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• Few words about DAΦNE

• εx tuning

• εy tuning

• ring impedance impact on εy
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Lpeak      ~  1.5x1032 cm-2 s-1 

L∫day       ~  10 pb-1  (maximum value)

L∫KLOE run = 2 fb-1 (May 2004 ÷ Nov 2005)

Best DAΦNE performances
Obtained  during the run for the KLOE experiment (May 2004 ÷ Nov 2005)
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DAΦNE parameters



4 arcs based on 4 different bending magnets each including a wiggler
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C = 97 m
E = 0.51 GeV (Φ)
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Main Rings magnetic layout



εx tuning

εx is tuned by a proper choice of the machine optics
 
Dominant source of Δεx are:

• mismatch in the horizontal η and β functions due to:
 - large horizontal orbit
 - large steering magnet strengths

• large values of the Wx Wy η” functions



η matching by:
• Measuring dispersive orbit at the BPMs
• Fitting the measurement by the first order multipole in

the wigglers end-poles
• Matching the dispersion function to the required value

by using the 3 QUADs installed around each wiggler

In this way the required εx and αc are obtained
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• Build a reliable machine model including
non-linear terms

• design the optics in order to
   minimize the second order optical

functions:
                            η”,  Wx, Wy
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Non-linear optics matching
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0 AVV
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∂z j
∂Ii

z = x,y

Beam Steering by Measured Response Matrix

Response Matrix measurement

MRS is also used to:
•understand & improve machine linear model
•dispersion function control
•coupling evaluation
•orbit correction 
•closed bump calculation
•corrector strength reduction
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• Orbit Correction
• Corrector strengths reduction
• Vertical Dispersion Correction
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by Singular Value Decomposition

is not affected by:
• model imperfections
• corrector calibration constants
• offsets in BPMs alignment
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Bare orbit minimization by element alignment

• Misalignment errors are identified by fitting the measured bare orbit with the
machine model

• Bare orbit has been reduced in both rings by repositioning the outer
electromagnetic QUADS in the FINUDA IR

• After alignment:
- strengths of the steering magnets adjacent to the IR2 section are
considerably reduced

- bare orbit is significantly reduced and is comparable in the two rings
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zbare = zbeam − z Steers∑

FINUDA run 2006 ÷ 2007



εy tuning

Dominant source of εy are:
• large vertical orbit
• vertical dispersion
• transverse betatron coupling due to:

- experimental solenoid
- roll errors in quadrupoles
- vertical orbit distortion in sextupoles

• vacuum chamber impedance





Compensation scheme for the coupling due to
the experimental detector

FINUDA IR

• ∫B δl = 2.4 Tm

• 2 superconductive compensator solenoids   •
• 4 permanent magnet QUADs  • •
• 4 electromagnetic QUADs  •
• Independent QUADs rotation

F F        D   F            F   D      F  F

•
IP



FINUDA @ DAΦNE



• local correction
- by minimizing the coupling term of the measured
  Response Matrix by the IRs QUAD rotations Δφj

j=1..r

Betatron coupling correction
alghoritm
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MΔφ = Cmeas
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- linear system solved by SVD
- after few iterations 40% reduction in rms (Cmeas)
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•
IP2

∫B δl = 2.4 Tm

compensator solenoid compensator solenoid
FINUDA

The main part of natural transverse coupling is corrected by
rotating the QUADs in IR2

Fine tuning is performed using skew QUADs

e-

e+

Κ ~ .2%

Betatron coupling correction

 
α is the amount of horizontal oscillation
transferred to the vertical plane
α -> 0 means no betatron coupling
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Σx,y = (σ x,y
+2 +σ x,y

−2 )

Σx = 1.1 mm

y [µ]

Σy = 6.7 µ

       κ = .2%

             measured by 
- beam - beam scan at low current
- beam aspect ratio @ SLM

• global correction by SKEW QUADs

It’s possible to reach a satisfactory κ correction even in presence of
huge coupling sources and without sophisticated diagnostic tools.

σy ~ 6.9 µ  @IP

σx ~ .8 mm @IP
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Impedance Effects in the e- Ring

Stronger Bunch Lengthening Vertical Size Blow f(VRF, Ib)
αc = 0.02



e- Vertical Size Blow Up
- Single bunch (beam) effect

- It is correlated with the longitudinal
microwave instability treshold:

- the same threshold and the same
dependence on RF voltage

- It is relevant for the e- ring having
higher coupling impedance
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higher momentum compaction





Milling machine to cut ICE fingers 

20 mm
120 mm

A. Clozza, V. Lollo, A. Battisti

Presently no beam blow up is observed for the e-

beam with RF voltage

e- Vertical Size Blow Up has been neutralized halving
the e- ring impedance by

removing all broken Ion-Clearing-Electrodes (ICEs)
and all  ICEs in wigglers since they were, according
simulations, responsible for the difference in coupling
impedance between e+ and e- ring:
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Conclusions

Efficient tools have been developed to:
correct closed orbit, vertical dispersion and coupling
tune horizontal dispersion

Betatron coupling can be made as low as .2% despite the huge
coupling source introduced by the experimental detector

Dependence of transverse vertical dimension on coupling
impedance, in the e- ring, has been detected, studied and eventually
removed


