

... for a brighter future

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by The University of Chicago

Lattice Work at ANL

Louis Emery presenting Aimin Xiao's results, March 5th 2007

Lattice Design

- Review of lattice versions and calculations
- Thoughts (?) on creating lattices of different momentum compaction
- First look at circumference-adjusting chicane
- Injection straight section change

Lattice History

- OCS (Summer 2005): 12 superperiods, 6.1 km, $\alpha_c = 1.6 \times 10^{-4}$, 192 dipoles
 - Good DA: high symmetry and phase advance of straight sections adjusted for maximal dynamic aperture
- OCS6 (Jan 2006): Follow baseline recommendation, 10 (or 8?) arcs, two long straight sections, combined injection/extraction straight section, 6.6 km, higher α_c =4.2x10⁻⁴, 120 dipoles
- OCS6: change to 6 arcs (machine function plots to follow), DA calculations

Lattice Future

- Separated injection/extraction
- Need to include chicane to lattice file
- Explore possibility of 2 wiggler sections
- Demonstrate momentum compaction variation with phase advance per cell

[I learned later that the beams in the different rings should actually be counter rotating]

Of course:

Dynamic aperture with various errors!!!

Present OCS6 Layout

Unwrapped from middle of long straight section

OCS6 Future Layout

Unwrapped from middle of long straight section

Present OCS6, Six Arcs

Zoom-in of TME cell with FODO long straight section

RF/Wiggler straight section

OCS6, injection long straight section

DA with Errors and Comparison

- With multipole errors, dynamic apertures of various lattices are quite similar
- When neglecting multipole errors different lattices may have very different dynamic aperture, which could lead to mistaken initial preferences in general

Comparing Dynamic Apertures w/ and w/o Errors

Dynamic Apertures with errors are very similar. Need x=20 mm, y=12 mm

Dynamic Apertures for Different Tunes

Dynamic Aperture Improvement – small. Need x=20 mm, y=12 mm

Comparison of DA with old lattice version

ATIONAL LABORATORY

Chicane (1)

www-project.slac.stanford.edu/lc/ilc/TechNotes/lccnotes/PDF/LCCNote_0008.pdf

Chicane (2)

Emittance dilution

I2 is determined by damping time and doesn't change much with chicane. So,

$$\frac{\mathrm{d}\epsilon_{\mathrm{x}}}{\epsilon_{\mathrm{x}}} = \frac{\Delta \mathrm{I}_{5}}{\mathrm{I}_{5}}$$

Energy spread

$$\sigma_{\rm e}^2 = C_{\rm q} \gamma^2 \frac{I_3}{2I_2 + I_4}$$

- strong wigglers controls I_3 so chicane will have small effect

Chicane (3)

More compact than two of the type above May have larger emittance growth May have smaller emittance growth More cells needed for getting the ds range we need

D (m)

Chicane (4)

- Assuming relative circumference error 10⁻⁶
 - Required adjustment range ± 7mm
 - Couldn't be achieved by single chicane while keeping emittance growth reasonable
 - Using normal chicane, we need 8 units, emittance growth is about 15% for ± 7 mm adjustment
 - Using zigzag chicane, we need 4 units, emittance growth is about 16%
- Note: APS ring and booster had circumference error of 10⁻⁵
- During DR commissioning, girders may be realigned uniformly radially to get within 2 mm of ideal (0.3 mm settability limit)
 - Need fewer chicane
 - Need input from alignment people on this.
- Because both rings are in the same tunnel, circumference will be within 2 mm, i.e. 0.3 mm relative misalignment.

Injection Region Reworking (1)

- Original injection was designed based on technical specification from BCD document
- The weak kicker strength from strip-line requires very long injection section and oscillating injection beam orbit (to preserve aperture)
 - many people didn't like it...

Correction in assumption:

- Have two 10 kV pulsers per stripline kickers (which doubles its strength)
 - Keep kick angle at 0.04 mrad, but double aperture from ± 15 mm to ± 30 mm, and quadruple β_x from 15 m to 70 m

We got a solution with all strip-lines consecutive!!!

- 21 kickers of 0.04 mrad
- Small angle make injection trajectory smaller in kickers

Injection region Reworking (2)

Conclusion

- New lattice features: chicane and new injection
- Need to assemble ring and adjust phases for maximum dynamic aperture
- Check DA with errors

