## Proposal for a CESR Damping Ring Test Facility

M. Palmer & D.Rubin November 8, 2005

#### CESR Status

Electron-positron collider for study of QCD and weak interactions near the charmed quark threshold ~1.51 -> 2.2 GeV/beam (2/3) CLEO collaboration

Synchrotron radiation source operating at 5GeV/beam 3 permanent magnet wiggler lines 4 hard bend radiation lines (1/3) CHESS

Operation of CESR for CLEO is scheduled to end in March 2008

## CESR parameters/hardware

- Circumference[m] 768.4
- Energy reach  $[\bar{G}eV]$  1.5 <  $E_{beam}$  < 5.5
- Single beam current[mA]
  - 1.9GeV -> 180mA
  - 5.0GeV -> 350mA
- Arc bend radius[m] 87
- Hard bend radius[m]
- RF, 4 single cell superconducting cavities
  - Frequency [MHz] 500
  - Max accelerating voltage[MV]
     12
- Injector full energy, electrons and positrons, 45 bunches at 60Hz
- Bunch by bunch transverse & longitudinal feedback
- 100 bunch by bunch beam position monitors

## CESR parameters/hardware

- 100 quadrupoles on independent power supplies
- 78 sextupoles on independent supplies
- 18 skew quad correctors
- 6 skew sextupole correctors
- 4 octupole correctors
- Superconducting/ permanent magnet final focus quadrupoles
- Wigglers
  - 12 Superconducting
    - Period[m] 0.4
    - *G*ap[cm] 7
    - Peak field[T] 1.4<B<2.1</li>
    - · Length[m] 1.6
  - 2 permanent magnet
    - Peak field[T] 0.78 & 1.2

## CESR-c

## Damping and emittance control with wigglers





# Superconducting wiggler prototype installed fall 2002

7-pole, 1.3m 40cm period, 161A, B=2.1T





12 8-pole superferric wigglers

 $1.4 < B_{peak}[T] < 2.1$ 

2 spare

Beam based measurements of wiggler nonlinearity in good agreement with modeled field

- Finite element code => 3-d field table
- Analytic fit => taylor map

## Configuration for HEP

(wigglers reduce damping time and increase emittance)

Plot file: BZ;BETA\_ORBIT.PCM Lat file: /a/lnx209/nfe/ceer/ueer/dlr/bmad/lat/hibetainj\_20040628\_v01.lat Lattice: HEPTEST.



| 2.1 T wigglers(#)               | 0   | 12  |
|---------------------------------|-----|-----|
| $\varepsilon_{\rm h}({\rm nm})$ | 30  | 130 |
| $\tau_{\rm h}({ m ms})$         | 500 | 50  |

1.9 GeV/beam

$$Q_h = 10.52$$

## CESR-c

Energy reach 1.5-6GeV/beam

Electrostatically separated electron-positron orbits accomodate counterrotating trains

Electrons and positrons collide with ±~3.5 mrad horizontal crossing angle

95-bunch trains in each beam (768m circumference)



#### Damping ring configuration High tune - low emittance optics

 $Q_{h} = 14.52$ 

Plot file: BZ:BETA\_ORBIT.PCM Lat file: /a/lnx209/nfs/cesr/user/dlr/bmad/lat/des/dr/bmad\_2gevdr\_102105.lat Lattice: 2GEVDR\_102105



#### Emittance scaling with energy and tune

$$\epsilon \sim E^2/Q_h^3 \to 8 \text{ (nm)} \text{ at } Q_h = 14.52, E = 2GeV$$

#### Emittance scaling with wigglers

$$\varepsilon_{x} = C_{q} \frac{\gamma^{2} I_{5}}{J_{x} I_{2}}, \qquad I_{2} = \oint \rho^{-2} ds, \qquad I_{5} = \oint \frac{H}{|\rho|^{3}} ds$$

