

... for a brighter future

Integrated Modeling of Damping Rings and Beyond

Michael Borland
Operations and Analysis Group
Accelerator Systems Division
September 26, 2006

A U.S. Department of Energy laboratory managed by The University of Chicago

Outline

- Integrated modeling:
 - Cautionary tale from LCLS
 - Lessons for ILC
- Capabilities of elegant for damping ring work
 - Single-particle dynamics
 - Collective effects
- Planned improvements for DR work
- Beyond DR modeling

A Fragmented Approach is Very Natural...

- In the early stages of an idea, we do estimates
 - Use approximate expressions
 - Use rms or FWHM parameters for beam
- Later we move on to simulations, which are compartmentalized
 - Gun/injector
 - Linac
 - Damping ring
 - Transport lines
 - Final focus
- Communication between subsystem experts is often still in terms of basic statistics
- The details may hide an unpleasant surprise
- However, integrated modeling isn't necessarily easy.

Is Integrated Modeling Worthwhile? Ask LCLS!

Micro-bunching instability in bunch compressors driven by CSR, discovered with **elegant**

- Instability not seen until photoinjector and linac simulations were joined
- Impact on LCLS operation would be very serious
- Resulted in redesign of LCLS bunch compression scheme.

M. Borland et al., NIM A 483.

LSC Micro-bunching Instability in LCLS

Z. Huang et al., EPAC 2004.

LCLS S2E Simulation Components: Making One Code from Many

LCLS S2E Simulation Components

LCLS S2E Simulation Components

Possible Parallels for ILC

- Variations from injector will impact the ring
 - Emittance and transverse distribution variation may impact injection efficiency
 - Charge variation may impact final bunch length, energy spread, and emittance
- Variations in ring will impact emittance preservation and bunch compression downstream
 - Quasi-stable bunches in the ring may have structure that gets amplified in bunch compression
- One can't put firm tolerances on the inputs without knowing how they translate into final performance
- We can start to build an integrated ILC model by building an integrated DR model.

Fragmented vs Integrated Modeling

- Fragmented modeling is frequently chosen for speed, convenience, or simplicity of understanding
 - This often motivates creation of single-purpose codes
 - These are valuable for developing modeling techniques, but limited
- Integrated modeling ideally makes "all" the physics available in one simulation
 - E.g., impedance, space charge, single particle dynamics, lattice errors, correction schemes, feedback, ...
 - <u>Details</u> of the input beam (reflecting upstream physics)
- Our approach with elegant is to provide capabilities that span the spectrum so user can
 - Start with a simple model
 - Add effects one at a time.

Relevant Capabilities of elegant (Latest Release, V16.1)

- Lattice simulation (serial or parallel)
 - ILMATRIX element:
 - Individual Linear MATRIX
 - Simulate periodic systems by giving end-point lattice functions, tunes, chromaticities, tune-shifts with amplitude
 - Linear matrix for each particle computed for next turn based on present energy offset and betatron amplitude
 - Symplectic tracking:
 - Element-by-element tracking with 4th order Ruth integrator
- Radiation effects (serial or parallel)
 - Lumped element synchrotron radiation (classical plus quantum)
 - Element-by-element synchrotron radiation
 - Option for using real photon number, energy, and opening angle distributions (V16.2)

Other Relevant Single-Particle Dynamics

- RF cavity simulation with exact time dependence
 - Phase and voltage modulation
 - Optional linearization of time dependence
- Kicker simulation with arbitrary-length user-specified waveforms
- Symplectically-integrated wiggler (Y. Wu)
- Flexible apertures
 - Localized collimators or beam tube declaration
 - Rectangular, elliptical, super-elliptical
 - One- or two-sided
 - Aperture specified in external file.

Impedance Effect Modeling

- Short range impedances/wakes (serial now, parallel soon)
 - Each pass is independent
 - Longitudinal and transverse
 - Time- and frequency-domain implementations
 - Input options
 - Broad-band impedance (R, Q, f)
 - Input Z(f) from SDDS file
 - Input W(t) from SDDS file
 - Smoothing options
 - Savitzky-Golay
 - Low-pass filter
 - Ramp-on option to prevent transients.

Short-Range Wakefields

- Each pass is independent
- Longitudinal and transverse
- Time- and frequency-domain implementations
- Time-domain:
 - Make arrival-time histogram weighted by charge*positionⁿ
 - Optionally smooth
 - Convolve in time domain with W(t) to get V(t)
 - Apply V(t) to particles with optional intra-bin interpolation

- Frequency-domain:
 - Make arrival-time histogram
 - Optionally smooth
 - Take FFT to get I(f)
 - Multiply with Z(f), optionally lowpass filtered to control noise
 - Invert FFT to get V(t)
 - Apply V(t) to particles with optional intra-bin interpolation

Short-Range Wakefields

- Input options
 - Broad-band impedance (R, Q, f)
 - Input Z(f) from SDDS file
 - Input W(t) from SDDS file
- Smoothing options
 - Savitzky-Golay (time- or frequency-domain approach)
 - Low-pass filter (frequency-domain approach only)
- Ramp-on option to prevent transients (V16.2)
- Parallel version working now (V16.2)
 - Depending on required time and frequency resolution, time-domain approach may be much faster
 - Still needs some optimization before release.

