is obtained, and no
correctness or performance benefits are realized. In short, when design is lacking, the advantages
of object-oriented design are lost.

The use of real objects requires experiment-specific code; an “off-the-shelf” version of ROOT

(or any analysis tool that does not store object code, as well as data) does not suffice.

Executables that use objects in ROOT tend to be much larger than those that use struct -like
data, because the C++-based functionality of the objects is made available at the CINT prompt
through the ROOT dictionaries and class method wrapper functions. This is a property of mixed-
language programming, needed in this case to make function from a compiled language (C++)
available from an interpreted language (CINT). This would not be necessary in a system that
used an interpreted language throughout.

If the classes used in this object-based format are not the same as those used in the trigger
and reconstruction code, “correction” algorithms developed for use with them can not be easily
moved from the analysis environment to the production environment.

3.3 Summary

Both struct -like and object-like data formats are popular, and each will be wanted by many
physicists. Their creation and use must be supported by the core infrastructure.

Why did physicists not use the event-data model and the framework provided by their exper-
iments? Different users reported different reasons, sometimes reflecting differences between the
event-data models of the experiments, and sometimes reflecting the different software develop-
ment strategies favored by the physicist.



Software Infrastructure 7

Some physicists prefer a “flat” (tuple-like) data model to a hierarchical model because it is
easier to manipulate a flat model from the ROOT prompt. This is largely a reflection upon the
strengths and weaknesses of the Draw language, which lacks sufficient facility for manipulating
structures more complex than a (flat) tuple. This seemed to be commonplace at DØ, where
the hierarchical nature of the data was very strong. Since the output of the DØ reconstruction
program is typically stored in the Event as collections of objects, explicit C++ loops are needed to
access each element (e.g. each track, each jet) in a collection. “Flattening” this hierarchy into a
tuple makes the data available for use in the Draw language.

Some physicists found it hard to decode, or to understand, the hierarchical model. This was
commonplace at CDF, where many of the algorithm groups, finding iterator interface of the CDF
Event insufficiently convenient, wrote their own interfaces to event data. The end result was too
many interfaces for some users to master. A few experts in the event-data structure wrote code
which unwound the data of the event-data model into a flat tuple-like structure; non-experts
then did not need to learn the many interfaces known only to the experts.

Some physicists found it inconvenient to read the descriptions of the available elements of
the event data. Because the C++ classes were described in many header files, spread over many
different subdirectories, learning about the available data was difficult. Unpacking the many
classes into a few struct s or classes made the amount to be learned smaller, and thus easier.
At DØ, the classes written to one of the commonly-used object-based ROOT files are more closely
related (i.e. they shared useful common base classes), than the classes used in reconstruction.
This makes their interfaces and their use more uniform, and thus easier to learn. Perhaps be-
cause these analysis classes were defined later than were the analogous reconstruction classes,
their design more closely reflected that which users (of this data format) wanted. Unfortunately,
DØ never updated the classes used in reconstruction to take advantage of this improved under-
standing.

In some cases, is seems that the sort of separation of ideas that is useful for validation,
maintenance and performance in the software has made it harder to understand the classes to
those performing analysis. At least in part, this seems to be due to the difference in the point-
of-view between the experts writing reconstruction code and the less-expert using the results of
reconstruction. It seems that the classes optimized for best use in reconstruction are not best
optimized for analysis use.

There is a tension between the short-term good and the long-term good. In the short term,
the easiest way to add new information to the data is often to just put another bit of data into the
collection of existing data—adding a new number to the tuple, with no additional organization
needed. But after many such additions, the result is that the tuple (which may have been
well-designed and coherent at first) grows incoherent and difficult to understand. Thoughts of
long-term maintainability might have urged more design effort; but this is slower, and it is not
always obvious what future uses will appear, and so it is not always obvious what the more
maintainable design would be.

4 Data Handling

4.1 Handling Event Data

When the reconstruction output is not directly used to make final analysis tuples, and an inter-
mediate tuple format is used instead, the process of performing corrections (and certifying data
sets) becomes more complicated. Extra data handling is necessary, and this extra data handling
is often not performed as part of the batch production system, but rather by individual algorithm
groups or physics groups. The certification process delays the availability of the data for use by
the physics groups, because this certification is additional certification beyond that required for



8

the reconstruction program itself. The certification process is time consuming. In some cases,
this delay has amounted to several months. The programs used to process the intermediate tuple
format amount to another framework. Since this framework is often under-developed, and lacks
the features of the experiment’s reconstruction framework, its use is often more difficult. For
example, automatic of handling of metadata is sometime non-existent, and so tasks performed
automatically by the reconstruction program are done “by hand”, and in a less reproducible and
certain manner, by the physicists running the reprocessing programs.

Obviously, saving data in multiple formats requires more storage, and generating those mul-
tiple formats requires more processing power, all of which increases the data handling burden on
an experiment. However, in both CDF and DØ, this storage space and processing power is used,
in efforts centralized to differing degrees, because physicists will produce data sample which fit
their perceived needs whether or not such samples are provided by their experiment’s production
system. CMS will benefit from making sure its event-data model, and metadata model, help ease
the burden.

4.2 Handling Metadata

In general, those using struct -style data do so because they prefer simplicity in their analysis
software; those using object-style data d o so because they prefer power. The metadata handling
for each of these styles of use should be made to fit the different styles.

What metadata access to users of struct -style data want? Because they want to be able to
work without experiment-specific libraries, it would seem sensible to store the most important
metadata in the event data itself. For example,

• the version numbers of critical algorithms,

• the most important parameters of critical algorithms, and

• the version number of the production program.

In addition, it is possibly valuable to have some compressed identifiers in the event data which
can be used (possibly outside the analysis system) to look up the full provenance information
elsewhere. That “elsewhere” might be in another file (perhaps in the same file format as the event
data themselves), or it might be in a more formal “database” (anything from a local SQLite or
Berkeley DB file, to a remote PostgreSQL, MySQL or Oracle database).

Those using object-style data may be interested in more options for programmatic access to
the metadata. For such users, it would be beneficial for the metadata model of the analysis
system to be as similar as possible to the metadata model of the trigger and reconstruction
system. After all, the major reason for the production system’s metadata model is to provide the
information necessary in analysis.

5 Conclusion

In this document, we have described features of the infrastructure software of two current ex-
periments. In hindsight, we can identify several flaws in their systems. We have described some
of them in this document. Figure 1 summarizes the flow of data described in this document.

Analysis and design shortcomings in the reconstruction frameworks led to difficulties in the
analysis stage. It is important to note that it seems inevitable that some fraction of physicists
will avoid the reconstruction and analysis framework. By recognizing this early, one can prepare
for it in the core infrastructure, rather than requiring modifications at a later date. One can also
plan for adequate handling of metadata, for reproducibility purposes; this is often lacking in the



Software Infrastructure 9

Figure 1: The three main data flows appearing in physics analysis.

ad hoc “intermediate tuple” translation. Such design can also reduce the effort required for a
physicist to begin a new analysis. It can also reduce the redundancy of data. Some redundancy
of data is beneficial, e.g. local copy of “final sample” for thesis analysis, because the various
trade-offs among different physicists’ perceptions of benefits can not be “solved” once for all
physicists.

A goal of the design should be the elimination of the “intermediate tuple” format. Creation,
storage, and handling of this intermediate tuple is an unnecessary burden.


	1 Introduction
	2 Reconstruction and Analysis Frameworks
	3 Data Formats Used in Analysis
	4 Data Handling
	5 Conclusion