 $\underline{\mathsf{HEP}}\ \mathsf{configuration}\ \mathsf{-}\ \mathsf{taylor}\ \mathsf{Hin}\ \mathsf{wigglers}\ \mathsf{to}\ \mathsf{increase}\ \mathsf{emittance}\ \underline{\mathsf{Damping}\ \mathsf{ring}\ \mathsf{configuration}}\ \mathsf{-}\ \mathsf{minimize}\ \mathsf{Hin}\ \mathsf{wigglers}$ 

12, 2.1T wigglers in CESR at 2GeV/beam increases I2 X 10

In the limit where  $I_2(arc) << I_2(wiggler)$ , and  $I_5(arc) \to 0$ , and  $\eta = \eta' = 0$  at start and end of wigglers,

The contribution of a single wiggler period is:

$$\Delta I_5 \approx \frac{4\beta_x}{15k_p^3 \rho_w^5}, \qquad \Delta I_2 = \frac{\pi}{2k_p \rho_w^2}, \qquad \varepsilon_x \approx C_q \frac{\gamma^2}{J_x} \frac{8\beta_x}{15\pi k_p^2 \rho_w^3}$$



Wigglers deployed in lattice where  $\eta = \eta' = 0$   $\epsilon_{min} \sim 2.5 \text{nm}$  (6 wigglers)

Plot file: BZ:BETA\_ORBIT.PCM Lat file: /a/lnx209/nfs/cesr/user/dlr/bmad/lat/des/dr/bmad\_2gevdr\_102105.lat Lattice: 2GEVDR\_102105





~1/I<sub>2</sub>

## Emittance scaling with energy & wiggler field

| Energy[GeV] | #Wigglers | B <sub>peak</sub> [T] | $\varepsilon_{x}[nm]$ | $\tau_{x}[ms]$ |
|-------------|-----------|-----------------------|-----------------------|----------------|
| 1.5         | 6         | 1.575                 | 1.4                   | 203            |
| 2.0         | 0         | 0                     | 8                     | 437            |
| 2.0         | 12        | 2.1                   | 3.1                   | 47             |
| 2.0         | 6         | 2.1                   | 2.4                   | 86             |
| 5.0         | 6         | 2.1                   | 34                    | 16             |
| 5.0         | 0         | 0                     | 54                    | 28             |

#### 6 2.1 Twigglers, 2GeV/beam

```
\begin{array}{l} \epsilon_{\text{min}} \sim 2.5 \text{nm} \\ \tau_{\text{x}} = 86 \text{ms} \\ \tau_{\text{Touschek}} \sim 3 \text{ minutes (N=2E10, } \epsilon_{\text{y}}/\epsilon_{\text{x}} = 0.1\%) \\ \sigma_{\text{E}}/E = 0.084\% \\ \sigma_{\text{I}} = 8.3 \text{mm} \ @ \ 10 \text{MV} \ \text{accelerating field} \end{array}
```





#### Damping ring R&D

- Test coupling correction algorithms (in CESR we routinely achieve  $\varepsilon_{\rm v}/\varepsilon_{\rm x}$  < 0.5%)
- Establish properties of ring with wiggler dominated emittance
- Measure electron cloud density in wigglers/dipoles vs
  - Bunch current
  - Bunch pattern
  - Emittance
  - Chamber radius
- Measure e-cloud instability threshold vs beam parameters (positrons)
- Fast ion instability (electrons)
- Test
  - -Injection/ extraction kicker (extraction line)
  - Prototype wiggler
  - Feedback
  - Clearing electrodes
  - Deflecting cavity
  - Instrumentation ...

#### Summary

- •CESR can be configured for low emittance operation after CLEO detector removal
  - -Changes are relatively straightforward
  - -Will want to eliminate CLEO for CHESS ops anyways
- •Significant insertion space can be made available for DR hardware studies
- The most interesting (and straightforward) setup is to study positrons
- ·Significant amount of further evaluation is needed
- ·We welcome input and participation from all interested parties!!!