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Outline

B |ntegrated modeling:
— Cautionary tale from LCLS
— Lessons for ILC
B Capabilities of elegant for damping ring work
— Single-particle dynamics
— Collective effects

® Planned improvements for DR work
® Beyond DR modeling
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A Fragmented Approach is Very Natural...

® |n the early stages of an idea, we do estimates
— Use approximate expressions

— Use rms or FWHM parameters for beam

B | ater we move on to simulations, which are compartmentalized
— Gun/injector
— Linac
— Damping ring
— Transport lines
— Final focus

® Communication between subsystem experts is often still in terms of
basic statistics

® The details may hide an unpleasant surprise

® However, integrated modeling isn’t necessarily easy.
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Is Integrated Modeling Worthwhile? Ask LCLS!

Micro-bunching instability in bunch
compressors driven by CSR,

discovered with elegant B |nstability not seen until

\ photoinjector and linac
0.1 I8 | simulations were joined

® |mpact on LCLS
00! KEWE operation would be very
e TR } serious
Z 0.1l | B Resulted in redesign of
" LCLS bunch
0.2 | compression scheme.
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LSC Micro-bunching Instability in LCLS

Longitudinal space charge

instability due to weak space
charge forces in long linac
with multiple compressors

Suppression required
addition of a laser-
undulator beam heater.
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LCLS S2E Simulation Components:
Making One Code from Many

Translator

J. Lewellen (ANL)

Borland et al (ANL)
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LCLS S2E Simulation Components
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LCLS S2E Simulation Components

elegant2genesis
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FEL output
file

S. Reiche (UCLA)
Chae, Soliday

Integration of many codes via SDDS files
permits integrated analysis (e.g., of jitter)
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Possible Parallels for ILC

® Variations from injector will impact the ring

— Emittance and transverse distribution variation may impact injection
efficiency

— Charge variation may impact final bunch length, energy spread, and
emittance
B Variations in ring will impact emittance preservation and bunch
compression downstream
— Quasi-stable bunches in the ring may have structure that gets amplified in
bunch compression
® One can’t put firm tolerances on the inputs without knowing how they
translate into final performance

B We can start to build an integrated ILC model by building an integrated
DR model.
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Fragmented vs Integrated Modeling

® Fragmented modeling is frequently chosen for speed, convenience,
or simplicity of understanding

— This often motivates creation of single-purpose codes
— These are valuable for developing modeling techniques, but limited
B |ntegrated modeling ideally makes “all” the physics available in one
simulation

— E.g., impedance, space charge, single particle dynamics, lattice errors,
correction schemes, feedback, ...

— Details of the input beam (reflecting upstream physics)
® Our approach with elegant is to provide capabilities that span the
spectrum so user can

— Start with a simple model

— Add effects one at a time.
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Relevant Capabilities of elegant (Latest Release , V16.1)

B | attice simulation (serial or parallel)
— ILMATRIX element:
* Individual Linear MATRIX

» Simulate periodic systems by giving end-point lattice functions,
funes, chromaticities, tune-shifts with amplitude

 Linear matrix for each particle computed for next turn based on
present energy offset and betatron amplitude

— Symplectic tracking:
 Element-by-element tracking with 4™ order Ruth integrator
B Radiation effects (serial or parallel)
— Lumped element synchrotron radiation (classical plus quantum)
— Element-by-element synchrotron radiation

 Option for using real photon number, energy, and opening angle
distributions (V16.2)
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Other Relevant Single-Particle Dynamics

® RF cavity simulation with exact time dependence
— Phase and voltage modulation
— Optional linearization of time dependence
B Kicker simulation with arbitrary-length user-specified waveforms
B Symplectically-integrated wiggler (Y. Wu)
® Flexible apertures
— Localized collimators or beam tube declaration
* Rectangular, elliptical, super-elliptical
* One- or two-sided

— Aperture specified in external file.
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Impedance Effect Modeling

B Short range impedances/wakes (serial now, parallel soon)
— Each pass is independent
— Longitudinal and transverse
— Time- and frequency-domain implementations
— Input options
* Broad-band impedance (R, Q, f)
* Input Z(f) from SDDS file
* Input W(t) from SDDS file
— Smoothing options
» Savitzky-Golay
* Low-pass filter

— Ramp-on option to prevent transients.
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Short-Range Wakefields