Example: Potential Well Distortion from Inductive Impedance

- Simulated APS with ILMATRIX
- Used frequencydomain approach for impedance
- Varied charge from 0 to 60 nC
- Set low-pass filter to cut off noise outside bunch spectrum
- 1000-turn ramp to prevent transients

Comparison to Haissinski Equation

Line is solution to
Haissinski equation
using haissinski¹
program

¹L. Emery, M. Borland

Evolution of Bunch Shape for 6 nC (C. Yao)

Impedance ramped on over 1000 turns.

Unstable Bunch Shape at 13 nC (C. Yao)

Low-Frequency Cases Show Complex Features (C. Yao)

Res. freq: 3GHz, beam charge: 20 nC. Phase space plot at 1000 turns interval.

Comparison to Oide's Theory¹ (C. Yao)

Theory:

$$s_{th} = \frac{2N}{\gamma v_{s0} \sigma_{\delta}} \frac{\omega_0 r_e}{c} \frac{R}{Q Z_0}$$

$$\Omega = \omega_0 \sigma_z / c$$

¹K. Oide, KEK Preprint 90-10, April 1990.

Long-Range Impedances

- Implemented using collections of resonators
 - User specifies (R, Q, f) for arbitrary number of resonators
 - Resonator data may be stored in SDDS file
 - Generated by APS version of URMEL
- Algorithm:
 - Make arrival-time histogram, weighted by charge*position
 - Advance through histogram from early to late arrival time, computing V(t)
 - Use fundamental theorem of beam-loading to compute voltage induced in each mode by slice of beam
 - Advance phasor to next bin position
- Ramp-on option to prevent transients.

Transverse Space Charge (A. Xiao)

- Implemented linear transverse space charge (SCMULT)
 - Space charge computation assumes gaussian distribution
 - Computes gaussian parameters from actual beam distribution
 - Space charge force varies with longitudinal position
 - Reduces tune shift compared to analytical results
 - Separate element that user inserts into lattice as needed
 - E.g., 1 per turn or 10 per turn...
 - Automatically gives appropriate strength to each SCMULT element
 - elegant can automatically insert SCMULT after each element
- Have added non-linear space charge
 - Formulae from W. Ng
 - Under test now.

Longitudinal Space Charge

- Two elements:
 - LSCDRIFT: longitudinal space charge in a drfit
 - RFCW: rf cavity with wakes and longitudinal space charge
- Uses an impedance-based approach¹
 - Ignores vacuum chamber walls
 - Appropriate for looking at short-wavelength modulations
 - Ignores energy spread due to variation force with radius
 - Function peaks typically at very short wavelength, so careful noise control is vital

$$Z(k) = \frac{i Z_0}{\pi k_0 r_b^2} \left[1 - \frac{k_0 r_b}{\gamma} K_1 \left(\frac{k_0 r_b}{\gamma} \right) \right]$$

¹Z. Huang et al., PRSTAB 7, 074401 (2004) and refs. therein.

Feedback System Simulation

- Single-bunch turn-by-turn feedback simulation
- User inserts one or more pick-ups into lattice
 - Measure the beam centroids
 - Apply a 15-turn digital filter with delay
- User inserts on or more drivers into lattice
 - Link any number of drivers to one pick-up
 - Apply a 15-turn digital filter to the selected pick-up output
 - Apply kicks to beam
- Presently assumes the entire beam is one bunch.

Simulation Diagnostics

- Lost-particle file
 - Position of loss
 - Particle transverse and longitudinal coordinates at loss
- Accepted-particle file
 - Initial coordinates of all surviving particles
- "Watch point" elements inserted at any location in lattice
 - Phase space dump at insertion point, every Nth turn
 - Beam moments at insertion point, every Nth turn
- Histogram elements give histograms at insertion point
- All delivered to self-describing SDDS files.

Planned Developments for DR Work

- Finish parallelization of short-range impedance elements
- Parallelize long-range impedance elements
 - Also add smoothing for noise control
- Develop method for long-range non-resonant wakes (e.g., resistive wall)
- Develop longitudinal space-charge kick element
- Generalize ILMATRIX to non-periodic systems
- Incorporate more sophisticated space charge model from Synergia.
- Improve support for multi-bunch beams
 - More efficient implementation of short-range impedances
 - Extend feedback simulation from single- to multi-bunch.

Acknowledgments

- Thanks to the following people for help in preparing this talk
 - Louis Emery (ANL)
 - Aimin Xiao (ANL)
 - CY Yao (ANL)

