Low Emittance Tuning

David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education

Low Emittance Tuning

Objectives

- Develop strategies for systematically tuning vertical emittance
 - Rapid survey
 - Efficient beam based alignment algorithm
- Demonstrate ability to reproducibly achieve our target of 5-10pm (geometric) (2.5-5 times the ILC damping ring specification)
 - In CesrTA this corresponds to a vertical beam size of about ~10-14 microns
- Enable measurement of instabilities and other current dependent effects in the ultra low emittance regime for both electrons and positrons

For example - dependencies of

- Vertical emittance and instability threshold on density of electron cloud
- Cloud build up on bunch size
- Emittance dilution on bunch charge (intrabeam scattering)

Low Emittance Tuning

Outline

- Horizontal emittance in a wiggler dominated ring
- Sensitivity of horizontal emittance to optical and alignment errors
- Contribution to vertical emittance from dispersion and coupling
- Dependence of vertical emittance on misalignments of guide field elements
- Beam based alignment
- Stability of survey
- Correlated misalignments
- Dependence on BPM resolution
- Intensity dependent effects
- Experimental plan to develop low emittance tuning algorithms in CesrTA

Wiggler dominated storage ring

-We write emittance as the balance between quantum excitation and radiation damping

$$\varepsilon_{x} = \frac{1}{4} \tau_{x} G_{x}$$

- -Horizontal emittance is proportional to damping time.
- -We locate wigglers in regions of zero invariant dispersion (H) thereby adding damping but no excitation.

(CesrTA will be the first storage ring to use wigglers to significantly reduce the emittance)

-But wigglers introduce dispersion (η, η') internally

$$\eta_x(s)=1/(k^2\rho_w)(1-\cos ks)$$
 $(k=2\pi/\lambda_w)$ ρ_w is radius of curvature at peak wiggler field

-In ring entirely dominated by wiggler radiation

$$\varepsilon_{x} \approx C_{q} \frac{\gamma^{2}}{J_{x}} \frac{8\beta_{x}}{15\pi k_{p} \rho_{w}^{3}}$$

In CesrTA at 2GeV, 90% of the synchrotron radiation in wigglers In CesrTA optics the emittance minimum is at the balance where

- Wiggler damping has reduced the contribution from the bends to be comparable to the
- Contribution from wiggler internally generated dispersion.

Wiggler Emittance

Dependence of emittance on number of wigglers

Minimum horizontal emittance

Can we achieve the theoretical horizontal emittance? How does it depend on optical errors/ alignment errors?

Correct focusing errors - using well developed beam based method

- 1. Measure betatron phase and coupling
- 2. Fit to the data with each quad k a degree of freedom
 - Quad power supplies are all independent. Each one can be adjusted so that measured phase matches design
- 3. On iteration, residual rms phase error corresponds to 0.04% rms quad error.
 - → residual dispersion in wigglers is much less than internally generated dispersion
- We find that contribution to horizontal emittance due to optical errors is neglible.
- Furthermore we determine by direct calculation that the effect of of misalignment errors on horizontal dispersion (and emittance) is negligible We expect to achieve the design horizontal emittance (~2.3nm)

Sources of vertical emittance

Contribution to vertical emittance from dispersion

$$\varepsilon_{y} = 2J_{\varepsilon} \frac{\langle \eta_{y}^{2} \rangle}{\langle \beta_{y} \rangle} \sigma_{\delta}^{2}$$

Dispersion is generated from misaligned magnets

- Displaced quadrupoles (introduce vertical kicks)
- Vertical offsets in sextupoles (couples horizontal dispersion to vertical)
- Tilted quadrupoles (couples η_x to η_y)
- Tilted bends (generating vertical kicks)
- Contribution to vertical emittance from coupling

Horizontal emittance can be coupled directly to vertical through tilted quadrupoles

$$\varepsilon_{y} = \langle \overline{C}_{21}^{2} + \overline{C}_{22}^{2} \rangle \varepsilon_{x}$$

Effect of misalignments

For CesrTA optics:

Introduce gaussian distribution of alignment errors into our machine model and compute emittance

Element type	Alignment parameter	Nominal value
quadrupole	vert. offset	150μm
sextupole	vert. offset	300µm
bend	roll	100μrad
wiggler	vert. offset	150µm
quadrupole	roll	100µrad
wiggler	roll	100µrad
sextuple	roll	100μrad
quadrupole	horiz. offset	150µm
sextupole	horiz. offset	300μm
wiggler	horiz. offset	150µm

Dependence of vertical emittance on misalignments

Dependence of vertical emittance on misalignments

Element type	Alignment parameter	Nominal value
quadrupole	vert. offset	150μm
sextupole	vert. offset	300µm
bend	roll	100μrad
wiggler	vert. offset	150μm
quadrupole	roll	100μrad
wiggler	roll	100μrad
sextuple	roll	100μrad
quadrupole	horiz. offset	150μm
sextupole	horiz. offset	300µm
wiggler	horiz. offset	150μm

