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Abstract. This thesis describes research undertaken in collaboration with accelerator
physicists at Cornell University to develop and test designs and simulation tools for the
CESR Test Accelerator (Cesr'TA) and International Linear Collider (ILC). Specifications
for the ILC call for ultra-low emittance beams in order to meet luminosity requirements.
Phenomena such as electron cloud effects and ion instabilities that are secondary in currently
running accelerators, have the potential to significantly impact the performance of the ILC.
The behavior of these phenomena and methods for mitigating them need to be explored to
ensure the the ILC is correctly designed. CESR is a 768 meter electron-positron storage ring
that employs technology similar to that which will be used in the ILC. It has been proposed
that CESR be reconfigured for low-emittance operation at energies ranging from 1.5 GeV
to 5.0 GeV and used as a test bed for the ILC. We find that CesrTA has the potential to
produce beams with vertical emittances less than 10 pm and Touschek lifetimes ranging
from 30 minutes to several hours when intrabeam scattering effects are taken into account.



I. INTRODUCTION

The next accelerator planned to work at the frontier of high energy physics, the role
that will be held beginning in 2008 by CERN’s Large Hadron Collider, is the International
Linear Collider (ILC). The ILC will be an electron-positron collider with two opposing linacs
generating very dense beams with energies ranging from 0.25 to 0.5 TeV. The fundamental
nature of the electron/positron collisions will give precise measurements of the particles
discovered with the LHC. These measurements will almost certainly impact how the standard
model is viewed - by confirming or denying the existence of the Higgs - and hopefully by
telling us which of the newer models, such as minimally symmetric super symmetry and
extra-dimensions, gives the best agreement with experiment.

New physical discoveries have typically been associated with higher energies. Higher
energy accelerators create particles that lower energy accelerators cannot. A complementary
approach to scientific discovery is that of high precision. Smaller error bars on empirical
parameters can have drastic effects on the theoretical landscape. Hints at new physics
beyond the standard model can lay in anomalies that are only discernible with high precision
measurements.

The main reason electrons are better than protons for making high precision measure-
ments is that they are fundamental particles. Every electron and every inelastic collision
is (ignoring relative spin) identical. It is always known what particles went into the in-
teraction, and their momenta are known to great precision. Protons, on the other hand,
are not fundamental particles. They are composed of three quarks, two up and one down.
In high-energy collisions, it is the quarks that interact. There are thus three possibilities
in every proton-proton interaction, uu, ud, or dd. It is also unknown exactly how much
momentum each of the interacting quarks has. Quarks rattle around inside the proton, and
the distribution of the momentum among the three quarks is constantly changing. While
the application of good statistical analysis techniques can minimize the uncertainty due to
the non-fundamental nature of protons, the precision ultimately obtained is much worse
than that which could be obtained with electrons. Note that actual high energy experi-
ments can be set up to collide any pairwise combination of electrons, positrons, protons,
and antiprotons. These same arguments can be extended to those cases.

Hadrons receive so much attention at the forefront of high-energy physics because they
are heavier, and can therefore be accelerated to higher energies without the technological
difficulties encountered at high relativistic gamma. The simple relation v = E/mq (the
convention of setting ¢ = 1 is applied throughout this thesis), tells us that electrons, which
are 1800 times lighter than protons, have a « 1800 times larger for a given energy. Maxwell’s
equations tell us that whenever a charged particle is accelerated, it radiates energy, and
steering a particle means accelerating it. Protons and electrons are charged particles, and
so when we try to steer them one way or another, they radiate energy. Our concern here is
mainly with steering relativistic particles in a ring. The radiation given off as the particles
are steered around a ring is called synchrotron radiation. A simple derivation gives the
power radiated in the relativistic limit as
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Recalling that an electron has about 1/1800 the mass of a proton, we see that, all else being
equal, an electron at a particular energy will radiate ~ 1800* times as much power as a



proton! Maintaining the energy of a high energy electron traveling in a ring requires that a
very large amount of energy be continually pumped back into the beam.

Because protons are heavier, they radiate away less of their energy when steered around
a ring, and so are easier to accelerate to high energies. Protons can simply be run over
and over again in a circle with a moderate per-turn acceleration gradient. This allows us
to construct proton accelerators with such impressive energies as the Tevatron (1 TeV) and
LHC (14 TeV). Synchrotron radiation can be mitigated by increasing the diameter of the
ring (notice the 1/p? dependence in equation 1). However, to reach energies with electron
machines that approach those of proton machines, the radius would need to be over 16 times
larger than the proton machine to stay within practical engineering limits.

The limits imposed by synchrotron radiation require that a high-energy electron collider
be linear. In a linear collider, two opposing beams of particles are accelerated in opposite
directions and collided in the middle.

Electrons have another advantage in that all of the beam energy goes into every collision.
Due to their composite nature, when protons collide only about one-third of their energy
goes into the collision. Studies indicate that a 500 GeV linear electron-positron collider (1
TeV CMS energy) would overlap the range of the 14 TeV LHC for statistically significant
discovery.

The foregoing considerations tell us about the next high energy collider we need to build.
It is known that high precision measurements at energies ranging from 0.25+0.25 TeV to
0.5+0.5 TeV will be needed to refine the results from the LHC. Current plans call initially for
0.254-0.25 TeV with 0.5+0.5 TeV upgrade capability. High precision measurements require
the use of fundamental particles, electrons. Such a machine will need to be linear to avoid
prohibitive synchrotron radiation losses. Since the machine will be linear, all the acceleration
will need to be done in one pass. The limiting factor becomes the accelerating gradient - how
much distance is necessary to accelerate an electron to 250 GeV? A fundamental relation,
E =V X e, tells us that a particle of charge e gains energy E when accelerated through a
voltage potential V. Dividing the desired energy of 250 GeV by the charge of an electron,
1.6 x 1071 Coulombs, gives a required potential of 2.5 x 10 volts. The best practical
option available today for accelerating structures is the superconducting radio-frequency
cavity (SRF). Voltage gradients of 50 MV /m have been achieved with SRF cavities in the
laboratory. For practical purposes, it is assumed that 35 MV/m cavities can be mass-
produced and implemented in the ILC. Dividing the required potential (2.5 x 10! volts)
by the expected gradient (35 MV /m) gives a length of 7.5 km. Additional infrastructure
increases this to 11 km. Since we are colliding opposing beams, we need to point two linacs
at each other, doubling the length to 22 km. This is the proposed length of the ILC.

