

Frequency Map Studies for the OCS6 Lattice

Ina Reichel LBNL

Damping Ring Workshop, Frascati, March 5-7 2007

Lawrence Berkeley National Laboratory

- Frequency Maps
- Results for nominal lattice
- Results for OCS5 lattice
- Results for higher chromaticity
- Results for different tunes
- Conclusion

- track a set of particles for N turns
- record position and angle every turn
- calculate tune for first N/2 and second N/2 turns
- calculate tune diffusion rate; the smaller it is, the more stable the particle
- plot diffusion rate color coded as function of amplitude and initial tune

Results for Nominal Lattice

- vertical fourth order resonance clearly visible
- strong cross detuning with amplitude
- footprint frayed

awrence Berkeley National Laboratory

Nominal Lattice (off-momentum)

....

$$\frac{\Delta p}{p} = -1.0\%$$

- horizontal third order resonance is strong
- footprint frayed

Lawrence Berkeley National Laboratory

49.1

Nominal Lattice (off-momentum)

$$\frac{\Delta p}{p} = -0.5\%$$

....

$$\frac{\Delta p}{p} = -1.0\%$$

x position Immi

- large diffusion rates at large vertical amplitudes for negative Δp/p
- dynamic aperture reduced compared to on-momentum

x position Imm)

$$\xi_x = \xi_y = 1$$

$$\xi_x = \xi_y = 3$$

more particles are pushed over horizontal third order resonance

more particles with large diffusion rates

- dynamic aperture reduced for larger chromaticity
- vertical fourth order resonance crossed at smaller amplitude

awrence Berkeley National Laboratory

- many particles have large diffusion rates

 $\xi_x = \xi_y = 3$ (off-momentum)

$$\frac{\Delta p}{p} = -0.5\%$$

....

$$\frac{\Delta p}{p} = -1.0\%$$

- vertical dynamic aperture clearly reduced for negative Δp/p
- large diffusion rates occur at small amplitudes

Comparison between OCS5 and OCS6

- lattices have different number of short straight sections
- arc cells are identical
- tunes are different

iir iii.

OCS6

OCS5

- different tunes
- cross detuning smaller for OCS5 leading to a smaller footprint

awrence Berkeley National Laboratory

Ina Reichel, Frascati, March 5-7 2007

Comparison between OCS5 and OCS6

particles at large amplitude are more stable for OCS5

dynamic aperture reduced for OCS6

awrence Berkeley National Laboratory

....

- Different number of straight sections
- Different tunes

Try to change tune of OCS6 to the values of OCS5:

- Using one straight section as a tune trombone
- Changing the phase advance in the arc cells slightly

OCS6 with OCS5 tunes (tune trombone)

vertical third and horizontal fourth integer resonance are strong

footprint frayed

OCS6

Lawrence Berkeley National Laboratory

OCS6 with OCS5 tunes (tune trombone)

- vertical dynamic aperture reduced drastically
- horizontal fourth order resonance cutting into dynamic aperture

Lawrence Berkeley National Laboratory

OCS6 with OCS5 tunes (arc)

- some horizontal fourth and fifth order resonances visible
- vertical detuning reduced
- part of footprint still frayed

OCS6

awrence Berkeley National Laboratory

OCS6 with OCS5 tunes (arc)

- dynamic aperture about comparable, better in the vertical plane
- dynamic aperture restriction mainly caused by horizontal fifth order resonance

awrence Berkeley National Laboratory

- scan tunes and calculate 10x10 frequency maps
- sum diffusion rates
- select tune at lowest diffusion rate (0.300, 0.275)

awrence Berkeley National Laboratory

OCS6

OCS6 with (0.300, 0.275)

▶ footprint is small (i.e. detuning is reduced) but still a little bit frayed

some resonances visible

OCS6

OCS6 with (0.300, 0.275)

- almost no particle losses
- some resonances clearly visible at small amplitudes

Q = (0.300, 0.275), off-momentum

...

$$\frac{\Delta p}{p} = +0.5\%$$

- footprint somewhat frayed due to some resonances
- very few particles lost
- some resonances at small amplitudes
- worse, but not significantly so, than on-momentum

x position immi

- Dynamic aperture problems caused by combination of tune values and large cross detuning with amplitude
- Choosing a different tune can increase the dynamic aperture significantly
- ▶ Harmonic sextupoles might increase the dynamic aperture further