Electron Cloud and Ion Experimental Program

Mark Palmer

Cornell Laboratory for

Accelerator-Based Sciences and Education

Outline

- Key Issues for the Damping Rings
- Electron Cloud
 - Present Understanding
 - Extrapolation to the DR Regime
 - CesrTA Experimental Goals
- Experimental Plans
 - Electron Cloud Growth Studies
 - Chambers for Study
 - Techniques
 - Beam Dynamics Studies (EC and Ions)
 - Methods
 - Instrumentation
- Milestones for the ILC EDR
- Program Comments and Conclusion

ILC DR Key Issues

- Reference Design Report 2007
 - Central damping ring complex
 - Single positron damping ring
 - For an ~6 km ring, electron cloud mitigation is a serious issue
- Engineering Design Phase
 - Engineering Design Report ⇒ 2010
 - Damping Rings R&D required as well as engineering design work

Beam energy	5 GeV	
Circumference	6695 m	
RF frequency	650 MHz	
Harmonic number	14516	
Injected (normalised) positron emittance	0.01 m	
Equilibrium (normalised) emittance	5 µm × 20 nm	
Extracted energy spread	<0.15%	
Average current	400 mA	
Maximum particles per bunch	2×10 ¹⁰	
Bunch length (rms)	9 mm	
Minimum bunch separation	3.08 ns	

ILC Damping Rings R&D Task Force Very High Priorities

- Lattice design for baseline positron ring
- Lattice design for baseline electron ring
- Demonstrate < 2 pm vertical emittance
- Characterize single bunch impedance-driven instabilities
- Characterize electron cloud build-up
- Develop electron cloud suppression techniques
- Develop modelling tools for electron cloud instabilities
- Determine electron cloud instability thresholds
- Characterize ion effects
- Specify techniques for suppressing ion effects
- Develop a fast high-power pulser

Moving to a Single Positron DR

M. Pivi ILCDR06

Cloud density near (r=1mm) beam (m⁻³) before bunch passage, values are taken at a cloud equilibrium density. Solenoids decrease the cloud density in DRIFT regions, where they are only effective. Compare options LowQ and LowQ+train gaps. All cases wiggler aperture 46mm.

Our Present Understanding

 The data most relevant to our understanding of the EC in the ILC damping rings comes mainly from the positron rings of the B-Factories

	ILC DR	KEK B	PEP II
		LER	LER
E (GeV)	5	3.5	3.1
t _{bunch} (ns)	3.1	7	4.5
N _{bunch}	2×10^{10}	7.3×10^{10}	7×10^{10}
ε_{x} (nm)	0.5	18	31
ε_{y} (pm)	2	400	1400

Extrapolations to the ILC DR

- Two key extrapolations exist
 - 1. Bulk of positron studies based on measurements with beams with significantly larger emittance
 - Horizontal emittances 10's of times larger than ILC spec
 - Vertical emittances 100's of times larger than ILC spec
 - 2. B factories have been limited by EC in drift regions
 - Success of mitigation techniques in drifts already included for the ILC simulations
 - Primary focus of concern for the positron damping ring is on the EC build-up in the dipole and wiggler regions
 - Suitable mitigation techniques for dipole and wiggler regions must be verified

CesrTA Goals I

- Electron Cloud Growth Studies
 - Provide a "laboratory" for the study of EC growth
 - Particularly in regions of greatest concern for DR: wigglers and dipoles
 - Provide suitable diagnostics to characterize the growth in all key regions
 - Characterize the performance of mitigation techniques in dipoles, quadrupoles and wigglers
 - Explore a parameter regime that approximates the ILC DR
 - Bunch train configuration
 - Bunch charge, length, spacing, emittance
 - Inter-train gaps
 - Energy
 - Investigate parameter dependence (eg, adjust wiggler fields to vary primary versus secondary electron contributions)
- ⇒ Detailed data with which to benchmark ILC simulations
- ⇒ Demonstrate suitable vacuum chamber technologies

CesrTA Goals II

- Electron Cloud Induced Instability and Emittance Dilution
 - Characterize the impact of the cloud on witness bunches/trains trailing an initial EC-generating train
 - Provide sufficient local diagnostics to characterize EC growth and decay in all representative chambers
 - Control EC density and distribution around ring by witness bunch delay and/or intensity of generating train
 - Explore a range of witness bunch parameters (emittance, charge, energy etc)
 - Species-dependent studies in same chamber
 - Distinguish impedance effects
 - Will study the Fast Ion Instability with the electron beam to ensure a complete understanding of the relevant beam dynamics
 - Dipole chambers dominate CESR ring
 - ILC simulations indicate dipole regions will have the highest EC density
- ⇒ Detailed data with which to benchmark ILC simulations

CesrTA EC Program Summary

CesrTA will provide:

- Detailed local EC growth measurements with which to benchmark the relevant simulation codes
- Detailed studies of EC mitigation in critical vacuum chambers
 - Includes testing of true ILC prototype chambers by the end of the program
- Beam dynamics measurements over significant parameter ranges to verify key inputs to the instability modeling codes and to benchmark their performance
- The goal of our program is to demonstrate key EC mitigation technologies, measure instabilities and emittance growth, and validate EC simulations in a regime approaching that of the ILC DR on a timescale consistent with the EDR.

