Experience with KEKB SC cavities

ILC-DR, KEK

December 18-20, 2007

Takaaki Furuya KEK

Contents

- 1) KEKB: the strongest e-/e+ collider for B-meson physics
- 2) RF system of KEKB
- 3) Accelerating SC of KEKB
- 4) Module of accelerating SC
- 5) Operation of accelerating SC
- 6) Collaboration with IHEP in Beijing:
 - ~ 500 MHz SC Damped Cavities for BEPC-II~
- 7) Summary

ILC-DR, KEK ILC-DR, KEK December 19, 2007 T. Furuya

♦ KEKB

The strongest e+/e- collider for B-meson physics.

Physics run of 8 years since 1999.

Accumulated luminosity of 760 fb⁻¹ with the peak luminosity of 1.7×10^{34} cm⁻²s⁻¹.

Design Parameters

e+/LER	e-/HER	
3.5 GeV	8 GeV	
2.6 A	1.1 A	
5120		
0.6 m	0.6 m	
5.2 nC	2.2 nC	
18 nm	18 nm	
(33cm, 1cm)		
11 mrad	11 mrad	
1 × 10 ³⁴ cm ⁻² s ⁻¹		
600 pb ⁻¹		
3016 m		
	e+/LER 3.5 GeV 2.6 A 51 0.6 m 5.2 nC 18 nm (33cm 11 mrad 1 × 10 ³⁴ 600 301	

KEKB: The strongest e+/e- collider T. Furuya

Operation history and achieved

Beam current of 2.0A(LER) and 1.4A(HER). Because of the electron-cloud instability of LER, N(bunch) was reduced to 1/4 . Crab crossing with 2 CRABs since 2007.

RF system of **KEKB**

RF system for an ampare-class beam LER: 20 ARES (NC: Accelerator with Resonantly coupled Energy Storage). low RF voltage & heavy beam loading due to damping wigglers. HER: combination of 8 Damped SC & 12 ARES. **RF of KEKB** high RF voltage & SR loss.

Accelerating RF of KEKB (design)					
	LER	HER			
Beam current (A)	2.6	1.1			
SR loss (MV/turn)	1.5	1.5 3.5			
total RF voltage (MV)	5 - 9	9 - 16			
frequency (MHz)	508.887				
type of cavity	ARES	ARES	SC		
No. of cavities	20	12	8		
Vc/cavity (MV/cav)	0.4 – 0.5	0.3 – 0.4	1 -2		
No. of klystron (1MW)	10	6	8		
beam loading (kW/cav)	200	170	250		

1MW klystron

	A	RHVR	0	RESEILK	565. kW	0.79 MV	
	в	RHVR		RESEILK	561. kW	0.81 MV	
D07	c	RHVR		RESEILK	602 kW	0.80 MV	
1201	n	RHVR		RESEIL K	572. kW	0.81 MV	LER Vc
	Ē	RHVR		RESELK	565. kW	0.80 MV	7.25 MV
	Ā	RHVR	0	RF SF IL K	534. kW	0.81 MV	Beam
	в	R HV R	0	RF SF IL K	272. kW	0.83 MV	1250 5 m A
D08	С	RHVR	S	RF SF IL K	0. kW	0.04 MV	1555.5 1175
	D	R HV R	0	RF SF IL K	588. kW	0.81 MV	
	Е	RHVR	0	RF SF IL K	568. kW	0.80 MV	
	A	RHVR	0	RF SF IL K	367. kW	0.61 MV	
D04	в	RHVR	0	RF SF IL K	358. kW	0.59 MV	
	С	R HV R	0	RF SF IL K	344. kW	0.58 MV	
	Α	RHVR	0	RF SF IL K	379. kW	0.60 MV	
DOF	в	R HV R	0	RF SF IL K	384. kW 📕	0.57 MV	
D03	С	R HV R	0	RF SF IL K	202. kW	0.30 MV	HER Vc
	Е	R HV R	0	RF SF IL K	105. kW	0.30 MV	12.00 MV
	Α	R HV R	0	RF SF IL K	274. kW 📕	1.17 MV	12.50 MIV
D10	в	R HV R	0	RF SF IL K	258. kW	1.24 MV	Веат
DIO	С	R HV R	0	RF SF IL K	264. kW	1.17 MV	777.6 mA
	D	R HV R	0	RF SF IL K	253. kW 📕	1.17 MV	
	A	R HV R	0	RF SF IL K	208. kW	1.17 MV	
D11	в	R HV R	0	RF SF IL K	241. kW	1.15 MV	
~~*	С	R HV R	0	RF SF IL K	251. kW	1.16 MV	
	D	RHVR	0	RF SF IL K	239. kW	1.21 MV	
D11	Е	R HV R	0	RF SF IL K	21. kW	0.86 MV	Crab@LEI
DII	F	RHVR	0	RF SF IL K	78. kW	1.29 MV	Crab@HE