A schematic showing the major sections of the ILC is in figure 1. The steps involved in
the production and acceleration of the electron and positron beams are as follows. First,
electrons given off by a cathode are bunched and pre-accelerated to 5 GeV. These 5 GeV
electrons are fed into the electron damping ring where their phase-space dimensions are
shrunk. The damped electron bunches are injected into the main electron linac, where they
are accelerated to the final collision energy. About half-way down the linac, the electrons
travel through an undulator, which wiggles the electron to induce the production of y-rays.
The ~-rays are directed at a titanium alloy target to produce positrons. The positrons are
then sent through a 5 GeV pre-accelerator, positron damping ring, and accelerated to the
final beam energy and collided with the electrons.

Obtaining the desired energy is only half the story. Once we are at an energy capable
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FIG. 1: Schematic of the ILC (not to scale), showing production, damping, and acceleration stages.
Taken from the ILC Reference Design Report [1]

of producing particles of interest, we want to produce as many of them as possible. The
analysis of high-energy physics data is a statistical process, governed by the fundamental
relation that the uncertainty in measurements goes as 1/ V/N, where N is the number of
events. The rate at which a collider produces events is governed by a quantity called the
luminosity. The luminosity is the interaction probability over time. Each event, for example
the production of a Higgs boson, has a cross-section. The rate of a particular event is given
by the luminosity multiplied by the cross-section of the event.

Luminosity is governed by the density of the bunches that make up the beam and the
rate at which they collide. We want the luminosity to be as large as possible. It is given by
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where f,, is how often bunches collide, N, 5 is the number of particles in each bunch, and 3, ,
and ¢, , quantify the size of the beam. The rate at which bunches collide is determined by
how quickly the machine can generate electrons and positrons, process them into bunches,
and accelerate them to the desired energy. This will range from 6.6 to 25.6 kHz for the
ILC. The number of particles in each bunch is limited by instabilities that develop if the
bunch charge is too high. [3,, at the IP is a measure of how strong the final focusing
magnets are; more powerful magnets produce a smaller 3,, and squeeze the bunches to
smaller dimensions before they collide. The smallness of 3, , is limited by superconducting
magnet technology. Emittance €, , is the area a bunch encloses in phase space. As a particle
makes it way through an accelerator, it has a non-zero transverse motion, called betatron
oscillations. At the peaks of these oscillations, the particle has zero transverse momentum,
but is displaced far from the ideal path. At the nodes the particle intersects the ideal path,
but has a high transverse momentum. Only bunches with a small phase-space area can
ultimately be squeezed down to smaller dimensions at the interaction point. The parts of
the ILC responsible for reducing the emittance of the beams are the damping rings.
Ignoring non-adiabatic effects, emittance is a conserved quantity. No combination of
magnets of any number of poles or radio-frequency cavities can change the emittance of
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a bunch of particles. But thankfully there are phenomena which move energy in or out
of a bunch that can be exploited to alter a particle’s emittance. In particular, synchrotron
radiation can be used to remove transverse emittance. The same effect that limits our ability
to build high energy electron rings, allows us to shrink the dimensions of electron bunches by
several orders of magnitude. The power radiated by accelerating a charged particle is in the
form of a photon. This photon is emitted perpendicular to the direction of the acceleration.
For an electron traveling in a perfect circle, the emitted photon is tangent to the circle. Note
that due to quantum mechanical effects there is a small uncertainty in the actual direction
the photon is emitted. However, for present purposes this uncertainty is overshadowed by
other effects and can be ignored. A photon emitted tangent to the circle is parallel to
the electron’s path, and so the momentum it carries away is longitudinal momentum - it
slows the particle down. This energy is pumped back into the particle once it hits the
RF cavities. Now imagine a bunch of particles with non-zero emittance such that many
of the particles are undergoing betatron oscillations (see figure 2). The photons emitted
by the oscillating particles will not be tangent to the circle, but parallel to the electrons’
instantaneous velocity. The photons will carry away not only longitudinal momentum, but
also some transverse momentum. This loss of transverse momentum reduces the emittance
of the bunch. The longitudinal momentum is restored by the RF cavities, and so the end
result is a bunch with the same energy and lower emittance. This process is called radiation
damping.

FIG. 2: Process of radiation damping. A photon is emitted by the particle carrying away transverse
and longitudinal momentum. The longitudinal momentum is added back to the particle by the
RF-cavities. Vector addition gives a new, lower emittance.
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A way to enhance radiation damping in an accelerator is to use wigglers, shown in figure
3. A wiggler is a series of dipole magnets of alternating field gradient. When a beam passes
through a wiggler, it undergoes a series of sharp bends that induce radiation damping.

The ILC damping rings will consist of a series of arcs and wigglers that reduce the
emittance of 5 GeV beams received from the injectors to 2 pm before they are sent to the
main linac. Emittance will, more or less, be conserved through the main linac, and so the
emittance of the bunches at the crossing point will be that which can be achieved by the
damping rings. Designing the damping rings to achieve these small emittances requires that
the features of SRF-based wiggler-dominated electron rings be carefully studied.

The Cornell Electron Storage Ring (CESR) is a 768 meter circumference wiggler-
dominated storage ring that uses radio-frequency cavities similar to those likely to be used
for the ILC. It has been proposed that CESR be commissioned as a test accelerator for
the ILC. Using CESR as an ILC test accelerator requires that it be reconfigured for low-



FIG. 3: Overhead and side views of wiggler and path taken by electron beam. The amplitude of the
beam is exaggerated in this diagram, the actual amplitude is on the order of the beam dimensions.

Photons are emitted throughout the wiggler, inducing radiation damping.
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emittance operation. It needs to be able to generate low-emittance beams and store them
for long enough periods of time to explore the properties of the beam.

