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1 Optical Cooling

Consider optical stochastic cooling using dependence on transit time through the bypass to couple
transverse and longitudinal phase space in the pickup to phase in the kicker. The packet emits radiation in
the pickup undulator that will arrive in the kicker with some relative phase ¢ = kAs, where k is the
wavenumber of the characteristic undulator radiation and As = s — sq is the change in path length through
the bypass. The interaction of the packet with the radiation in the kicker shifts its energy by

Ap/p = €sin(9) = Esin(kAs). (1)

In order to effect cooling, the phase is necessarily correlated with the phase space coordinate of the packet
in the kicker, ¢(Zp,). That is, the phase depends Z,. The linear dependence of As on &, is written

As = M51Ip + M52£C; + M5GZI/7 (2)

where M is the 6X6 transfer matrix from the center of the pickup undulator to the center of the kicker.
Since © = x5 + z. and 2’ = xj; + x, equation 2 becomes

As = Ms; (,’L‘g + CL‘E) + M52(l‘/5 + 6/6) + M5GZ‘;
As = M51£E5 + +M52.’E:8 + (M51’I7 + M5277/ + M56)ZII) (3)

Next we write phase space coordinates at the pickup in terms of betatron amplitude and phase

Tpg = a+/Bpcosh

s = 1 aB cosf — —2_sind (4)
B 2 /Bp /Bp
= —L(ap cos 6 + sin 0) (5)

VB»

and likewise at the kicker for future reference

Ty = ar/ B COS(9+¢) (6)
a .
Ty = —ﬁm(cos(e + @) +sin(0 + ¢)) (7)
Then
a, cos f + sin @ a,cosf, +sinf,
As = a(Ms1\/B,cos) — M52(p\/E)) — ax(Ms1n + Mson' + M56)( L A )) (8)
As = Agsin(0; +0,) + A, sin(0, +6,,) (9)
where
Ar = ag [M3 S0+ Myy, — 2M51M5204x]1/2 (10)
1 Ms518, — Mso«x
o 1 51Mp 52Cp
0,0 = tan B T (11)
A, = a,(Msin+ Msan' + Msg)v: (12)
2 Cooling

The cooling is quantified as the change in the invariant amplitude due to interaction of packet with
radiation in the kicker undulator. At the kicker Azyg = —niAp/p and Aw;ﬂ = —n,Ap/p. And

Az =0,Az;, = Ap/p. If & = az\/By cOs ¢y, O 2 = az+/B cos ¢, then the amplitude

aZ = ,@a:’Q +vz? + 20xa’



The change in the amplitude

AdZ = —2(Ap/p)(Bawisly + VaTrsle + Cu(TrpTl), + Thgnk)) (13)
g cosf + sin 6
Aai = —Q(Ap/p)((%ﬂh + aa:n;g)a’a: V ﬁx cos ) — %(ﬁaﬂ?; + amnk)(—)
VB
sin 0
Aa? = —2(Ap/p)((vane + auty — et w”k \/ﬁx c0s 0 — ay (Bt + oratie) ()
VB
9
Aa? = —2(Ap/p)ay(—= cosb — (Bun), + aun
= —2(Ap/p)E,sin(0 + 0c) (14)
where
20, 1\2 2.2 /
B, = a(L B=(n')" +a’n +2aﬁnn)1/z
B B
= ag(Py + B’ + 2an'n) /2 (15)
S | n
0,c = —tan R (16)

0. is the horizontal betatron phase at the kicker. The corresponding change in the longitudinal amplitude

Aa? = 2(Ap/p)(B.z) + a.2) (17)
= 2(Ap/p)a.(—/B-(a. cosb, +sinb.,) + a.+/B cosb.)
= —2(Ap/p)a.+/B.sinb,
= —2(Ap/p)E: sin(0.1) (18)

where 6, is the longitudinal betatron phase at the kicker. Combining equations 1 and 13 we find

Aai = 72(5 Sin(kAS)) ((51$;c,877;c + V2ZrpNe + am(xkﬁn;c + Jfkgﬁk)) + (ﬂzZ;c + azz)) (19)
= —2¢sin(kAs))(E, sin(Ogx + 0xc)) (20)
—2¢sin(k(Ay sin(0yp + Oy1) + A, sin(b,y, + 0,1)) (Eyp sin(0zx + 0zc)) (21)