Klystrons of KEKB

10 klystrons for ARES (LER)

7 klystrons for ARES (HER)

8 klystrons for SC (HER)

2 klystrons for Crab

ARES in FUJI

SC accelerating cavities in NIKKO

SC crab cavities in NIKKO

Accelerating SC of KEKB

Operation history of Accelerating SC

- 1998 Commissioning with 4 SC's in D11-site.
- **1999** Coupler power test with beam:

380kW was delivered to the beam.

Physics run start.

2000 Installation of the next 4-cavities in D10-site.

2001 $L_{peak} = 6.9 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

with beams of HER/LER = 0.8A/1.0 A.

HOM of each SC reached 5kW.

2002 $L_{peak} = 8.2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ with HER beam of 1 A.

2003 $L_{peak} = 1.06 \text{ x } 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

The max. current of HER reached 1.1 A in 1184 bunches.

HOM of each SC reached 10kW.

Capacity of cooling water was increased to 20kW.

SC-Vc test up to 2MV using D11B cavity.

```
L_{peak} = 1.13 \text{ x } 10^{34} \text{ cm}^{-2} \text{s}^{-1}
```

with beams of HER/LER = 1.18A/1.56 A

2004 Continuous Injection mode

1.25A in 1293 bunches induced **16kW** of HOM.

2005 Lpeak = $1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ with 1.27A(HER)

2006 Lpeak = $1.71 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ with 1.40A (HER) integral luminosity has reached 700 fb⁻¹

Summary of achieved performances

	design	achieved
No. of cavities	8	8
Max. beam current (A)	1.1	<mark>1.40</mark> (127%)
No. of bunches	5000	1389
bunch charge (nC)	2.2	10.1
Bunch length (mm)	4	6 - 7
RF voltage (MV/cavity)	1.5	1.2 - 2
unloaded Q at 2MV	1E+09	0.3 -1 E+09
beam loading (kW/cav)	>250	350 - 400
HOM loading (kW/cav)	5	14 - 16

Module of accelerating SC

Important components: Nb cavity

Cavity

- Nb single-cell
- Frequency: 508.887 MHz motor tuner: ~400 kHz piezo tuner : 6 kHz
- Gap length: 0.243 m
- R/Q : 93 Ohm
- Esp/Eacc: 1.84
- Total length: 3.7 m

Shape parameters

Frequency:	508.887 MHz
R/Q:	93 ohm
Geometrical fact	or: 253 ohm
Esp/Eacc:	1.84
Hsp/Eacc:	40.3 G/(MV/m)
Iris dia.:	220 mm
Beam pipe dia.	300 mm
Ferrite thickness	: 4 mm

Module of accelerating SC

ILC-DR, KEK December 19, 2007 T. Furuya

Important components: power coupler

Input Couplers

- handling power of 400 kW(CW)
- Qext = 5 x 10^4
- ceramic disk of 152dia.
- water cooling of inner and He gas cooling of outer conductor
- DC voltage of 2 kV between inner and outer conductors.
- loss at 300kW: 250 300 W (ceramic RT) 200 W (inner RT) 30 W (outer 4K)
- monitoring of vacuum pressure and arcing.

Module of accelerating SC

ILC-DR, KEK December 19, 2007 T. Furuya

Important components: HOM absorber

HOM Absorbers

- IB004 Ferrite of 4mm in thickness
- HIP (950°C × 1500atm)
- 300dia x 150 mm(LBP) 220dia x 120 mm(SBP)
- water cooling from out side

HOM damping: optimization of ferrite dampers

LBP SBP 120 Ferrite Ferrite 80 2 50 22 8 300 120 960.9 630 700 150 160 600 40 -3011

Mode	Freq. (MHz)	R/Q (ohm)	Q meas.
TM011	1018	7	106
TM020	1027	6	95
TE111	688	6*	145
TM110	705	8*	94

Typical HOM

Mode measurements

Al model cavity without Ferrite

* : R/Q at 5 cm

Loss factor:

- serious for the short bunch length
- damper itself becomes the source of the loss factor.
- use longer taper to reduce k

