

CesrTA Status and Planning M. Palmer December 18, 2007 ILC Damping Rings R&D Mini-Workshop at KEK

Outline

- CesrTA Proposal Status
- CesrTA Program
 - 2 Year Program
 - Milestones
 - Parameters & Capabilities
- CesrTA Preparations Status
 - Ongoing R&D
 - Wiggler & EC Diagnostics
 - Fast X-ray beam profile monitor
- CesrTA Planning

HEPAP Meeting – Nov 29, 2007

- Presentation by Joe Dehmer
 - Division of Physics
 - MPS/NSF

- At SC 07, Open Science Grid achieved milestone of >80 Gbps data flow
- Physics Frontiers Centers competition reviewed 58 preproposals, inviting 19
- DUSEL town meeting in DC involves community in discussions of initial suite
 - NSF and DOE partner to enable CESR TA to perform critical path R&D for the ILC
- US and other regions participate in ASPERA
- Noticeable blossoming of POU-style physics

CesrTA Program I

 Budget and funding profile discussions underway with NSF/DOE

(implications of today's news from the US not yet clear)

- Current focus is a 2 year program of ILC DR R&D
 - Reduction in scope from longer (3.5 year) program presented to NSF/DOE in July
 - Maintain 3 core research areas:
 - Electron cloud studies
 - Low emittance program
 - Development of a fast X-ray beam size monitor
 - Target bunch-by-bunch monitor capable of single-pass measurements for ILC DR
 - Integral to CesrTA program ⇒ ultra-low emittance measurements

CesrTA Program III

- Implications of de-scoped program
 - Eliminates fast ion instability studies
 - R&D being pursued elsewhere
 - KEK-ATF see talk by N. Terunuma tomorrow
 - Studies also proposed for the LBNL-ALS
 - Other?
 - Minimizes time available for testing ILC prototype hardware
 - Increases program risk
 - Limited time to develop low emittance measurement capabilities and to achieve ultra low emittance goals
 - Attempt to front-load key instrumentation upgrade work ⇒ BUT likely funding profile will constrain our ability to do this fully

Overview of 2 Year Schedule

- Operations Schedule
 - 2 experimental runs in 2008
 - 3 experimental runs in 2009
 - 1 experimental run in 2010
 - Avg ~40 days/run

• Down Periods

- Major Reconfiguration down Jul-Sep 2008
- Hardware installation downs
 - 2 in 2008
 - 2 in 2009

1 in early 2010

Proposed CHESS Runs

Period	Proposed Start	Proposed Duration	Tasks & Milestones
Down 1	5/15/08	15 days	Install instrumented wiggler chambers a. One with diagnostics (control) b. One with diagnostics and TiN coating
Run 1	6/3/08	28 days	 Beam tests of wiggler chambers at 2-2.5 GeV Low emittance operation and alignment studies in CESR-c configuration
Down 2	7/1/08	92 days	 Reconfigure CESR for low emittance Wiggler moves (from arcs to L0) Vertical separator removal (L3) Instrumented copper vacuum chambers (RFAs) Wiggler chambers with additional EC mitigation techniques (L0 installation) and adjacent drift chambers. Dipole and drift chambers in arcs (regions where wigglers removed). At least one dipole control and one coated chamber (NEG?) Drift chambers in L3 Optics line for X-ray beam size monitor (positrons) Deploy upgraded BPM system around majority of ring Upgraded leveling and adjustment system for quadrupoles

Milestones II

Proposed	Proposed	Tasks & Milestones	
Start	Duration		
11/18/08	42 days	1) Tests of EC growth in vacuum chambers at 2-2.5 GeV. Characterize growth as a function of bunch spacing, intensity, train configuration, emittance.	
		2) Continue beam-based alignment program to achieve ultra low emittance	
		3) Experiments at low emittance to explore instability thresholds and emittance dilution due to the ECI and FII	
		4) Commission positron X-ray BSM	
1/6/09	43 days 1) Complete alignment/survey upgrade		
	5	2) Install 2 additional instrumented dipole chambers with EC mitigation	
		3) Install 3 instrumented quad chambers (L3) with EC mitigation	
		4) Complete BPM system upgrade	
		5) Install solenoid windings in drift regions	
4/7/09	42 days	2 days 1) EC growth measurements in chambers in 2-5 GeV range	
2) Continued work to achieve ultra		2) Continued work to achieve ultra low emittance	
		3) Instability and emittance dilution experiments	
7/7/09 49 days 1) Install optics line for electron X-ray beam size monitor		1) Install optics line for electron X-ray beam size monitor	
	5	2) Complete longitudinal feedback upgrade	
3) Installation of additional vacuum chamber as determined by results of CesrTA runs 1-3		3) Installation of additional vacuum chambers with EC diagnostics and mitigation as determined by results of CesrTA runs 1-3, perhaps at a reduced level, depending on funding	
		4) Install photon stop for 5 GeV wiggler operation in L0	
	Proposed Start 11/18/08 1/6/09 4/7/09 7/7/09	Proposed StartProposed Duration11/18/0842 days1/6/0943 days1/6/0943 days4/7/0942 days7/7/0949 days	