EC Growth Studies

- Install chambers with EC growth diagnostics and mitigation
 - Goal is to have implemented diagnostics in each representative chamber type by mid-2009
 - Retarding Field Analyzers with extra bias grid for ion measurements
 - Wiggler chambers in L0 straight w/mitigation
 - Dipole chambers in arcs w/mitigation
 - Quadrupole chambers w/mitigation
 - L0 and L3 straights
 - Drifts
 - Diagnostics adjacent to test chambers
 - Solenoids
 - Some components provided by collaborators (eg, wiggler vacuum chambers supplied by LBNL)

Components of the EC Growth Plan

NORTH IR

• L3 Straight

Instrument large bore quadrupoles and adjacent drifts

- Arcs where wigglers removed
 - Instrumented dipoles and adjacent drifts
- Pressure bump capabilities planned for each instrumented region
 - Impact on ECE and FII
- L0 Straight
 - Instrumented wiggler straight and adjacent sections

Diagnostic Wiggler Chamber Concept

- Expect to make several variants to explore
 - Coatings
 - Electrodes
 - Grooves
- Modify existing extrusions
- Validate RFA concept by December 2007

Clearing Electrode

CesrTA Vacuum Chambers

CesrTA Wiggler Modifications

- Remove Cu beam-pipe
 - Replace with beam-pipe having EC suppression and diagnostics

- Cornell collaborating closely with SLAC & LBNL
- Prototype ILC Wiggler and Vacuum Chamber
 - Cornell/LBNL Collaboration

Beam Dynamics Studies

Prerequisites

- Instrumentation to characterize bunch trains at ultra low emittance
 - Multibunch detectors and readouts
 - High resolution beam profile monitors
 - See following instrumentation talks for details
- Ring operation at ultra low emittance
 - See ultra low emittance talk for details

Instability Studies

- Focus on witness bunch studies where EC density controlled by intensity of leading train and delay to witness bunches
- Detailed study of instability thresholds and emittance growth versus the witness bunch-train parameters
- Detailed electron-positron comparisons to help distinguish the dynamics and to evaluate EC impact on the electron beam
- Characterize fast ion effects for the electron beam as part of this program
 - Measurements of instabilities and emittance growth along electron bunch trains
 - Explore the dependence on emittance, bunch charge and spacing, train gaps and vacuum pressure

Witness Bunch Studies – e⁺ Vertical Tune Shift

- Initial train of 10 bunches ⇒ generate EC
- Measure tune shift and beamsize for witness bunches at various spacings
- Bunch-by-bunch, turn-by-turn beam position monitor

Error bars represent scatter observed during a sequence of measurements

1 kHz $\Rightarrow \Delta v=0.0026$ $\rho_e \sim 1.5 \times 10^{11} \text{ m}^{-3}$ Ohmi, etal, APAC01, p.445

Preliminary

Data and Simulation

- Initial comparisons for CESR
- Growth modeling for dipole chambers

Initial level of agreement is promising

- Ongoing Effort
- Model full ring and explore parameter space
- Measurement of emittance and bunch spacing dependencies this Fall

Overlay simulated EC density on vertical tune shift data

Witness Bunch Studies – e Vertical Tune Shift

- Same setup as for positrons
- Negative vertical tune shift and long decay consistent with EC
 - Implications for the electron DR?

Negative vertical tune shift along train \Rightarrow consistent with EC Magnitude of shift along train is $\sim 1/4^{th}$ of shift for positron beam *NOTE*: Shift continues to grow for 1st 4 witness bunches!

Preliminary Results

EC Induced Instability

- Vertical beam size along 45 bunch e+ trains (2 GeV, 14 ns bunch spacing)
 - Range of bunch currents
 - 200 50-turn averages collected for each point
- Observe onset of instability moving forward in train with increasing bunch current consistent with EC

Milestones

- Project milestones will be covered in detail in a later talk
- Brief Overview
 - -2008-2009
 - Major focus on EC growth and suppression in wiggler, dipole and quadrupole chambers
 - -2009-2011
 - Beam dynamics studies with electrons and positrons (EC and FII) as progressively lower emittances obtained (note: preliminary work already underway)
 - -2010-2011
 - Tests with ILC prototype chambers
- Evaluations for the ILC EDR available in 2010

Dealing with Challenges and Risks

- Experimental program is designed to deal with discoveries and changes in direction through the course of the R&D
 - Schedule allows for re-evaluation of key physics issues and technologies as the program proceeds
 - Course corrections are expected along the way
 - This makes the program robust against short term technical and/or physics surprises
 - Technology down-selects can be employed as data is obtained to optimize the program along the way
 - Program relies heavily on support from collaborators
- Key technical drivers for the program are:
 - Electron Cloud Growth Studies
 - Chamber construction
 - Implementation of diagnostics
 - Beam Dynamics Studies
 - Issues affecting our ability to achieve ultra low emittance (see later talks)
 - Issues affecting our implementation of high resolution emittance diagnostics (see later talks)
- Key assets
 - A well-understood machine
 - An experienced accelerator staff
 - A highly expert group of collaborators

Collaborators

- Program relies heavily on collaborator participation and input (see letters of support)
 - Will require a plan for coordination (see Project Mgmt Talk)
- Ongoing Collaborator

Participation

- Sept. 2006: M. Pivi
- Jan. 2007:
 - K. Harkay (ANL),
 - J. Flanagan (KEKB),
 - A. Molvik (LLNL)
 - R. Holtzapple &
 - J. Kern (Alfred)

Conclusion

CESR offers

- Damping wigglers meeting the ILC specification
- Flexible energy and emittance range for experimental studies
- Experimental studies with electrons and positrons in the identical environment
- Experienced staff and well-developed tools

The CesrTA program provides

- Detailed studies of electron cloud growth and validation of mitigation techniques in time for the ILC EDR
- Beam dynamics results on electron cloud and fast ion instabilities in time for the ILC EDR
- Assurance that the ILC DR design is feasible by benchmarking our simulations with data in the relevant parameter regime