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I. Overview

The analysis presented here is based on the methods employed by Zolotorev (Phys. Rev. E,
Volume 50, No. 4, October 1994). Briefly, each time the electron passes through the OSC kicker,
it will interact with its own radiation (the coherent field - described in detail in David Rubin’s
November 16, 2017 note) and the radiation of the nearby electrons (which will give a much larger,
random kick). We also include damping and excitation due to the usual radiative effects in the
rest of the storage ring. Balancing the coherent and incoherent kicks each electron sees in the
OSC kicker gives us an optimal value for the strength of the radiation for a given set of optics and
beam current, which in turn lets us determine the equilibrium emittance of the beam. Finally,
reasonable values for the parameters are included to get estimates for the size of the effects we
may expect to see.

II. Definitions

The emittance of the beam in the kicker will be given by ε = βx′2 + 2αxx′ + γx2.

In the pickup, a single electron will produce an electromagnetic wave with amplitude such that,
after amplification and focusing, it will give an in-phase electron in the kicker a fractional energy
change of ξ.

I will refer to the electron phase space coordinates and emittance as x, x′, and ε before a kick and
xk, x′k, and εk after a kick.

There are N other electrons contributing to the radiation seen by any given electron. (If there are
M undulator periods, of undulator period λ, then N will be the longitudinal electron density of
the bunch multiplied by Mλ.)

Unless stated otherwise, all parameters will be evaluated in the kicker.

III. Incoherent Effects

The incoherent radiation field seen by our electron will give it a fractional energy kick of
ξ
√
N sin(φ), where φ is a random phase. (The intensities of the N electrons add, so the incoherent

field scales as
√
N .) We then find that the new phase-space coordinates of our electron are

xk = x+ ηξ
√
N sin(φ)
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x′k = x′ + η′ξ
√
N sin(φ)

This implies that the new emittance will be

εk = β(x′ + η′ξ
√
N sin(φ))2 + 2α(x+ ηξ

√
N sin(φ))(x′ + η′ξ

√
N sin(φ)) + γ(x+ ηξ

√
N sin(φ))2

Since φ is random, 〈sin(φ)〉 = 0, but 〈sin2(φ)〉 = 1
2 . It then follows that the change is emittance is

given by

∆ε = εk − ε =
N

2
β(η′ξ)2 +Nαηη′ξ2 +

N

2
γ(ηξ)2

∆ε =
N

2
ξ2(βη′2 + 2αηη′ + γη2)

∆ε =
N

2
ξ2H

where H ≡ βη′2 + 2αηη′ + γη2.

IV. Coherent Effects

The coherent radiation field seen by our particle will be produced only by itself. From David
Rubin’s note on November 16, 2017, we have that, in the best case,

∆ε = −ξ(γη2 + 2αηη′ + βη′2)1/2
µ1√
εmax

ε

where µ1 ≈ 3.8317 is the first root of the Bessel function J1(x). Using H defined above, this
simplifies to

∆ε = −ξH1/2 µ1√
εmax

ε

V. Equilibirum Emittance Calculation

Combining the above equations, we find that, each time the electron passes through the OSC
insertion, the change in its emittance will be

∆ε = −ξH1/2 µ1√
εmax

ε+
N

2
ξ2H

Since we are operating this device in a storage ring with significant radiation damping, we must
also consider those effects. Using the standard model of radiation damping, we will see both
heating and cooling from the radiation, so that
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∆ε = −2αε+K

where α is the horizontal damping coefficient and K represents the heating from the synchrotron
radiation. (I could not find any simple standard variable to represent the latter.) In the 500 MeV
CESR lattice, these parameters have values 2α = 7.16× 10−7 and K = 1.88× 10−16m. Solving for
the equilibrium (∆ε = 0) in the case with no OSC insertion gives ε = K

2α = 263 pm-rad, in
agreement with the emittance claimed by cesrv. If we now include all known effects on the beam,
we find that, in one turn,

∆ε = −(2α+ ξH1/2 µ1√
εmax

)ε+ (
N

2
ξ2H +K)

It folllows that the equilibrium emittance will be

ε =
K + N

2 Hξ
2

2α+ µ1√
εmax

√
Hξ

To find the optimal value of ξ for some given lattice, we may set the derivative of ε with respect
to ξ equal to zero. This gives us an equation for the optimal value of ξ:

0 =
N

2
µ1√
εmax

Hξ2 + 2αN
√
Hξ −K µ1√

εmax

VI. Physical Values

At this point, we may insert numbers into our formulas to see what sort of ξ values we need to
obtain, and how much of a change in beam size we may expect to see. We first note that in
neither of the last two equations do we see ξ or H alone, but only in the combination ξ

√
H, so

adjusting H will only affect the requisite ξ value, but will not affect the final emittance. In order
to get a scale for the ξ required, pick H ∼ 1. Let us pick εmax = 10εuncooled = 2.63 nm-rad. Then,
the only parameter left to determine the emittance is N , which will be fixed by the beam current.
To get the beam size, we note that the 500 MeV lattice has β = 8.5 m at the VBSM source point.

With one bunch at 0.1 mA, N = 9.6× 105. This gives us
√
Hξ = 5.37× 10−11, which, if H = 1,

corresponds to an energy shift of 6.2 meV, a reduction in emittance from 263 to 160 pm-rad, and
a reduction in beam size from 47 to 37 microns. Given that unamplified radiation will, to first
order, give us an energy kick of 290 meV, there does not seem to be much need for an amplifier,
and we may in fact want to do the reverse, or reduce H.

Our assumption about using µ1 as the maximum value of the Bessel function we wish to use is
probably too optimistic, since David’s paper also assumed that the argument of the Bessel
function was small enough to be approximately linear. If we make our assumption more
conservative, using 1 in place of µ1, we find a beam size reduction of 1.5 microns, which is at the
limit of what I could detect in the past. Reducing the current by a factor of 10 would bring the
beam size reduction to over 8 microns, which should be a very clear signal.
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