For nominal misalignment of all elements, $\epsilon_v < 270 pm$ for 95% of seeds

Misalignment tolerance

Contribution to vertical emittance at nominal misalignment for various elements

Element type	Alignment parameter	Nominal value	Vertical emittance
quadrupole	vert. offset	150µm	114pm
sextupole	vert. offset	300µm	8.3pm
bend	roll	100μrad	2.3pm
wiggler	vert. offset	150µm	1.4pm
quadrupole	roll	100μrad	1pm
wiggler	roll	100μrad	<< 0.01pm
sextuple	roll	100μrad	
quadrupole	horiz. offset	150µm	
sextupole	horiz. offset	300μm	
wiggler	horiz. offset	150µm	

Target emittance is 5-10pm

Beam Based Alignment

- Beam base alignment algorithms and tuning strategies (simulation results)
 - Beam based alignment of BPMs (depends on independent quad power supplies)
 - $\Delta Y < 50 \mu m$
 - Measure and correct
 - β -phase \rightarrow design horizontal emittance
 - Orbit → reduce displacement in quadrupoles (source of vertical dispersion)
 - Vertical dispersion → minimize vertical dispersion
 - Transverse coupling → minimize coupling of horizontal to vertical emittance
 - Minimize β -phase error with quadrupoles
 - Minimize orbit error with vertical steering correctors
 - Minimize vertical dispersion with vertical steering correctors
 - Minimize coupling with skew quads

One parameter correction

- CESR correctors and beam position monitors
 - BPM adjacent to every quadrupole (100 of each)
 - Vertical steering adjacent to each vertically focusing quadrupole
 - 14 skew quads mostly near interaction region
- The single parameter is the ratio of the weights
- Three steps (weight ratio optimized for minimum emittance at each step)
 - Measure and correct vertical orbit with vertical steerings minimize Σ_i ($w_{c1}[kick_i]^2 + w_o[\Delta y_i]^2$)
 - Measure and correct vertical dispersion with vertical steering minimize $\Sigma_i \left(w_{c2} [kick_i]^2 + w_n [\Delta \eta_i]^2 \right)$
 - Measure and correct coupling with skew quads minimize Σ_i ($w_{sq}[k_i]^2 + w_c[C_i]^2$)

Tuning vertical emittance

Evaluate 6 cases

2 sets of misalignments:

1. Nominal and 2. Twice nominal (Worse)

X 3 sets of BPM resolutions:

1. No resolution error, 2. *Nominal*, and 3. *Worse* (5-10 X nominal)

	Parameter	Nominal	Worse	
Element Misalignment	Quad/Bend/Wiggler Offset [µm]	150	300	
Wilsangillicit				$\sigma_{\rm v}$ =109 μm
	Sextupole Offset [µm]	300	600	May 07 survey
	Rotation (all elements)[µrad]	100	200	
	Quad Focusing[%]	0.04	0.04	$\sigma(\text{one turn}) \sim 27 \mu \text{m}$
BPM Errors	Absolute (orbit error) [µm]	10	100	$\sigma(N_{turn} \text{ average})$ $\sim 27 \mu \text{m/V} N$
	Relative (dispersion error*)[μm]	2	10	
	Rotation[mrad]	1	2	

^{*}The actual error in the dispersion measurement is equal to the differential resolution divided by the assumed energy adjustment of 0.001

Low emittance tuning

Vertical emittance (pm) after one parameter correction:

Alignment	BPM Errors	Mean	1 σ	90%	95%
Nominal	None	1.6	1.1	3.2	4.0
"	Nominal	2.0	1.4	4.4	4.7
44	Worse	2.8	1.6	4.8	5.6
2 x Nominal	None	7.7	5.9	15	20
44	Nominal	8.0	6.7	15	21
44	Worse	11	7.4	20	26

With *nominal* magnet alignment, we achieve our target emittance of 5-10pm for 95% of seeds with *nominal* and *worse* BPM resolution

With 2 X nominal magnet alignment, one parameter correction is not adequate

Two parameter correction

Consider a two parameter algorithm

- 1. Measure orbit and dispersion. Minimize $\Sigma_i w_{c2} [kick_i]^2 + w_{o2} [\Delta y_i]^2 + w_{\eta 1} [\Delta \eta_i]^2$
- 2. Measure dispersion and coupling. Minimize $\Sigma_i w_{sq}[k_i]^2 + w_{\eta 2}[\Delta \eta_i]^2 + w_c[C_i]^2$

The two parameters are the ratio of the weights. The ratios are re-optimized in each step

Vertical emittance (pm) after one and two parameter correction:

Alignment		Correction Type	Mean	1 σ	90%	95%
2 x Nominal	Worse	1 parameter	11	7.4	20	26
"	44	2 parameter	6.5	6.7	9.6	11.3

- 2 X nominal survey alignment, 10µm relative and 100µm absolute BPM resolution
 - 2 parameter algorithm yields tuned emittance very close to target (5-10 pm) for 95% of seeds

Time dependence of survey

Is the survey stable?

Long time scale

For most quads *nominal* alignment (~150µm) is preserved for at least a year A few magnet stands will have to be secured

Time dependence of survey

Is the survey stable?