My contributions to the CESR Test Accelerator consist of optimizing the optics functions
of the lattice by optimizing the quadrupole and sextupole strengths around the ring, and
determining the effects of intrabeam Coulomb scattering. Quadrupole optimization consists
of minimizing the size of the beam through the wigglers to decrease its zero-current emit-
tance. Sextupole optimization consists of correcting the chromaticity of the machine without
destroying its dynamic aperture, thus ensuring non-problematic injection and a long beam
lifetime. Intrabeam Coulomb scattering occurs when the bunches become dense enough so
that pair-wise scattering events become significant. Scattering events that impart a large
momentum deviation to the particles such that they are kicked out of the RF bucket are
called Touschek losses and limit the lifetime of the beam. Lower momentum transfer events
couple the beam dimensions and can blow up the emittance of the beam. In the sections
that follow I will explain and discuss in detail the ideas mentioned here.

II. ACCELERATOR PHYSICS

In a storage ring, the beam is bent and focused using a system of multipole magnets. The
system of multipole magnets creates a magnetic object called a guide field. To first order, the
guild field is parameterized by four variables, 3, a;, v, and 1. The guide field can be thought
of analogously to a slide with a rounded bottom such as might be found in a children’s park.
Imagine that you took a ball and threw it down the slide. The ball would make its way down
the slide, undergoing oscillations according to the amount of transverse momentum you put
into the ball. These oscillations are analogous to the betatron oscillations in an accelerator.
The smaller the radius of curvature of the slide, the smaller the amplitude of the oscillations
and the higher their frequency. The radius of curvature of the slide is analogous to the
function parameter of a magnetic guide field. In particular, a slide with a small radius of
curvature corresponds to a strong quadrupole moment in the guide field. « is defined as



the derivative of beta with respect to the distance s along the beam path, a = —=== - how
quickly the curvature of the slide changes as you move along it. ~ is defined by Hﬁ"‘z , and g is
the phase advance per revolution, p = 27(), where Q is the number of betatron oscillations

a particle makes per revolution.

A. Magnetic Lattice

The cyclotron equation tells us that to bend a particle of momentum p and charge e in
a circle of radius R, a magnetic field of strength

p
B =
Rxe (3)

is required. Equation 3 can be rearranged to read

=="B. (4)

As the particles in a bunch travel around the lattice, they oscillate around the ideal orbit.
The distance a particle is from the ideal orbit is x. Since x << R, we can expand the B
field as a Taylor series,
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Multiplying by e/p gives
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We see that the first term in equation 6 is simply the dipole in equation 4. Correspond-
ingly, we can identify the rest of the terms in the expansion with multipoles,

1 1 1
gB(x) = E+kx+5mx2+gox3+..., (7)

where 1/R, k, m, and o correspond to multipole strengths. 1/R = B, corresponds to the

dipole and is used for steering. k = Edfz corresponds to the quadrupole and is used for
p dx

. 2 . .. .
focusing. m = %gddf;z corresponds to the sextupole and is used for chromaticity correction.
3 . . 1oy e
0= %]%dd f; corresponds to an octopole and is used to control instabilities.

Table I gives the field distribution of the various multipoles, where x indicates the trans-
verse displacement from the center of the magnet.

B. Linear Equations of Motion

To describe the motion of a particle around a storage ring, we attach a moving coordinate
system K(x,z,8) to the ideal orbit a particle may take around a ring, figure 4.



TABLE I: Field distribution of multipole magnets as a function of distance from the magnet center.
Iy refers to the current in the magnet, a is the distance between the poles.
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FIG. 4: The coordinate system K = (z,z,s) moves around the ring attached to the nominal

particle trajectory. K lays tangent to the ring, and z points perpendicular to the plane of the ring.

The z-coordinate of K is fixed to the tangent of the ideal orbit, and, assuming a flat
orbit, the y-coordinate is perpendicular to the plane of the ring. Inside K the equations of
motion of a particle traveling around a ring are

" 1 _ 1 op
70 (7 ~0) = - ®

and

2"(s) + k(s)z(s) = 0, (9)
where % refers to the momentum deviation of the particle. Particles of higher momentum
take longer paths through the bends, and so are displaced transversely according to their
momentum deviation. In straight regions, the radius of curvature, R, goes to infinity, and
equations 8 and 9 differ only by the sign of k(s).

Most modern synchrotrons use separated function magnets. Separated function magnets
have either a dipole field or a quadrupole field, but not both. The magnetic structure of
such storage rings can be described as a series of bends, focusing elements, and drifts. This
simplifies the the evaluation of equation 8 since we can assume that R = oo and/or k = 0.
In a focusing element we assume R — oo, and equation 8 has the general solution

(s) zocoshvks + é—l%smh\/gs k > 0 (defocusing) (10)
r\S) = /
zocosv'ks + sinVks k < 0 (focusing),
and
, zoVksinhv'ks + zhcoshv/ks k> 0 (defocusing)
2'(s) =1 w0 : (11)
zhcosvks — \/—%sm\/Es k < 0 (focusing).

In a drift we assume R = oo and k = 0, and equation 8 has the solution

z(s) = xo + sz, (12)



and
T'(s) = zj. (13)

In a bend, R < 0o, and the forcing term in equation 8 does not vanish. It is useful to
consider the case where 0p/p = 1, and we define the dispersion function D(s) as

1 1

=D(s) = T (14)

Note that we have also assumed that R is constant, which reflects that synchrotrons
typically employ dipoles with a constant field. The general solution for equation 14 is

DN(S) _"_
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D'(s) = —&smi + Dcos— + sin— (16)
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With the dispersion function thus defined, we can write the orbit a particle takes as

x4(s) = x(s) + D(s)%. (17)

C. Equilibrium beam emittance

In a wiggler dominated storage ring the equilibrium beam emittance is determined by
competition between radiation damping and photon emission in dispersive regions.

When a photon is emitted in a dispersive region, the particle takes on a small momentum
deviation, d0p/p. Observing equation 17, we see that changing the momentum deviation of
a particle in a region where D(s) # 0 changes the closed orbit of the particle. The particle
then begins oscillating around the new closed orbit from a position that corresponded to its
old closed orbit, resulting in larger amplitude oscillations.

In a damping ring, the wigglers are placed in regions where the dispersion is zero. The
wigglers then have solely a damping effect on the beam, and the entire emittance contribution
comes from photon emission in the bends. The general expression for the emittance of an
electron beam in a lattice consisting entirely of bends is

55 h {gH(s))

L= o , 18
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where,

n+ (B + an)?
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There are two things to notice about equations 18 and 19. First, in the limit that
R — oo, the emittance ¢, — 0. Thus without bends the emittance floor is set by the
injected emittance. Second, notice that equation 19 goes to zero when 7 and its derivative
7' (dispersion and its derivative) go to zero. This shows that a wiggler in a dispersion free
region has a purely damping effect. Ultimately, this ideal case cannot be met and in general
the equilibrium emittance reached by a damping ring is dependent on the size of § in the
wigglers.

