FII studies at KEK-ATF

N.Terunuma (KEK)

ILCDR07 at INFN-LNF

Goals of the experiment (according to Two proposals

(L. Wang, T. Raubenhimer and G. Xia, E. Elsen)

- Distinguish the two ion effects: beam size blow-up and dipole instability.
- Quantify the beam instability growth time and tune shift. The growth rate is related to the ion density (vacuum pressure, average beam line density, emittance, betatron function and so on).
- Quantify the bunch train gap effect
- Provide detailed data to benchmark simulations with experiment.

Results obtained at ATF-DR in 2004

Devices for FII study

Bunch Length Measurement (Synchronized Streak Camera)

III Laser wire beam size monitor in DR

14.7µm laser wire for X scan
5.7µm for Y scan
(whole scan: 15min for X,
6min for Y)

Turn by turn position monitor

The scope can store the waveform up to 2ms with 100ps time resolution.

Measured beam profile by XSR monitor, 2007/Feb-Apr.

FII study on 2007/3/13-14 (1)

Figure 3: Sections that ion pumps were turned off in this experiment

Table 1: vacuum pressure in the measurements

ion pump status	5mA	$10 \mathrm{mA}$	$20 \mathrm{mA}$
normal	$4.6 \times 10^{-7} \text{ Pa}$	$5.9 \times 10^{-7} \text{ Pa}$	$1.0 \times 10^{-6} \text{ Pa}$
south straight OFF	$2.0 \times 10^{-6} \text{ Pa}$	$2.7 \times 10^{-6} \text{ Pa}$	$5.5 \times 10^{-6} \text{ Pa}$
both arcs and south straight OFF	$3.4 \times 10^{-6} \text{ Pa}$	$5.2 \times 10^{-6} \text{ Pa}$	

FII study on 2007/3/13-14 (2)

We measured emittance of each bunch in a 20-bunch beam in the DR with a laser-wire monitor. No clear emittance blow-up along a train was observed up to 20mA/train.

One of the reason may be the bigger vertical emittance compared with the data taken in 2004.

FII study on 2007/3/13-14 (3)

 Table 2: vacuum pressure m 2004

 ion pump status
 11mA
 26mA
 31mA

 normal
 4.0×10^{-6} Pa
 6.0×10^{-6} Pa
 6.5×10^{-6} Pa

Table 1: vacuum j	pressure in the i	neasurements	
ion pump status	5mA	10 mA	20mA
normal			$1.0 \times 10^{-6} \text{ Pa}$
south straight OFF			$5.5 \times 10^{-6} \text{ Pa}$
both arcs and south straight OFF	$3.4 \times 10^{-6} \text{ Pa}$	$5.2 \times 10^{-6} \text{ Pa}$	7777

Figure 9: emittance of multi-bunch beam at $20 \mathrm{mA}/20 \mathrm{bunches}$

Gas Injection system at ATF-DR

-South straight section-

Possible location of Gas inlet chamber for fast ion study

South straight section of ATF damping ring

2007/Mar/02 N.Terunuma, KEK

Good pressure bump

Gas Injection system

Flow Controller %

- Continuous gas leak into the beam chamber.
- We can control the leak rate of N₂ gas.
- Pressure range: 10⁻⁷ Pa ~10⁻³ Pa.

Changing the flow controller

First beam shift with gas injection on Dec. 14

- It was a first time that the gas injection system operated under the beam. Extra beam-time was scheduled before the weekend shutdown.
- It was a system check because of
 - poor emittance (DR was not tuned well) and
 - some monitors were not available.
- Effect on the DR sub-system was carefully monitored.
 - Check the pressure distribution toward the RF Cavities.
 - Max. pressure for other devices
 - » Injection/Extraction Kicker uses the total pressure for interlock.
 - Find the needs of modification

First beam shift with gas injection on Dec. 14 -continued-

- Beam condition need for FII
 - Low emittance: less than 10pm
 - Multi-bunch beam
 - » 20 bunches / train
 - » 0.3E+10 electrons / bunch or more
- Last shift (12/14)
 - Emittance y ~ 50pm?
 - » caused by many works/installations done in summer shutdown.
 - » Poor vacuum?
 - Not enough time for multi-bunch tuning
 - 15 bunches / train
 - 0.3E+10 / bunch
 - Can not proceed the FII study anyway.

Pressure bump at ATF-DR

Stored multi-bunch beam in DR

Single bunch

10 bunches, 2.8ns spacing

5 bunches, 2.8ns spacing

15 bunches, 2.8ns spacing

Beam-time from Jan. 2008

- FII studies with gas injection is just started.
- Tune the DR anyway
 - Lower vertical emittance is essential
 - » 5pm~10pm
 - » Scrubbing to recover the base pressure?
 - Stable multi-bunch(up to 20) beam with higher intensity
 - » 0.6x10¹⁰ or more
 - » Tuning and keep ECS system available
- Keep monitors available
- Take beam time in any shift if people agreed.
 - Pressure bump by gas injection will be recovered within hour(s).