Short time scale

- Measured quadrupole vibration amplitude at frequency > 2 Hz is less than $1 \mu m$
- \rightarrow Corresponding to $\Delta \epsilon_y << 2 pm$

Element	Misalignment	$< \epsilon_y > $ = 2pm	95% $\epsilon_{\rm y} < 2 \rm pm$
Quad	Vertical offset [μm]	19	13
Quad	tilt [µrad]	141	95
Sextupole	Vertical offset [µm]	147	101
Bend	tilt [µrad]	51	34
Wiggler	Vertical offset [μm]	183	111

Correlated misalignment

- Correlated misalignment temperature dependence
 - Magnets move as tunnel warms with operation
 - Temperature change is not uniform slowly varies along circumference
 - $(dy/dT)\Delta T < 30\mu m$

Uncorrected Emittance from Slow-Wave Misalignment

$$\Delta y = A\sin(k_n s + \phi)$$

 $k_n = 2\pi n/circumference$

A< $30\mu m$, $\rightarrow \epsilon$ < 1pm

BPM resolution

Relative BPM resolution critical to measurement of vertical dispersion

Dispersion depends on differential orbit measurement

$$\eta_{\rm v} = [y(\delta/2) - y(-\delta/2)]/\delta$$

$$\delta \sim 1/1000$$

In CesrTA optics dependence of emittance on vertical dispersion is

$$\epsilon_v \sim 1.5~X~10^{-8} \left< \eta^2 \right>$$

Emittance scales with square of relative BPM error (and the energy offset δ used to measure dispersion)

 σ (single pass) ~ 27μm σ (N turn average) ~ 27μm/ \sqrt{N}

Note: $\sigma(\textit{nominal}) \sim 2\mu m$ Achieve emittance target if $\sigma < 10\mu m$

Intensity dependent effects

• Emittance

Intrabeam scattering

Depends on amplitude and source (dispersion or coupling) of vertical emittance

IBS has strong energy dependence ($\sim \gamma^{-4}$) Flexibility of CESR optics to operate from 1.5-5 GeV will allow us to distinguish IBS from other emittance diluting effects.

Intensity dependent effects

Lifetime

Parameter	Value
Е	2.0 GeV
$N_{wiggler}$	12
B_{max}	1.9 T
ε_{x} (geometric)	2.3 nm
ε_{y} (geometric) Target	5–10 pm
$ au_{ ext{x,y}}$	56 ms
$\sigma_{\rm E}/{ m E}$	8.1 x 10 ⁻⁴
Q_z	0.070
Total RF Voltage	7.6 MV
$\sigma_{_{\! Z}}$	8.9 mm
α_{p}	6.2×10^{-3}
N _{particles} /bunch	2×10^{10}
$ au_{ ext{Touschek}}$	>10 minutes
Bunch Spacing	4 ns

As we approach our target emittance of 5-10pm and $2x10^{10}$ particles/bunch $\tau_{Touschek}$ decreases to $\sim \! 10$ minutes.

System status

- Status of beam based measurement/analysis
 - Instrumentation existing BPM system is 90% analog with relays and 10% bunch by bunch, turn by turn digital
 - Turn by turn BPM -
 - A subset of digital system has been incorporated into standard orbit measuring machinery for several years
 - We have learned to exploit the capability of the sophisticated data acquisition system
 - Software (CESRV) / control system interface has been a standard control room tool for beam based correction for over a decade
 - For measuring orbit, dispersion, betatron phase, coupling
 - With the flexibility to implement one or two corrector algorithm
 - To translate fitted corrector values to magnet currents
 - And to load changes into magnet power supplies
 - ~ 15 minutes/iteration
 - We are ready to go

Experimental program

Machine studies plan beginning Fall 07

We can begin immediately to

- Test emittance tuning algorithms
- Develop fast dispersion measurement in an effort to reduce tuning time
- Characterize instrumentation for measuring beam size
 - Interferometer promises 25µm resolution
- Explore current dependence of beam size and lifetime
- and/or calibrate horizontal emittance in terms of vertical beam size and lifetime
- 5GeV optics, $\varepsilon_x \sim 90$ nm (synchrotron radiation operation)
- 2 GeV colliding beam optics $\varepsilon_{\rm x} \sim 130 {\rm nm}$
- 2 GeV 6 wiggler, low emittance test optics $\varepsilon_x \sim 7$ nm

Experimental program

- Cesr TA low emittance program
 - -2008
 - Install quad leveling and adjustment hardware new hardware simplifies alignment of quadrupoles
 - Extend turn by turn BPM capability to half vertically focusing quadrupole BPMs
 - Commission 2GeV 2.3nm optics [12 wigglers, CLEO solenoid off]
 Survey and alignment
 Beam based low emittance tuning
 - -2009
 - Install spherical survey targets and nests and learn to use laser tracker
 More efficient survey and alignment
 - Complete upgrade of BPMs to all vertically focusing quads Single pass measurement of orbit and dispersion
 - Commission positron x-ray beam size monitor (~2μm resolution)
 - -2010
 - Complete BPM upgrade
 - Commission electron x-ray beam size monitor