The goals when optimizing a storage ring for low emittance are,

H(s) = (19)
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1. Obtain zero dispersion in the wigglers.
2. Minimize the impact of dispersion in the bends.
3. Lower 3 as much as possible in the wigglers.

By designing the storage ring correctly, the wiggler regions can be made completely
dispersion free. Item 2 is then accomplished by increasing the tune of the machine. This is
done by increasing the strength of the quadrupole magnets. The goal then becomes item 3,
lowering (3 in the wigglers. To first order, the equilibrium emittance of the storage ring will
be directly proportional to the size of § in the wigglers.

D. Chromaticity and Tune Spread

The force exerted on a particle in a magnetic field is proportional to the velocity of the
particle. Therefore, particles with a momentum deviation will experience slightly stronger
or weaker focusing, depending on whether the particle has a higher or lower momentum.
Stronger focusing increases the tune of the lattice. Therefore, particles with a momentum
deviation have a different tune. The amount by which the tune of a particle changes with
momentum deviation is a property of the lattice and is given by,

op

0Q = f(p)po

(20)

where §(Q) is the change in tune, dp/p is the energy spread, and £ is the chromaticity.
Typically, 0Q) is quite large and must be corrected with sextupole magnets.

Recalling equation 17,

r(5) = a(s) + D(s) L. (21)
we see that in dispersive regions the particles are displaced in the horizontal plane according
to their momentum deviation. From equation 7 we can see that the sextupole term scales
with 22. We can therefore use sextupoles in dispersive regions to provide extra focusing for
off-momentum particles. Particles with dp/p = 0 are follow a path along x = 0 and receive
no extra focusing, while particles with op/p # 0 follow a path along = o dp/p and receive
extra focusing proportional to their momentum deviation.

Using only two sextupoles, one for each transverse dimension, it is possible to set the
chromaticity of a machine to zero. But usually this is not a good idea because it ruins the
dynamic aperture of the machine. If the strength of a sextupole is too large, off-momentum
particles will be strongly deflected and steered into the beam pipe. Strong sextupoles also
couple the beam dimensions and excite higher order resonances. Chromaticity is best ad-
justed by using a large number of weak sextupoles, typically one per quadrupole.

The dynamic aperture of an accelerator can be thought of as a volume in phase space
enclosing the particles that the accelerator is able to hold on to. Particles outside the
dynamic aperture are lost by striking the beam pipe. This can happen if the particles are
on a resonance that causes their betatron oscillations to grow. It can also happen if their
injected phase-space displacement is outside the physical aperture of the machine.

Since the damped emittance of a storage is often a few orders of magnitude lower than
the injected emittance, there are two considerations to take into account when judging
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the dynamic aperture of a machine. First, the dynamic aperture must be large enough to
facilitate injection. Having a dynamic aperture larger than 3-sigma of the injected emittance
is usually sufficient. Dynamic apertures less than 3-sigma make injection difficult since a
large proportion of particles will strike the beam pipe and be lost before damping can take
effect. Second, once the particles are damped, the storage ring must hold on to them long
enough to do something useful with them. This usually requires that the dynamic aperture
be at least 10-sigma of the damped emittance.

In an ideal storage ring, there is one sextupole following each quadrupole. Tuning the
chromaticity of the machine consists of adjusting these sextupoles to set the chromaticity
to zero while maintaining the best possible dynamic aperture. As a rule of thumb, a lattice
with a lower average sextupole moment will have a better dynamic aperture. In reality,
coupling, different combinations of lattice functions, and nonlinearities come into play and
sextupole optimization becomes a computational task.

E. Tune Footprints and Frequency Maps

As a particle makes it way around a storage ring, it undergoes betatron oscillations. The
number of full oscillations it makes per loop is the integer tune of the machine. The actual
tune of a particle has a fractional part. This fractional part determines the phase advance
per revolution.

It is important to design the accelerator such that the fractional part of the tune causes
misalignments in the lattice to cancel out over several revolutions. Imagine a magnet mis-
aligned slightly so that it gives passing particles a very small kick when they pass through.
If the fractional tune of a particle were such that the particle was at the exact same moment
in its betatron oscillation every time it passes the misalignment, then the effect of the kicks
will build up, resulting in excessive betatron oscillations and loss of the particle. On the
other hand, if the fractional tune is set right, such that the particle encounters the kick at a
different point in its betatron oscillation every time it passes by, the net effect will be that
the kicks will cancel out over time and the effect of the misalignment negated.

The condition for resonances in the transverse plane is,

MxQy+NxQ,=k, (22)

where M, N, and k are integers. The + sign gives sum resonances, while the — sign gives
difference resonances. Both sum and difference resonances couple the horizontal and vertical
betatron motion of the beam. Difference resonances allow the amplitude of the beam to grow
without bound, while with sum resonances, the sum of the squares of the amplitude of the
betatron oscillations is bounded.

The order of the resonance is P = |M|+|N|. Lower order resonances are usually stronger,
but easier to avoid since there are fewer of them. It is important to tune a storage ring so
that the beam does not lay on any significant resonances, typically defined at those where
P is less than 5 or 7. A tune plane with resonances up to 5th order is shown in figure 5.

A storage ring’s position on the tune plane is determined by the strength of its
quadrupoles. But recalling equation 20, the momentum deviation of a particle affects its
tune. So the chromaticity of a storage ring, along with the equilibrium momentum spread
of its particles, defines a footprint in the tune plane. Additionally, nonlinear elements, such
as quadrupoles and wigglers, add a transverse displacement dependence to the tune. This
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FIG. 5: Tune plane showing resonances up to third order. The fractional part of the tune must be
positioned so as to not intersect these lines. Additionally, the tune footprint must be small enough
such that particles do not spill over onto a resonance.
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makes the tune of a particle dependent on the amplitude of its betatron oscillations. A
realistic scenario is depicted in figure 6.

