

Damping Ring Magnets Report

Mark Palmer Cornell University Laboratory for Elementary-Particle Physics

Outline

• Wigglers

- CESR-c Wiggler
- Key performance issues identified for Baseline Configuration Decision
- Cost estimates used for BCD
- Interface issues
- Introduction to Damping Rings Group Reference Design Report Support
 - DR Component Specification Sheets
 - Wiki site
- Brief Conventional Magnets Overview

CESR-c Wigglers

- 2.1 Tesla Peak Field
 - Damping rate vs energy spread
- 50 mm Vertical Aperture
- 0, -0.3% field uniformity
 - +/- 20 mm electrostatically separated orbits
- 8-pole design installed
 - 40 cm period
 - Offers better linearity versus excitation
 - However, has larger cubic nonlinearity for fixed damping
- a₁ skew quad moment
 - Observed with both styles
 - Traced to variations in uniformity of coil geometry

- Single pole flux tests (warm) critical for final field quality
 - 0.2 turn sensitivity
 - $O(10 \ \mu m)$ in winding alignment
 - Pole matching

Flip Coil Measurements

A. Temnykh

Magnet Assembly

End View

CESR-c Wiggler Features

- Capable of operation between 1.4 and 2.1 T
- Coils are bath-cooled
 - 4.2 K heat load is ~2W/m
- Magnets are trained
 - 2-3 quenches to reach full operating current
- High Temperature SC leads to minimize heat load
- LN₂ heat shield
 - Could be modified for cold He gas
 - What will ILC tunnel rules be?
 - Also used for pre-cool
 - LN₂ thermal load dominated by transfer lines
- Beampipe integral to cryostat assembly
 - Warm bore
 - Not bakeable

Damping Ring Considerations

- Baseline Configuration Evaluation Matrix
 - Field Quality: Exceeds requirements
 - Simulations indicate that keeping field roll-off at the ~0.1% level throughout beam envelope (3σ) is critical for dynamic aperture performance
 - Physical Aperture: 50 mm
 - Important for positron acceptance
 - Important for electron cloud performance
 - Power Consumption: Reasonable
 - Radiation Damage: Coils at large radius and well-shielded
 ⇒ looks OK
 - Auxilliary System: Cryogenics and Power
 - Cost: See following slides
 - Availability: See following slides

Wiggler Costing for BCD

Availability

• Short-term availability

- Single wiggler fault expected to have minimal impact on operations
 - $\Delta Q_v \sim 0.01$ /wiggler
 - Retune and continue operations with ~1% degradation in damping time and <1% change in emittance or maintain an in-ring spare
- Superferric
 - PS failure
 - Cryogenic failure
 - Controls failure
 - Magnet failure
- Expect minimal time required in a damping ring scenario to disable a wiggler and resume operations. Defer repairs until scheduled maintenance periods

- CESR-c Wiggler Experience
 - Note: CESR wiggler fault requires full wiggler recovery before re-starting machine due to strong wiggler impact on optics $(\Delta Q_v \sim 0.1/\text{wiggler})$
 - 11 wiggler faults in 300 operating days in mix of 6 wiggler and 12 wiggler operation
 - ⇒~1 fault/250 wiggler-days of ops
 - 7 cryogenic
 - 2 power supply
 - 1 controls
 - 1 quench
 - 2 hrs 14 min avg turnaround for full repair

Modification Areas

- Unit Length
 - OCS2 specifies ~2.5 m active length twice CESR-c
 - Longer version of CESR-c being pursued
 - Might be 2 units end to end in single cryostat
 - Reduce helium stack costs
- Beampipe
 - Separate from cryostat for greater flexibility in preparation
- Lower max field (1.67 T)
- Increase pole aperture
 - Plenty of current and field quality overhead in present design
 - Simplifies support plate fabrication
 - Potentially could be used to provide increased bore space

- Clarify procedures for specifying and costing required modifications to CESR-c design
- Interface issues are significant
 - Procedures for interfacing between technical groups
 - Design control procedures
 - Special documentation?
- Would like to specify procedures now, not later

Damping Rings RDR Support

- http://www.lepp.cornell.edu/ilc
 - Entry point for ILC support areas (Wiki) at Cornell
 - For example: WG3b, ILC-Americas, Detector Study
- Damping Ring Support
 - https://wiki.lepp.cornell.edu/ilc/bin/view/Public/DampingRings/WebHome
 - Follow RDR link to get to documentation and Component Specification Sheets
 - Just getting started
 - Very much a work in progress
 - Supporting documentation
 - Schematics
 - Papers
 - Perhaps discussion area for interface between technical groups?