Now let’s average over all betatron phases

27

Aa?dh,df,

_o¢ / Sin(k(Ay $in(8ay + 0ar) + As sin(0ay + 020)) (B sin(0p + Oac))d0odd.  (22)
0

_o¢ / sin(k( Ay sin(0,) + Ao sin(0 + 0.0)) (Es sin(0s + 0o + Oue — 0u1))d0d0. (23)

where we use the fact that the betatron phase advance from pickup to kicker is 6, that is 0,5 = 0., + 6o
Then

(Aa?) = —2§Ex/[sin(kAx sin(6;)) cos(kA, sin(0, + 0,;))+
cos(kA, sin(0,)) sin(kA, sin(0, + 0.+))] (sin(0y, + 0o + 0zc — 04¢))d0,d0, (24)
= —20E,Jo(kA.)V2sin(0.; + 7/4) / sin(k(A, sin 0,) [sin 0, cos ¢ + cos 0, sin ¢] df,  (25)
= —26E,Jo(kA)V2sin(0., + m/4)J1 (kAy) cos(Bo + Ope — Ot (26)
We used the Bessel integral

In(z) = = /O7r cos(nt — xsin(r))dr = 1 /O7r (cos(nT) cos(z sinT) + sin(nt) sin(z sin 1)) dr

™



Optimum cooling is realized when 6., = nm and 6y + 0. — 05 = mn. For example if 7, = o, = 0 and
Mso = 0, and 0y = 7 then

(AaZ) = —26E,Ji(kAy)Jo(kA.) (27)

There is cooling as long as Jy(kA;) > 0 and Jo(kA,) > 0, or if kA, < p; where py = 3.8 is the first zero of
J1 and kA, < ug the first zero of Jy. Therefore

kA, < pp—ax< it 72
(M2, B + M3y, — 2Ms1 Moo, ]

Ho
kA, < —a, <
Ho (Ms1n + Msan' + M)y

thus determining the maximum transverse and longitudinal betatron amplitudes that can be cooled. Or we
can write that

1/2
[M521ﬁz + M2y, — 2Ms1 Msoar, | 7o« a (28)

max
ka™

For small z, Ji(z) ~ § and Jo(x) ~ 1. In that limit Equation 27 becomes

2 1 Ay
Ad2 ~ —2ta,(n*y+ By'” +2a8y'n)" /2 <u1 >

2 \ M gmas
Aa? 2 H
-t~ EPy BT 20‘5”/’7)1/2%
Some numbers: a2 ~ €mae ~ Inm, and (n%y + 81> + 2a87'n)/2 ~ 1, and |Aa‘;i| < 1 then
3x107°
=g~ 107
Recall
Ap

> Esin(kAs).

The most effective damping requires that the power in the kicker undulator be sufficient to change the
fractional electron energy by 1 part in 10° or 3 keV for a 300 MeV electron beam. Constraints on the
design of the optics of the bypass and lattice are:

1. Minimize a;. a, is the maximum transverse amplitude that will be cooled. a2 ~ ne, where n is order
2 and €, is the equilibrium emittance from radiation damping. (Equation 28)

2. Maximize [Mglﬁx + Mngyw — 2M51M52aw} 1/2 (see Equation 28) where Ms; are the elements of the
transfer matrix from pickup to kicker and 7,7’ are dispersion in the pickup. -, is longitudinal twiss
parameter.

3. Maximize E, (Equation 15)

4. Maximize |cos(0p + Oyc — 04¢)| (see Equations 11 and 16. 6 is the horizontal phase advance from
pickup to kicker.

5. Maximize |sin(6,; + 7/4)|, (see Equation 26).

3 Longitudinal motion

Evidently longitudinal cooling requires Jo(kA,) > 0 and therefore kA, < uo where p is the first zero of J.
Then

Ho
ka, < 29
(Ms1n + Msan' + Mg). (29)



Combine Equations 1, 10-12 and 29 to determine the change in longitudinal amplitude in the kicker.