Figure 6 is a frequency map. It is produced in simulation by injecting a distribution of
particles with a range of emittances and tracking them for about 1000 turns. A fast Fourier
transform is then used to find the fractional tune of each particle for the first and last half
of the turns. The particles are plotted on the tune plane according to their tune for the first
half, and their color indicates how much their tune has changed by the second half. Particles
that move around less on the tune plane (darker colors) are more stable. A frequency map
provides us with information on how resonances are affecting the stability of the particles.
Some resonances in figure 6 have a stronger impact on the frequency map than others. The
quadrupoles can be used to move the footprint off more troubling resonances, and a well-
optimized sextupole distribution will minimize the size of the footprint and the strength of
the resonances.

F. Single and Multiple Event Coulomb Scattering

The effect of Coulomb scattering among the particles in the bunch becomes a significant in
low emittance, high-intensity beams. The effect of the scattering is to couple the three bunch
dimensions. In particular, we are interested in scattering events that transfer horizontal and
vertical momentum to longitudinal momentum. Momentum transfered to the longitudinal
dimension is boosted by relativistic effects, so through Coulomb scattering a small change
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FIG. 6: Example of a realistic tune footprint. Plotted is the tune footprint of a CesrTA development
lattice overlayed on a tune plane with resonances up to 7th order. The color of the dots is an
indication of the stability of the lattice.

Frequency Map for CesrTA overlayed on 7th order tune plane

0.66 = : : 0
0.65 y
0.64

-2
0.63

S 062 -3
0.61 -4
0.6 5
0.59 ! | ! |/ 6

0.565 0.57 0.575 0.58 0.585

in transverse momentum results in a large change in longitudinal momentum.

A storage ring has a longitudinal momentum aperture commonly called the “RF bucket”.
The depth of the RF bucket is for the most part a function of the RF cavities. Particles with
longitudinal momentum deviations that exceed this aperture are lost. If a collision between
two particles transfers enough momentum to the longitudinal dimension, both particles are
lost, one with too much momentum, and one with too little. Particle losses through this
mechanism are called Touschek losses. The Touschek effect defines a beam lifetime that is
significant in storage rings using intense, low emittance beams.

If the transfer of momentum is not enough to kick the particles out of the RF bucket, the
particles are not lost, but their emittance is increased. Recalling equation 17, a momentum
deviation will change the closed orbit of a particle. The same mechanism that allows photon
emission in dispersive regions to increase the emittance of the beam, allows successive small
momentum Coulomb scatterings to increase the emittance of the beam. Collisions change
the momentum deviation of the particle, which shifts the particle’s closed orbit, and the
particle starts undergoing betatron oscillations around this new shifted orbit. This effect is
called intrabeam scattering (IBS). Like the Touschek effect, IBS becomes significant in high
particle density storage rings.

Since IBS depends on the rate of Coulomb scattering within the bunch, it depends on the
density of the bunch. According to equation 17, in dispersive regions of the lattice the beam
dimensions are blown up, and thus the density of the beam is reduced. This reduction in
density decreases the frequency of collisions. On the other hand, dispersion is the mechanism
through which IBS can increase the emittance of the bunch. The condition for minimizing



14

the effects of IBS is
5

T = = 0.5, (23)

0%+ o2
where a% is the beam size contribution due to emittance and 0727 is the contribution due to
dispersion.

Loosely said, for a given layout, the integrated amount of dispersion in a storage ring is
conserved. That is, adjusting quadrupoles can only shift dispersion around from one place
to another. Taking these considerations into account tells us that a storage ring designed
to minimize the effects of IBS would consist two types of regions. One type where the
dispersion is zero, and one type where dispersion accounts for half the beam size.

Shaping the dispersion function to minimize the effects of IBS isn’t always possible. Its
shape is also forced by the location of the wigglers, RF cavities, and instrumentation. In
high beam density storage rings designed from the ground up, the needs of IBS, wigglers,
and instrumentation can often all be met. But when reconfiguring a storage ring, such as
we are doing with CESR, the requirements of wigglers and instrumentation leave little room
for minimizing IBS effects.

III. DESIGNING AND OPTIMIZING THE CESR TEST ACCELERATOR

The CESR Test Accelerator will be built from the current CESR configuration by relo-
cating 6 wigglers from the arcs to straight sections that can be configured for zero dispersion.
A low dispersion region is created at the South interaction point for instrumentation. The
strength of the quadrupoles is increased to increase the horizontal tune from 10 to 14, which
reduces the emittance generated in the bends.

A. Low Emittance Tuning

With the wigglers positioned in dispersion free regions of the lattice, low emittance tuning
consists of lowering the value of beta in the wigglers. The lowest obtainable emittance is
given by theory as ¢, = 1.22 nm [2]. The values of the beta function around a lattice
are determined by the quadrupoles. The quadrupoles also determine the lattice’s tune
and dispersion function. The goal of low emittance tuning in a wiggler dominated storage
ring is to lower beta in the wigglers while keeping the tune footprint off of resonances and
the dispersion zero in the wigglers. This is done computationally with a program called
TAO (Tool for Accelerator Optics). TAO is an optimizer in which we define variables and
constraints. The program is set up with lattice’s quadrupole strengths as variables. As
constraints we define emittance, tune, dispersion, and a few other parameters that help
ensure the stability of the lattice.

TAO optimizes a lattice using a standard optimization routine such as Differential Evo-
lution [3] or Levenburg-Marquardt [4]. These routines work by adjusting the variables and
observing how the constraints are affected. Depending on the routine used, the wiggling may
or may not be guided by derivatives. Variable combinations that result in better constraints
are tracked by the program, and the optimizer works its way down to a minimum.

We assume that the lattice is perfectly flat at this stage of development. Without ver-
tical bends, there is zero vertical dispersion throughout the lattice, which, in turn, means
that there is zero vertical dispersion-generated emittance. Without dispersion generated
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emittance, the floor of the vertical emittance is determined by quantum uncertainty in the
direction of the photons emitted due to horizontal bends. This quantum emittance is several
orders of magnitude lower than the emittance due to coupling and is ignored. The vertical
emittance is then dominated by coupling from the horizontal emittance. Typical storage
rings operate with €,/e, ~ 1%, although values as low as 0.1% have been achieved [5]. The
causes of coupling are imperfections in the lattice, sextupoles, and other non-linear elements.
Because vertical emittance due to emittance coupling is expected to be significant, we must
optimize the horizontal emittance.

