

... for a brighter future

A U.S. Department of Energy laboratory managed by The University of Chicago

Emittance Tuning Work Plan at ANL

Louis Emery presenting slides from Vadim Sajaev and Bingxin Yang, March 6th 2007

Vertical Emittance Goal

Goal is to realize low vertical emittance ϵ_v at APS running at a lower energy

- Goals: Emittance ratio of 1/400 or vertical emittance of 2 pm or both
- APS operations 7 GeV, $\epsilon_x = 2.5$ nm, 1% ratio, $\epsilon_v = 25$ pm, far to go.
- ALS for special test had 0.1% emittance ratio and ~5 pm (PAC2003)
- Work coincides with maintaining an ideal reference lattice at APS for various performance measurements (i.e., not for operations)
 - Symmetric lattice with no (~ 1mm) user steering
 - No new equipment or GDE funding needed!
- Tuning methods (nothing new here)
- Expectations
- X-ray optical measurement method (B. Yang)

APS vertical emittance control

- Consists of two parts:
 - Vertical dispersion control
 - x-y coupling control

Present Vertical Dispersion Control

Dispersion correction (alone) is easy to do

Correction is done with skew quads using SVD to control level of correction and noise. (This is not LOCO, so coupling is not corrected here.)

$$\Delta \eta_{y} = M \overline{k}$$

where M is determined from model. All skew quads have high η_x .

- Normally dispersion is corrected to within few mm
- Estimation of natural emittance using synchrotron integrals for a model with η_y of ±2 mm peak-to-peak gives 1.2 pm at 7 GeV. Assuming better η_y correction and lower energy, it won't be a problem to achieve this.

Present Coupling Control

- Coupling is corrected using 17th and 0th harmonic knobs[†] skew quadrupoles are arranged into knobs that control those harmonics and generic control-room optimizer minimizes a vertical beam size measurement (or lifetime)
- Hardly affects vertical dispersion
- No local coupling control
- With recently installed 4-m x-ray pinhole camera, we get emittance ratio of 0.5%.
- With previous 9-m x-ray pinhole camera, we thought we obtained 0.25%, but the resolution was 2x worse and equal to the beam size. Thus the measurement may have been in error.

[†]
$$v_x$$
=36.14, v_y =19.2, v_x - v_y =17, N_{cells}=40

Possible Alternate Coupling Control

- Response matrix fit gives a model with coupling included it gives some values to our skew quad locations that represent measured "orbit cross-talk" and η_v , i.e. does both contributions of ϵ_v
- We can try to use the model to perform coupling correction similar to β -function correction
- We tried only once and it didn't work for some reason. But we could try harder.

Number of Skew Quadrupoles

- APS has 19 skew quadrupole magnets (one is missing) one every two sectors, much less than number of quads, sextupoles and correctors
- We don't expect a coupling correction as high quality as orbit or beta functions
- However, we'll diminish the source of the coupling, which in our case is the vertical orbit in sextupoles (we think).
- Need to review/complete beam-based positioning of orbit, i.e. bpm-offset measurements using a) quad and orbit scan, b) sextupole scan
- Include analysis relative vertical misalignment of APS magnets (recorded every two years, three-week job)

Expected Beam Size in Optics Measurement at 2 pm-rad

Tiny

- Dipole source pinhole image: 7 μ m (present nominal size 30 μ m)
- ID source pinhole size: 2.5 μ m (present size 9 μ m)
- Significant challenges for optical measurement
- At 5 GeV x-ray photons decrease in energy and in numbers
 - Resolution worsens

Scaling from 7 GeV: Dipole source 4-m pinhole camera

Electron energy	7 GeV	5 GeV
Critical x-ray energy	20 keV	7.2 keV
Pinhole Camera photon energy	30 – 40 keV	15 – 20 keV
Theoretical resolution (µm)	6 - 7 μm	8 - 10 µm
Emittance resolution ($\beta_v = 20$ m)	1.8 – 2.5 pm	3 – 5 pm

(Better resolution with out-of-tunnel detectors)

Scaling from 7 GeV: ID source pinhole camera

Electron energy	7 GeV	5 GeV
First harmonic x-ray energy	24 keV	12.93 keV
RMS cone angle at harmonic	3.8 µrad	5.2 µrad
Photon energy below harmonic	23.5 keV	12.70 keV
RMS cone "thickness"	~ 0.7 µrad	~ 1 µrad
Emittance resolution ($\beta_v = 3 \text{ m}$)	1.5 pm	2 – 3 pm

Timeline

Setup of ideal lattice takes several shifts (4-6 h every week for 4 weeks)

- Many BPMs to measure, even if automatically done
- Need to practise the ID radiation cone measurement, and its analysis.
- Correct optics and minimize vertical emittance at 7 GeV. Measure (one week).
- Setup ideal lattice at 5 GeV. Measure (one week)

Conclusion

- Need to do in order
 - Beam orbit preparation (to minimize coupling sources), beam optics correction, coupling correction
 - Set-up x-ray optics for lower energy measurement and outside the ring in experimental hutch, practise optics measurement of "cone"
 - Measure beam size