Milestones III

Period	Date	Duration	Tasks & Milestones	
Run 4	8/25/09	42 days	1) Complete evaluation of electron cloud growth in wiggler, dipole and quad chambers. Compare with simulation and prepare evaluations for ILC EDR	
			2) Continue program to achieve ultra low emittance	
			3) Detailed experiments at the lowest achieved emittance to characterize EC and FII instability thresholds and emittance dilution	
			4) Commission electron X-ray beam size monitor	
			5) Measure electron cloud growth and mitigation in wigglers at 5GeV	
Run 5	11/24/09	42 days	1) Continue program to achieve ultra low emittance	
			2) Experiments to characterize instability thresholds and emittance dilution and prepare evaluations for the ILC EDR	
Down 5	1/5/10	49 days	1) Install additional vacuum chambers with EC diagnostics and mitigation as determined by results of CesrTA and other ILC experimental programs, perhaps at a reduced level depending on funding	
Run 6	2/23/10	42 days	1) Complete program to achieve ultra low emittance	
			2) Characterize electron and positron instability thresholds and emittance-diluting effects at the lowest achievable vertical emittance for both electrons and positrons	

CesrTA Parameters & Capabilities

Baseline Configuration				
Parameter	Value			
No. of Wigglers	12			
Wiggler Field	2.1 T			
Beam Energy	2.0 GeV			
Energy Spread ($\Delta E/E$)	8.6 x 10 ⁻⁴			
Target Vertical Emittance	5 – 10 pm			
Horizontal Emittance	~2 nm			
Damping Time	47 ms			
Bunch Spacing	4 ns			
Bunch Length	9 mm			

- EC Measurements:
 - Multi-bunch turn-by-turn instrumentation has been commissioned
 - Measured vertical tune shift along a train generating the electron cloud and for witness bunches trailing the train at various intervals

- Parameters:
 - Baseline optics at 2 GeV for ultra low emittance studies
 - Energy flexibility will allow EC growth studies at 5 GeV as specified for the ILC DR

Status of CesrTA Preparations

- Ongoing machine studies program
 - Final CHESS run in current program has just finished
 - Primary focus will be CLEO-c production until March 31st
 - CesrTA machine studies focused on topics important for machine conversion
 - Parasitic studies with prototype X-ray beam size monitor optics
- Design and Fabrication work
 - Diagnostic wiggler vacuum chambers (collaboration with LBNL/SLAC)
 - Updated vacuum chambers with EC diagnostics for machine conversion
 - EC diagnostics and readout development
 - Beam instrumentation and feedback development
 - Turn-by-turn BPM upgrade
 - 4 ns bunch train operation
 - X-ray beam size monitor
 - Alignment and Survey improvements

Seeing qualitative agreement with shape of electron cloud growth/decay and vertical tune shift data from witness bunch studies

Low Emittance Tests

- CESR-c Low Emittance Lattice with CLEO solenoid on (likely lattice for CesrTA Run 1)
 - 6 wigglers (in L1/L5 straights) at 0 dispersion
 - Without suitable emittance measurement capability, measure Touschek lifetime versus bunch current and compare with simulation for vertical beam size dominated by emittance coupling

Wiggler Vacuum Chamber Design

CesrTA Electron Cloud Test Chamber 1 Assembly, 44mm Vertical Gap Hole Patterns for RFA Assembly (courtesy D. Plate, A. Rawlins, LBNL)

Vacuum Chamber Diagnostics

- Segmented collector (12 stripes) to obtain transverse density profile
- RFA structure to fit in 2.5 mm total depth ⇒ novel assembly

Hole Pattern for RFA Assembly 264 x .030" Dia. Holes through .090" thick copper

"Postage Stamp" 1.0" x 1.7"

Retarding Field Analyzers in L3

- Vacuum Gauge
- RFAs
 - Radially in
 - 45 deg off
 radially out
 - Bottom

- Antennas
 - Loop
 - Dipole

First Beam Test of "Thin RFA"

First prototype "thin" RFA structure for wiggler chambers undergoing testing
First beam test shows performance similar to APS-style RFAs

- Initial tests with 3mm test structure demonstrate key design aspects of the wiggler RFA
 - Calibration
 - Voltage test (no breakdown for $\Delta V = 600V$
 - Beam test
- Detailed design underway for wiggler structure
- Efficiency simulations to fully understand behavior in wiggler fields
- Finalize structure by late January

Time (s)

Test optics setup on CHESS beam line for remainder of CESR-c running Explore and optimize final optics line design for CesrTA

CesrTA Planning

- General design and fabrication work is now underway
 - Vacuum chambers
 - Wiggler support structure for CLEO IR
 - Instrumentation
 - Miscellaneous CESR modifications
- Oversight
 - Propose that the review process be handled via the ILC ART (April reviews)
 - Also propose the formation of an advisory committee that reviews progress 6 months out of phase with the ART review
- Participation
 - Collaborators on experiments and/or hardware development are welcome

- Design, prototyping, and fabrication work is presently underway
- First major run planned for June
- Ring reconfiguration for low emittance planned during July-September down
- We hope to organize a CesrTA workshop for all interested parties sometime after the New Year
- Input on our designs and plans would be greatly appreciated