We optimized a total of 10 lattices with energies at 1.5, 2.0, 2.5, and 5.0 GeV, and wiggler
fields at 12, 19, and 21 kG. The emittances achieved by the optimizer are shown in table II.

TABLE II: Lowest natural horizontal emittances achieved.

Energy | Wiggler | Wiggler| Natural Horizontal
Field | Count Emittance
(GeV) | (kG) (nm)
1.5 14 12 1.2
1.5 19 12 1.3
1.5 21 12 1.4
2.0 14 12 2.1
2.0 19 12 1.8
2.0 21 12 1.8
2.5 21 12 3.2
5.0 14 6 33.
5.0 19 6 28.
5.0 21 6 26.

B. Intrabeam Scattering

There are two principle methods for calculating IBS rates. A. Piwinski published a
method in 1974 that is generally regarded to give results that agree fairly well with ex-
perimental data [6] . In 1983 J. Bjorken and S. Mtingwa published an improved method
employing the scattering matrix formalism developed for quantum electrodynamics [7].

In a previous paper, I implemented in BMAD a number of methods for calculating a
lattice’s IBS properties. BMAD is the accelerator simulation package used at Cornell for
the development and maintenance of CESR. I evaluated the Piwinski and Bjorken-Mtingwa
methods, as well as numerous approximate methods, and concluded that the Completely
Integrated Modified Piwinski method (CIMP) gave the best accuracy while still being quick
to evaluate [8].

The equations used for evaluating IBS with CIMP are complicated and involve quantities
that have not been discussed in this paper. Here we will simply state some of the more
dominant relations that apply to high intensity electron storage rings. For more information
on calculating IBS effects, see references [9] or [8].

Since vertical dispersion is small, the direct contribution to the vertical emittance from
IBS will be small. We assume hereafter that the vertical IBS growth will be dominated by
emittance coupling from the horizontal dimension.
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IBS T multiplier for horizontal and vertical growth rates
6 T

I horizontal IIBS rate muhipllier

longitudinal IBS rate multiplier —-—

IBS rate multiplier

FIG. 7: Dependence of horizontal and longitudinal IBS growth rates on T-factor.

The T-ratio was introduced in equation 23. There we stated that the optimal value to
minimize IBS effects was T' = .5. The actual dependence of the IBS growth rates on 7' is,

1 1-T
— = ( ) « G (lattice functions), (24)
TH \/T
1
— = VT x G(lattice functions), (25)

TP

where Ti is the horizontal growth rate and # is the longitudinal growth rate. A plot of

equatioxfs 24 and 25 is shown in figure 7.

We see that for T' — 0, where the beam size is dominated by dispersion, the longitudinal
growth rate goes to zero, while the horizontal rate blows up as 1/ VT. As T — 1, the
horizontal rate goes to zero while the longitudinal multiplier goes to 1. The curves intersect
at .o.

We find that for CesrTA the majority of the lattice has a low T value. A histogram of
the Cesr'TA lattice is shown in figure 8. The low value of T tells us to expect that IBS blow
effects will be significant in Cesr'TA. Attempts to reshape the dispersion function to shift T
to higher values were hindered by the necessity to keep dispersion zero in the wigglers and
RF cavities.

IBS scales with v and particles per bunch N as

1 N
Thop

According to equation 26, we can probe IBS effects by changing beam energy and N. Figure
11 shows the effect of increasing the beam energy from 2.0 GeV to 2.5 GeV. Since IBS rates
vary directly with particles per bunch, we typically plot IBS effects as a function of N. The
bunch charge specified for the ILC is N = 2 x 10'° particles per bunch. We explore in
CesrTA bunch charges ranging from 0 to 2 x 10%.
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IBS T multiplier and histogram of length of lattice with particular T for CesrTF
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FIG. 8: Histogram of length of CesrTA track binned by T ratio.
The equilibrium emittance with IBS included occurs when the IBS growth rates are
balanced by radiation damping,

deép,vp den,vp

(d—’t)IBSZ( 7 )SR- (27)

We define the IBS growth time as 7},,, and the SR damping time is 73,,. Note that
while 73, ,,,, is constant, T}, ., = T}, 4. (€n, €0, €,); we will refer to it simply at T}, ,. The rates
are defined as,

d v v,p v
( €h, L)op = o hwp T €hO, o,po, (28)
dt Th,v,p
den,v,p €hv,p
(g JiBs = 2Th 7 (29)
,'U,p

where €000 Tefers to the emittance due to quantum excitation and synchrotron radiation
alone. The factors of 2 arise because, by convention, IBS and SR rates are given as betatron
rates; the factor of two converts them to emittance rates.

Substituting equations 28 and 29 into equation 27 and solving for € yields

hyv,p
Eh7 b - Eh07 07 0‘ (30)
P T = Thop
Equation 30 is our basic equation for calculating equilibrium, but it does not yet take into
account that the natural vertical emittance has both a coupling part and a dispersion part,
€0 = €0y + €0k While the dispersion part is constant, the coupling part depends on
the horizontal emittance. We define r. = €,,/€,0 and rewrite equation 27 for the vertical

dimension as T T
v h

v 1— e e 200+ 31

e = (L= re ) Frep—Jew (31)

Studies on our ability to correct for magnet misalignments leads us to expect that we
can operate CesrTA with zero current emittances of 3-8 pm at 2.0 GeV [10]. In order to
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FIG. 9: Equilibrium beam parameters for CesrTA at 2.0 GeV with twelve 21 kG wigglers from
zero current up to the ILC bunch charge, 2 x 1010,

evaluate the range of IBS growth rates that can be expected, we explicitly consider the two
cases: r. = 1 where the vertical emittance growth is entirely due to emittance coupling,
and r. = 0.5 where the vertical emittance growth is due both to emittance coupling and
vertical dispersion. For each case we consider 3 possible zero current emittances: 2, 5, and
8 pm. Figure 9 shows the results for CesrTA at 2.0 GeV with twelve 21 kG wigglers. For
this lattice we expect IBS effects to blow up the horizontal beam emittance by a factor of 3
to 4 and the vertical emittance by a factor of about 2 to 3.

The 2.5 GeV lattice was produced to explore the effect of increasing beam energy on IBS
effects. Recall that IBS rates have a 1/9* dependence. The results are shown in figure 10.
We find that increasing the beam energy from 2.0 GeV to 2.5 GeV increases the natural
emittance, but decreases IBS to the extent that the equilibrium is significantly lower. The
vertical emittances for the 2.0 GeV case and 2.5 GeV case are compared in figure 11.