B Each pass is independent
B | ongitudinal and transverse

® Time- and frequency-domain implementations

® Time-domain: ® Frequency-domain:
— Make arrival-time histogram — Make arrival-time histogram
weighted by charge*position” — Optionally smooth
— Optionally smooth — Take FFT to get I(f)
— Convolve in time domain with — Multiply with Z(f), optionally low-
W(t) to get V(t) pass filtered to control noise
— Apply V() to particles with — Invert FFT to get V(1)

optional intra-bin interpolation — Apply V(1) to particles with

optional intra-bin interpolation
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Short-Range Wakefields

® |nput options
— Broad-band impedance (R, Q, f)
— Input Z(f) from SDDS file
— Input W(t) from SDDS file
® Smoothing options
— Savitzky-Golay (time- or frequency-domain approach)
— Low-pass filter (frequency-domain approach only)
B Ramp-on option to prevent transients (V16.2)
B Parallel version working now (V16.2)

— Depending on required time and frequency resolution, time-domain
approach may be much faster

— Still needs some optimization before release.
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Example: Potential Well Distortion from Inductive Impedance
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Comparison to Haissinski Equation

® | ine is solution to

— 1Bl Haissinski equation
% using haissinski
= T4t 1 program
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Q=1 Resonator-Drive
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Evolution of Bunch Shape for 6 nC (C. Yao)
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Impedance ramped on over 1000 turns.
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Unstable Bunch Shape at 13 nC (C. Yao)
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Comparison to Oide’s Theory’ (C. Yao)
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'K. Oide, KEK Preprint 90-10, April 1990.
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Long-Range Impedances

® Implemented using collections of resonators
— User specifies (R, Q, f) for arbitrary number of resonators
— Resonator data may be stored in SDDS file
» Generated by APS version of URMEL
B Algorithm:
— Make arrival-time histogram, weighted by charge*position”

— Advance through histogram from early to late arrival time, computing
V()
» Use fundamental theorem of beam-loading to compute voltage
induced in each mode by slice of beam

* Advance phasor to next bin position

B Ramp-on option to prevent transients.
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Transverse Space Charge (A. Xiao)

® Implemented linear transverse space charge (SCMULT)

— Space charge computation assumes gaussian distribution
» Computes gaussian parameters from actual beam distribution

— Space charge force varies with longitudinal position
* Reduces tune shift compared to analytical results

— Separate element that user inserts into lattice as needed
* E.g., 1 perturn or 10 per turn...
* Automatically gives appropriate strength to each SCMULT element
 elegant can automatically insert SCMULT after each element

® Have added non-linear space charge
— Formulae from W. Ng

— Under test now.
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Longitudinal Space Charge

® Two elements:
— LSCDRIFT: longitudinal space charge in a drfit
— RFCW: rf cavity with wakes and longitudinal space charge
B Uses an impedance-based approach’
— lIgnores vacuum chamber walls
* Appropriate for looking at short-wavelength modulations
— lgnores energy spread due to variation force with radius

— Function peaks typically at very short wavelength, so careful noise
control is vital
i1 Z k r k r

0 0 b

Z(k)= ~[1-
nkorb Y Y

'Z. Huang et al., PRSTAB 7, 074401 (2004) and refs. therein.
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Feedback System Simulation

B Single-bunch turn-by-turn feedback simulation

B User inserts one or more pick-ups into lattice
— Measure the beam centroids
— Apply a 15-turn digital filter with delay
B User inserts on or more drivers into lattice
— Link any number of drivers to one pick-up
— Apply a 15-turn digital filter to the selected pick-up output
— Apply kicks to beam

® Presently assumes the entire beam is one bunch.

M. Borland, 9/26/06 Integrated Dampi



Simulation Diagnostics

B | ost-particle file
— Position of loss
— Particle transverse and longitudinal coordinates at loss
® Accepted-particle file
— Initial coordinates of all surviving particles
B “Watch point” elements inserted at any location in lattice
— Phase space dump at insertion point, every Nth turn

— Beam moments at insertion point, every Nth turn

® Histogram elements give histograms at insertion point
B All delivered to self-describing SDDS files.
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Planned Developments for DR Work

® Finish parallelization of short-range impedance elements
B Parallelize long-range impedance elements

— Also add smoothing for noise control

B Develop method for long-range non-resonant wakes (e.g., resistive
wall)

® Develop longitudinal space-charge kick element
B Generalize ILMATRIX to non-periodic systems
® |ncorporate more sophisticated space charge model from Synergia.

® Improve support for multi-bunch beams
— More efficient implementation of short-range impedances

— Extend feedback simulation from single- to multi-bunch.
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