Comp Spec Sheet Example

ILC Damping Rings Component Specification Sheet

Part I – General Information

Component Description:	Electron damping ring sextupole		
Component Location (beamline):	EDR		
Document Number:	EDR-MAG-sxt-001 Date:	2006-04-03	
Prepared by:	Mark Palmer (Cornell) emails	map36@cornell.edu	
Technical/Global System:	Magnets		
Technical/Global System Contact:	John Tompkins (FNAL) emails	jct@fnal.gov	
DR Area System Contact:	Jie Gao (IHEP) email:	<u>gaoj@ihep.ac.cn</u>	

Part II – Main Parameters

Parameter	Value	Reference
Quantity per beamline	240	[1]
Name in MAD deck	SF	[1]
Nominal integrated strength k2L	0.146 Tm ⁻³	[1]
Effective length	0.25 m	[1]
Pole-tip radius	0.03 m	[1]
Nominal pole-tip field	0.005 T	[1]
Coil resistance		
Current at nominal strength		
Power		
Unit Cost		

Part III - Other Parameters, Information, and Drawings

Field quality specifications [2]

n	systematic field error		random fie	ld error
	b_n	a_n	b_n	a_n
4	2.0×10 ⁻⁴		1.0×10 ⁻⁴	
5	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
6	7.0×10 ⁻⁴		1.0×10 ⁻⁴	
7	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
8	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
9	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
10	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
11	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
12	3.2×10 ⁻³		1.0×10 ⁻⁴	
13	1.0×10 ⁻⁴		3.0×10 ⁻⁵	
14	1.0×10 ⁻⁴		3.0×10 ⁻⁵	

ILC Damping Rings Component Specification Sheet

Document Number: EDR-MAG-sxt-001

Date: 2006-02-08

Part IV – References

[1] MAD deck (OCS v2, 23 March 2006.

[2] The multipole component is defined by:

$$\frac{\Delta B_y + i\Delta B_x}{\left|B(r)\right|} = \sum_n \left(b_n + ia_n\right) \left(\frac{x}{r} + i\frac{y}{r}\right)^n$$

A. Wolski, J. Gao, S. Guiducci, "Configuration Studies for the ILC Damping Rings," LBNL-59449, pp. 21-22 (February 2006).

New Lattice

- New lattice from ANL (OCS v2)
 - Available March 23rd
 - Have started preparing component specification sheets
- Quadrupole/Sextupole Overview

Arcs

Quad -	QFA:	N = 240	L = 0.300	K1L = 8.56e-02
	QDA:	N = 240	L = 0.300	K1L = -8.61e-02
Sext -	SF:	N = 240	L = 0.250	K2L = 1.46e-01
	SD:	N = 240	L = 0.250	K2L = -2.29e-01

Straights

Quad -	QFI:	N = 26	L = 0.150	K1L =	3.84e-02
	QDI:	N = 24	L = 0.150	K1L = -	-3.52e-02

Wiggler Sections

Quad - QFWH: N = 112 L = 0.150 K1L = 9.50e-02 QDWH: N = 80 L = 0.150 K1L = -8.51e-02

RF Sections

Dispersion Suppression Sections

Quad -	QFMA1:	N = 20	L = 0.300	K1L = 9.96e-02
	QDMA1:	N = 20	L = 0.300	K1L = -7.92e-02
Sext -	SF1:	N = 20	L = 0.250	K2L = 0.00e+00
	SD1:	N = 20	L = 0.250	K2L = 0.00e+00

Matching to Wiggler Sections

Quad - QFMT1: N = 16 L = 0.300 K1L = 1.46e-01 QDMT1: N = 16 L = 0.300 K1L = -1.76e-01 QFMT2: N = 16 L = 0.300 K1L = 1.79e-01 QDMT2: N = 16 L = 0.300 K1L = -1.87e-01

Matching to Straight Sections

Matching to Injection Section

Injection Section

То

)uad -	QFINJ1:	N =	8	L = 0.300	K1L =	1.69e-01
	QDINJ1:	N =	8	L = 0.300	K1L = -	2.17e-01
	QFINJ2H:	N =	8	L = 0.150	K1L =	1.41e-01
	QDINJ2:	N =	2	L = 0.300	K1L = -	1.16e-01
	QFINJ3:	N =	2	L = 0.300	K1L =	9.11e-02
	QDINJ3:	N =	0	L = 0.000	K1L =	0.00e+00
	QFINJ4H:	N =	4	L = 0.000	K1L =	0.00e+00
	QFINJ5H:	N =	0	L = 0.000	K1L =	0.00e+00
tals:	n(QUAD) =	= 934	(32	2 types) ~78	33 physi	cal quads
	n(SEXT) =	520	(4	types)		

OCS v2 Lattice

- Simulations with PEP-II multipole errors look satisfactory
 - Bend/Quad/Sext
 - Baseline error specification
- 8 wiggler/RF sections
 - 8 cavities
 - 10 wigglers

Summary

- Wigglers
 - Detailed design and costing information available for CESR-c wiggler
 - Need to quantify modifications for ILCDR use
 - Evaluate engineering/design issues
 - Specify procedures for design adjustment
 - Specify procedures for costing adjustment
- General Magnets
 - RDR support page up and running
 - Component specification sheets will appear over next few weeks
 - Supporting documentation will be provided simultaneously