Aa? = —2(¢sin(k(Aysin(@yp + 040) + Az sin(0,, + 0,4)) (E, sin6,y) (30)
As for transverse motion
(Aaﬁ) = ﬁ / —2(&sin(k(Ag sin(byp + 04¢) + Az sin(b,p + 0,1) ) (E, sin 6, )d0,pdb (31)
i —Tr
= —26E.Jo(kA)V2sin(0y; 4+ w/4)J1(kA,) cos(0.0 — 0.) (32)

4 Summary

If a,, a, are the invariant horizontal and longitudinal betatron amplitudes, for «, 8,7,n,7" in the pickup
and Ms; transport from pickup to kicker then

My 8 — M,
Ay = ap [MZ 3+ MZyy — 2Ms Mz Y2 6,0 = tan! w
52
AZ = Qa; (M5177 + M5277/ + MSG)')/Z’ 020 = tan_l (o7
then
As = Agsin(f, + 0,0) + A, sin(6, + 6,9) (33)
The change in the square of the invariant amplitude due to the change in energy in the kicker
Ad? = —2(Ap/p)E,sin(0u + 0.c)
where for n,v,n’, a, 8 in the kicker
Ey = ax(*v+ 80" +2ann)?, 04 = —tan~! S —
(™ + Bn ') B+ o

Then averaging over betatron phase
((Aa2)) = —26F, J1(kAy) Jo (KAL) cos Oz0pk cos 0501

For a particular choice of twiss parameters and phase advance cos 8,01 = 1 and cos8,9pr = 1. As above we
write [M2, B, + M2y, — 2Msy Mssae] /% ~ 2 g0 that

ka;naz
Ae 2 ’2 r,oN1/2 M1
— o~ =&y + BT+ 208n'n)—— (34)

€ €max

5 Power

Recalled that Ap/p = sin(kAz). Ap/p is the fractional energy change on passage of the electrons through
the kicker undulator. Evidently the amplitude of the energy shift is £. Solve 34 for

g _ Aﬁx v €max
o [ ,LL1M

where ¢, = a2 where M = (n2y + 81> + 2a8n'n)Y/2. If we aim to correct the offset measured in the pickup
in a single pass through the kicker then

¢ M
If M ~ 1, and €4, ~ 1 nm, then the required fractional energy change & ~ 107°. For Epcqm = 300MeV,
and the number of electrons in a slice Ny = 10° then AE = £ EpeqmNs ~ 300MeV = 4.8 x 10~ J. The
total power for the 0.1mA bunch is P = I£FEpeqm = 0.3 W
How to think about this. Suppose the accelerating fields are contained in a pulse of radiation that
co-propagates with the electrons. From above we conclude that the peak accelerating field is E =3 keV.
The energy density is u = %EQ = %GOE’Q ~ 388 x 10712 x 9 x 106 =4 x 107" Joules/m?®. If the volume is 1
cm X 1 mm? then the total energy is U = 4 x 10713 Joules.




6 Limits
In that limit where kAs < 7/2, and with substitution of equation 2 into 19 we have
Ae, = —=2(Ek(Msizy + Msaxy, + Mssz,)(Be@hsly + Yalrsle + (e + ThaMk)) (36)

We compute the average change in the emittance (Ae,) where the average is over betatron phase.
Substituting Equations 4-7 into 36 and averaging over betatron phase (see Appendix for details)

2
(Ae,) = 727r§k%(M51 (« / Bp B sin ¢, + \/gznk (cos ¢ — ay sin qﬁ))

4+ M5, &n;(cos ¢+ apsing) + L77;€ (sin (1 + apayy) + cos play — ayp)) (37)
P Bkﬂp

= —7ntka*M (38)

Consider a couple of special cases. If the phase advance ¢ from pickup to kicker is ¢ = 7 then

(Aez) = *zﬂﬁka—z(Mm (\/Fpnk> + Ms2 <\/5777’ - Lm cos p(ay — a )))
’ 2 B B\ BBy o

and if the optics are symmetric so that Sy = By, = —ap, M = Np,7}, = —77;) then
a? ’ n
(Aez) = 27T€k?(M517] + Mo | ), + 5o P(200k)