Table IIT is summary of the results of IBS calculations on all ten Cesr'TA lattices at high
current.
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FIG. 10: Equilibrium beam parameters for CesrTA at 2.5 GeV with twelve 21 kG wigglers,from
zero current up to the ILC bunch charge, 2 x 101°.

C. Touschek Effect

The Touschek effect is closely related to the IBS effect. In cases where the momentum
transfer due to a Coulomb scatter is large, both particles are lost, one with too much
momentum and with too little. The Touschek effect is different in that instead of integrating
over collisions to determine a rise-time, we integrate over the number of collisions that result
in a longitudinal momentum transfer that exceeds a predetermined cutoff.

The cutoff is determined by two different momentum apertures. The first aperture is the

depth of the RF-bucket defined by

<%E) — v Fl), (3)

Flq) =2 [V = 1—cos™'(1/q)] . (33)

where ¢ = e X V,;/Uy and Uy = %E‘lfﬁ. dE/E is the acceptable momentum de-

viation. Particles with momentum deviation that exceed the RF bucket depth are lost

and
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FIG. 11: Comparison of effect of IBS on CesrTA at 2.0 GeV and 2.5 GeV. Notice that while
increasing the energy increases the natural emittance, it also mitigates the IBS effects, resulting in
a lower emittance at high currents. At both energies, €,0 = 5 pm and r, = 0.5 were assumed.

longitudinally. The second is due to the dynamic aperture of the machine. The dynamic
aperture of CesrTA will be discussed in detail in the next section. For now it is sufficient
to know that particles with too large a momentum deviation will have large betatron oscil-
lations and hit the beam pipe. Such particles are lost transversely. The maximum JE/FE
calculated for each effect for each lattice is in table IV. The smallest aperture of these two
effects is used in the Touschek calculations.

The Touschek lifetime is a half-life; it is defined as the amount of time it takes for half of
the particles in a bunch to be lost. The rate of particle loss is linear in particles per bunch.
This allows us to define a parameter

1T,

= —— 34

o= L2, (34)

where Nj is the initial number of particles per bunch, and 1/7; is the Touschek lifetime given

by equations (41) and (42) from reference [11]. We can then write an equation for how the
number of particles in the bunch changes over time,

14 Noat’

N(t) (35)

Both the Touschek effect and IBS effect are dependent on the dimensions of the bunch
and the number of particles in the bunch. While the Touschek effect changes over time the
number of particles in the bunch, the IBS effect changes over time the dimensions of the
bunch. It is therefore necessary when examining the Touschek effect to evolve the beam
step-wise through time, reevaluating the beam size and loss rate after each step.

We assume that a natural vertical emittance of €,9 = 5.0 pm, a dispersion ratio of 7, = .5,
and 2.0 x 10'° initial particles per bunch. Table IV contains the initial and evolved bunch
half-life. The evolved half-life comes from a stepwise evolution of the beam through time. In
figure 12 the number of particles per bunch and vertical emittance are plotted versus time

for the baseline 2.0 GeV Cesr'TA lattice with 12 wigglers operating at a peak field of 21 kG.
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TABLE III: Equilibrium emittance after IBS effects at high current (N = 2 x 10'° particles/bunch).
For the 1.5 GeV lattices, the range represents . at 0.3 and 0.8. For the 2.0 and 2.5 GeV, the range
represents 1. at 0.5 and 1.0. For 5.0 GeV, we assume the vertical emittance will be completely

dominated by coupling, r. = 1.0

Zero Cur. | Zero Cur. |High Cur. |High Cur.|High Cur.
Energy | Wiggler |[Wiggler|Horizontal| Vertical |Horizontal| Vertical | Bunch RF
Field | Count |Emittance|Emittance| Emittance|Emittance| Length |Voltage
(GeV) | (KG) am) | m) | (m) | (m) | (mm) | (V)

2.0 18.-22. | 12. -23. | 7.5-7.38 7.0

1.5 14 12 1.2 5.0 14. - 17. | 25. -47. | 7.2-7.5 10.
8.0 13. -16. | 35. -66. | 7.1-7.3 11.

2.0 14. -17. | 9.4-18. | 6.9-7.0 11.

1.5 19 12 1.3 5.0 11. -13. | 19. - 35. | 6.7-6.9 15.
8.0 9.6-12. | 27. - 50. | 6.6 - 6.8 15.

2.0 13.-16. | 8.1-15. | 6.8-6.9 15.

1.5 21 12 14 5.0 10. - 12. | 17. - 30. | 6.6 - 6.7 15.
8.0 9.0-11. | 24. -42. | 6.5-6.7 15.

2.0 12. -13. | 73-11. | 6.9-7.0 15.

2.0 14 12 2.1 5.0 9.3-10. | 15. -22. | 6.7- 6.8 15.
8.0 83-9.3 | 22.-32. | 6.6 -6.7 15.

2.0 82-92 |61-9.01]69-6.9 15.

2.0 19 12 1.8 5.0 6.6-73 | 13. -18. | 6.8-6.8 15.
8.0 5.9-6.5 | 18. - 26. | 6.7-6.8 15.

2.0 74-83 | 56-81]72-72 15.

2.0 21 12 1.8 5.0 59-6.6 | 12.-16. | 7.1-7.1 15.
8.0 53-5.9 | 17.-24. | 70-7.1 15.

4.0 54-5.7 | 56-6.8 | 84-85 15.

2.5 21 12 3.2 7.0 5.0-51]91-11. | 84-84 15.
10. 4.7-4.8 | 13. -15. | 8.4 -84 15.

66. 33. 66. 9.3 15.

50 14 0 33. 99. 33. 99. 9.3 15.
56. 28. 56. 12. 15.

50 19 0 28. 84. 28. 84. 12. 15.
52. 26. 52. 13. 15.

50 14 0 20. 78. 26. 78. 13. 15.

D. Sextupole Optimization

Recalling equation 20, the tune of a particle depends on its momentum deviation accord-

ing to

_ e
6Q =)

(36)

where ¢ is the chromaticity. The natural (uncorrected) chromaticity of CesrTA is a consistent
-22 in the horizontal and -17 in the vertical across all 10 lattices. In order to minimize the size
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TABLE IV: Touschek lifetime of CesrTA lattices.