HOM power =
$$k \cdot q \cdot I$$

 $k = k_{cavityshape} + k_{damper}$

Module of accelerating SC

ILC-DR, KEK December 19, 2007 T. Furuya

Important components: frequency tuner

Motor tuner (coarse tuning) • range of 400 kHz

- Piezo tuner (fine tuning)
- tuning range of 6 kHz
- response of 20 Hz limited by the mechanical resonance of 70 Hz

resonance of 70 Hz

ILC-DR, KEK December 19, 2007 T. Furuya

Conditioning and cooling

Coupler conditioning at RT: with scanning bias voltage to ±2 KV up to 300 kW under full reflection

Slow cooling rate of < 4K/hr (4 days)

Cavity conditioning: pulse conditioning (0.5 ms, 100 Hz)

Quench level (dotted) \longrightarrow

GND

Operation:

- Top-up operation
- Conditioning of 3hrs at a maintenance day of every two weeks.
- When one of the RF cavity trips, the beam has to be aborted immediately to protect the detector against a strong radiation noise.
- Power delivered to the beam by SC cavities is 2.6 MW.
- HOM absorbed by dampers reaches 16 kW/cavity.

Input and reflecting power

Absorbed HOM power

ILC-DR, KEK

December 19, 2007 T. Furuya

Number of Aborts / Day

ILC-DR, KEK December 19, 2007 T. Furuya

Trip:

HER: total beam abort/day

Detect and analyze the signals of beam current, RF voltage, beam loss monitor, etc.

HER abort caused by RF system

Trip rate of SC is <0.5/day for 8 SC. Reduced to <0.1/day under a low beam current of 850 mA.

Performance: degradation during a long term operation

1) The maximum accelerating voltage

- All of the cavities can provide the accelerating voltage of >2 MV after 7 years operation.
- The voltage of D11C degraded by the vacuum trouble. Some amount of dirty air went into the cavity.
- To increase the coupling, the gasket of input coupler was replaced to a thinner one. D11B degraded after this replacement.

Performance: degradation during a long term operation

2) Unloaded Q

- Unloaded Q degraded to 3-5x10⁸ at 2MV (8 MV/m) by the electron emission.
- The Q at the operating voltage (1.4MV) still keep the Q of $>1x10^9$.
- Baking may recover the performance, but we have to worry about the vacuum leak at the indium seals.
- Huge out gas of the ferrite dampers degrades the cavity performance?

Collaboration with IHEP in Beijing

BEPC-II of IHEP: SC module of 500 MHz

- Upgrading of BEPC (Beijing Electron Positron Collider). collision mode: 1.89 GeV, 910 mA + 910 mA SR mode: 2.5 GeV, 250 mA
- Use of SC cavities based on KEKB cavity.
- Because of a difference of RF frequency, a slight modification was given to the equator straight. (13.3 mm \rightarrow 37 mm)

Parameters of Cavity Shape

•Frequency	(MHz)	499.8
 Accelerating gap 	(mm)	267
 beam pipe diamet 	er (mm)	220
•Large beam tube d	liameter (mm)	300
• <i>R</i> /Q	(Ohm/cavity)	95.3
•Loss factor	(V/pC)	0.075
•Esp/Eacc		1.87
• <i>H</i> sp/ <i>E</i> acc	Gauss/(MV/m)	41.1

ILC-DR, KEK

December 19, 2007 T. Furuya

Collaboration with IHEP in Beijing

ILC-DR, KEK December 19, 2007 T. Furuya

Fabrication and vertical cold test (at KEK site)

Fabrication by MELCO (2004)

Assembling by MELCO (2005)

Performance test (vertical test) by IHEP at KEK (2004)

Cooldown test by IHEP at KEK (2005)

ILC-DR, KEK December 19, 2007 T. Furuya

(KEKB-SC)

- Beam intensity of HER reached 1.4 A.
- No beam instability caused by the SC-RF was found.
- SC cavities can provide the voltage of 1.4 MV/cavity and 300 350 kW/cavity to the beam of 1.4 A.
- The HOM absorbed by the damper reached 16 kW/cavity.
 - \rightarrow SBP / LBP = 7 kW / 9 kW
- •Trip rate at 1.4 A is <0.5/day for 8 SC cavities, and <0.1/day at 850mA.
- Need a study to find a simple way to recover the degraded Q.

(IHEP-SC)

- The 500 MHz SC modules based on the KEKB cavity have been completed and commissioned since the end of 2006.
- In the SR mode, the beam intensity has already achieved the design value of 250 mA.
- Roll in of the detector is coming soon.