7 Sample Lengthening

As noted above, cooling requires that the change in path length be less than the optical wavelength,
As < A. Substitution of Equations 4 and 5 into the expression for the change in path length 3
The average change in path length is of course (As) = 0. The mean square change in path length is

™
((As)?) = 3 (a®(M3, By + MZyy — 2Ms51 Ms20t) + a2(Msin + Mson' + Msg)*vz)) (39)

a? and a? are the horizontal and longitudinal emittances respectively. Particles with amplitudes within one
standard deviation of the emittance will be cooled if /{(As)2?)) < A.

8 Damping
The matrix that maps from kicker to pickup is My, and from pickup to kicker M,;. At the kicker
0 00 0 O 0 0 0 O
x|y | == 00 o fan a0 an | T
Ap/p 00 ¢ 0 0 0 0 0
where &), is the phase space vector in the pickup. Then the effect of a single turn is
T 1 = MppMip@y, + AT = (M M; + Mpp) Mip @ = Tk (40)

The full turn matrix at the kicker is
T=AM+M



where

AM = MMMy,
M = MMy,
Compute the eigenvectors (7;) and eigenvalues of M. We know how to do this since we have standard
methods for diagonalizing a symplectic matrix. (The eigenvalues are A\X = e*#+ and A} = e*=) where y,

and p, are the horizontal and longitudinal tunes.) Then in the limit where AM is small, (it clearly scales
with {kMgf) the shift in the eigenvalues (tunes) is given by

AN; ~ 7T (AM)T;

An imaginary component will correspond to damping.

8.1 Pickup to Kicker matrix

Next to work out the matrix M, that maps pickup to kicker. We can write

A k B k
M. _ y2 D
P (Cpk Dpk)

_ (Ms1 Mso _ (1 Mse
o= (5 ") o= )

The symplectic condition requires that

And

ASAT + BSBT = S
ASCT + BSDT = 0
CSAT +DSBT = 0
csct + pspT = §

from which we can conclude that
B = ASCT(D")7's

For simplicity we suppose oy, = a3 = 0. Then

A = [ COSHa B Sin fig
pk  — _smfr COS [ig
- 1 Msg
pa = (o ')

By — (Cciisn’ff B sinuz> (0 1) (M51 o) ( 1 o) (0 1)
— S cos g -1 0) \Ms2 0)\-Mss 1)\-1 0
_ <CO.S/1193 Bz Sin,ua:> (MSZ O> <0 1 ) _ <C0$M$ Bz Sinﬂaz) (0 Mg > (41)
— gt cos g —Ms1 0) \—-1 —Msg —S5E cosp, 0 —Ms

where i, is the phase advance from pickup to kicker. We assume 3, = B. If i, = 1, and n;, = 1, = 0 then

0
Bpk = (I - Ai’k) <0 g)



then from 41

0 0 M,
By = (I—Ap) (0 7777,> . (0 —J\Z1>
—1 0 ny\ _ 0 M52
- Apk (I - Apk) (0 77/) - (0 —M51

_ 0 0 M

1oy _ ny _ 52

L () D)= (0 )

Evidently Ms; and dispersion are dependent and the product of dispersion and Ms; in Equation 12

_ M
nMsy +n'Msy = (Ms1  Msg) (:}) = (Ms1 Ms) Apkl(ff Agt) (—M;)

Not sure what we learned with the above but at least now I know how to write the full turn at the pickup
and the kicker, that is assuming they are the same, and neglecting RF.