Energy| Wiggler| Wiggler| RF Bucket|Dynamic Aperture|Initial Touschek|Evolved Touschek
Field | Count | J0E/E 0E/E half-life half-life
(GeV) | (kG) (%) (%) (minutes) (minutes)
1.5 14 12 1.2 1.0 33.6 30
1.5 19 12 1.5 1.0 25.1 22
1.5 21 12 1.6 1.0 22.1 20
2.0 14 12 1.8 1.5 103.7 92
2.0 19 12 1.8 1.5 90.8 82
2.0 21 12 1.8 1.5 88.9 80
2.5 21 12 1.6 1.5 139.0 130
5.0 14 6 1.0 2.5 523.8 524
5.0 19 6 1.0 2.5 620.0 620
5.0 21 6 1.0 2.5 666.7 668

of the tune footprint, the chromaticity must be corrected to near zero in both dimensions.
Sextupole magnets are used to correct the chromaticity to 1.0. We use 1.0 instead of zero
because multi-bunch effects create a chromaticity spread in the machine, and it is important
to ensure that none of the bunches in the accelerator have a negative chromaticity. Negative
chromaticities can cause the head-tail instability. The head-tail instability is a process where
wake fields excited by the front of the bunch induce transverse motion of the tail leading to
rapid growth in the bunch size.

The criteria for a good sextupole distribution is that it set the chromaticity to the desired
value without destroying the dynamic aperture of the machine. The effect a sextupole distri-
bution will have on the dynamic aperture can be predicted by looking at the nonlinearities
it causes in the storage ring. The nonlinearities we look at are the derivative of beta with
respect to energy (d(3(s)/dFE) and the determinant of the transfer matrix of the ring.

Setting a bound on the amplitude of d3(s)/dE ensures that no one segment of the lattice
looks too different for off-energy particles. Recall that the chromaticity is a global quantity

Particles per bunch vs. Time Vertical Emittance vs. Time
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FIG. 12: Particles per bunch and vertical emittance versus time for CesrTA at 2.0 GeV with twelve
21 kG wigglers.
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FIG. 13: Representative dynamic apertures for each CesrTA energy. The dotted lines represent the
physical aperture and are just larger than the dynamic aperture curves they correspond to. The
solid black curve is 3-sigma of the injected emittance. Three energy offsets are examined, 0.0%,
0.5%, and 1.0%.

characterizing the lattice defined by dQ) = & x dp/p, where ¢ is the chromaticity and depends
on the variation of the beta functions with energy. In general, the dynamic aperture of the
ring will be maximized when the variations of the beta functions with energy are minimized.

A storage ring is a sequence of optical elements. Each element can be described by a
transfer matrix and the transfer matrix of the ring is given by the product of all the individual
transfer matrices. The determinant of the transfer matrix of the ring in a perfectly linear
machine is 1 and does not change with deviations from the ideal orbit. The determinant in
a nonlinear machine will deviate from 1 as you travel away from the ideal orbit. Imposing a
constraint that the determinant of the transfer matrix of the ring not deviate from one as you
travel away from the ideal orbit helps to ensure that the sextupole distribution introduces
as few nonlinearities as possible.
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The process for optimizing the sextupole distribution is similar to that for optimizing
the quadrupole distribution. It is done computationally with BMADZ, a program similar to
TAO. We define as variables the sextupole strengths, and as constraints, the chromaticity,
amplitude of d3(s)/dE, and the determinant of the transfer matrix of the ring. The optimizer
computes numerical derivatives of the constraints with respect to the variables. It uses these
derivatives to adjust the variables such that the constraints are minimized. Through this
optimization process it is possible to generate sextupole distributions that optimize the
dynamic aperture of the machine.

TABLE V: Chromaticity and Dynamic Aperture Properties of CesrTA. The data here is for a
lattice with chromaticity set to approximately 1 in x and y.

Energy| Wiggler| Wiggler| Dynamic Aperture Dynamic Aperture
Field | Count |at 0.0% energy spread|at 1.0% energy spread

(GeV) | (kG) (stored beam sigma) | (stored beam sigma)

1.5 14 12 9.3 3.2

1.5 19 12 10.0 3.9

1.5 21 12 9.1 3.8

2.0 14 12 11.5 6.7

2.0 19 12 10.4 5.4

2.0 21 12 10.7 4.3

2.5 21 12 12.3 5.2

5.0 14 6 15.2 10.1

5.0 19 6 14.0 8.0

5.0 21 6 14.4 9.5

The dynamic aperture of a design is determined by tracking particles having a range of
initial position, angle, and energy deviations from the ideal orbit. The range of these initial
parameters for which the particle motion remains stable determines the dynamic aperture of
the lattice. The distribution is in phase space, and a closed path can be drawn between the
particles that survive and those that are lost. The area enclosed by this path is the dynamic
aperture. It is typically given in units of sigma of the injected emittance. For example, a
storage ring with a 3-sigma dynamic aperture can hold on to a particle distribution 3 times
larger than the sigma of the particles injected into it.

Selected dynamic aperture plots are in figure 13. The dynamic apertures for all ten
Cesr'TA lattices in units of injected emittance are shown in table V.

IV. CONCLUSION

The parameter space for CESR as an ILC damping ring test facility has been character-
ized. We find that the facility has the potential to generate electron and positron beams
with vertical emittances less than 10 pm. The lifetime after IBS and Touschek effects are
taken into account is quite long, ranging from 30 minutes to long as several hours. We also
find that the dimensions and charge of the bunches will be reasonably constant over that
period of time.

We find that intrabeam scattering will be a significant effect in CesrTA. Using handles
such as beam energy, bunch charge, and the ability to produce both electron and positron
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beams, we can disentangle IBS from other effects of interest. Cesr'TA will therefore be useful
for exploring the properties of IBS and other low emittance effects, such as ion instabilities.
The dynamic aperture of CesrTA will be large enough that injection should not be a problem.

The types of beams Cesr'TA will be able to generate and their long lifetimes will enable us
to test accelerator technologies for use in the ILC damping rings. Examples include modified
beam pipes that allow the concentration of free electron gas in the pipe to be measured, and
wigglers and SRF cavities.
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