CSAT + DSBT = 0— C=-DSBT(AT)"'S

(S D e

c =4 g

c - _(n n cospu  ysinp 0 1\_ (n n'\(—vysinp cosp
B 0 0/ \—Bsing cosp -1 0/ 0 0 —cosp  —fsinp
nysinpg +n' cosp  —ncosp+n'Ssin p
0 0
S ()
M = 0 7
n o Any-1g (L Ms6
0 0 (A7) 0 1
The coupling matrix
0 0 -7
o n T n
m+n' = (0 n,>+ SA (0 77)
_ (0 m ro (0 M) _ ~1y (0 7
- (0 n’>+SA s(o 77,)-([+A )(O n,)
c = m+ nt

tr(A— D) + |m + nf|

. . . . 1 . . ;
The eigenvectors of the rotation matrix are v = ( ) with eigenvalues et**. It appears that

+i
U = VMV = R, p.) =G 'VIMVG
Then the eigenvalues of M are

m; = VGU; = A\ =0 GTVTAMV G,
_ =T AT (Y _(CT)T 0 0 Y C =
= %G (C’ 5 M, M,)]\-Ct ~ G
_ AT (Y —(cnHr 0 0 .
= e (C 5 My — M,Ct MO+ M, ) CF

_ AT AT (Y —(CT)T 0 0 =
B viG <C Y Ml’y_MrCT Mlc""’yMr G



The eignvectors of the full turn matrix are

<y
Il

9 Generalized kicker parameters

At the kicker Axgg = —nAp/p and Az 5 = —1; Ap/p.The action
a? = B2’ +v2? + 2aza’

2aAa = —=2Ap/p(Bxiam; + VErsME + (Trpn), + ThpMk)) (42)

Now if the phase advance from pickup to kicker is 180 degrees, then x33 = —xp and x;ﬁ = fx;ﬁ and
2aAa = 2Ap/p(ﬂx;ﬂ77§€ + YTpank + (Tpan), + 37;57%))
= 2Ap/p (M. (Baps + awps) + nk(vps + axyyg))

=2(Ap/p)a <772(—\/Bsin9) + nk(me—\/gsme))

10 Cooling

Since Ap/p = Esin(kAs) we have that

2aAa = 2a¢ sin(kAs) (n}c(—\/ﬂk sin ) + nk(cosﬂozksmﬁ))

VBr

(né(—\/ﬁsma) +nk(6059—ak5me))

2aAa = 2a&sin |ka | Ms1+/Bpcost — M52w
VB

VB»

In the limit where kAs < 7/2, we can write that

Aa=¢ [ka (Mmmcose - Mwwi@))] (= VBrsing) + i (SEE )

B ne(op —aw) Bk
Ad) = —Zek | Mgy |22 + My, | 1% — O%) Pk
(Aa) 5% ( 1y g, Ms2 ( oA +77k\/;p>>

If o, = —a, and B, = B,

(Aa) = —gf/ﬂ (Mm% + M52 (2nk(ak) +77;c>>
2 Bp

11 Longitudinal excitation

While the momentum shift Ap/p is designed to damp the transverse motion, it is apparently adding noise
to the longitudinal. As long as sychrotron and betatron tunes are not related the average momentum shift
will be zero. Not a problem? If Msg is finite then

As = (Ms1n + Mson' + Mse)d

Ap/p = Esin(k(Msim + Msan' + Mse)d)

and there will be longitudinal cooling if the sign of € is chosen appropriately. But this in turn will add
uncorrelated noise into the transverse.



12 Appendix

Suppose the betatron phase advance from pickup to kicker is 6y so that

Tpg = av/Prcos(¢p+ 6p)

Thy = —\/% (o cos(¢ + o) + sin(¢ + 0p))
Since
Tpg = av/Bp cos(o)
T = -4 (cvp cos(¢) + sin(¢))

VB»

we can write

Zpp
acos¢p =
VB
a
asing = —\/Bpatis — —=pg
v/ Bp

Then

Tpg = m<%00590+( B xp,@-i-\/B»xp,@)SlIlQo)
P P

Tps cos by + (

Ths = —ﬁ <o¢k(\/%> )sin ) +

Bp l‘ o] + 7= Lpp
p /ﬂp

Let’s write 2aAa in terms of 2,4, 7,5.

12.1 Averaging over betatron phase
2a0a = —26k(Ms17p5 + Msoxys) (BT am), + YTrpnn + (Thpty, + Thpnn))

Then we have terms like

2
(zprr) = (VPBe <j;p§ cos 0o + (v/BpprpT,p + L\/%xzﬁ) sin90>>
P p

2

(Tpar) = C;Jﬁ?(\%»cos@mL —v/ Boscrp + \/> s1n90>
p p

2
(xpar) = %\/ﬁkﬁp(cosﬁo)

% sinfy — (v/Bpsy,p + \/prpg)cos 90>

(43)



Next

2
(@pals) = <_\/7 (a ( \p/ﬁiBCOS%Jr (V/Brsprpst
P

ap : TpTpp
——xpps)sinby) + sinfy — (\/BppTpxl s + —=xpTpg) cosby |)
\/E pLp \/@ pBLpLps \/ﬂ» pLp

2
et = o (s e
p

\jﬂ;ﬁp) sin fy) + \5;; sinfy — (—/Bpsp + %ﬁp) cos 9())
By

(Tpxhg) = ——& (a, cos B + sin )

[\
IS
=

Another term

(zhars) = (2hv/Br (%cos&ﬂr( Bpsty,s + \/Fxpﬁ)anﬂ())

2

_ 2
%\/ﬂi’“ (\/OB% cos 0o + (v/ Bps1ps — \/a;—p) Sin9o>

(! = @ By 0o — 0
T,TRp) = 2\ 8 (sinfy — v cos bp)
P
Zpp

(xhahs) = fx;\/% (ak(% cos 0y + (/Bpprys + @xpﬂ) sin fp) + @sinﬁo — (V/Bppps + %ng) cost90>

2 2
_ 0gQp A\ Qp .
costy + « 16} ——)sinfy — ——=sinf 15} ——)cosf
VB st oul By = ) sinto = st~ (VB - ) )

(xpTrp)

Finally

Qr . ap . o?
= NG < \/Ecoseo—l-\/ﬂ»psm@o—\/%psuﬂo—(\/ﬁipyp—\/;»p)COSQ(J)
a? ( o —
cos by +

R % 9)
By By ’

= - ((_1 - akap) COs 00 + (ak — Oép) sin 00)

2\/ 61@6;0

Now we can write Equation 43 Step 1

cos by —

200a = —26k(Msixps + Msow,,g)(Bryamy, + kst + (Tran), + Thsmi))
= —28k(Msy (zpBaymy, + Veme®pTr + ar(MTpTe + Nrpt))) +
Mss (Benixy,ay, + yemaycr + a(npx,ze + newyay,))

Step 2

= —26k(Ms1 (g, (Brwp + crwpn) + Mk (WpTh + hpry)) +
Moy, (Brapal, + axhwr) + me (yerzr + axya)))

10



Step 3

2

a .
= —2§k5(M51 (—\ / BpBr.- (g cos By + sin 0o)n), + Vink/ BrBp cos by
+ou, (\/ Br By cos g — 4 | %ak (g, cos Bp + sin 90)%)

+Mso ((1 + agay) cos by + (o — ag) sinby) %n; + %(sin 0o — ap cos Oo)yenr+
\ Pr \/ p

B, . , 1 .
oy siny — ay, cos 0p)ns. + ey ——((1 + aray) cos Oy + (a, — ag) sin @
( 5p( 0 — ap cos bo ), \/m( p) cos b + (ap — o) sin b)
Step 4
a? . , By .
,2§k5(M51 —/ BpBr sin b, + E”k (cos By — ay sinfy))
Bk / . 1 .
+Mso —np(cos By + o sinby) + ——mn (sin (1 + apar,) + (ax — ap) cosby)
P ﬂkﬂp

Step 5

2
= —2§k%(M51 (—«/,Bpﬁk sin Oony, + \/%nk(cos 0o — o sin 90)>

1
+Mso (\/Enfc(cos 6o + aypsinby) + B8 Ne(sin Oo (1 + agayp) + cos Oy (ax — a,,)))
p kMp

If we have symmetry

2

= 72§k%(M51 (—Bp sinOomy, + i (cos Oy — ay sinBy) + Mso (n;(cos o + cypsinby) + %(Sin 0o(1 — a?) + 2ay, cos 90)
and if g =7

2
a
= 2€k?(M5177k + Msom), + 2%(11@)

And if o = 7/2
2

= _25k%(M51 (—Bpme + me(—ou) + Mz (772(%;) + %((1 — az))
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