

ILC Damping Wiggler: Physics & Engineering Design

Jeremy Urban & Mark Palmer Cornell University

May 9, 2006 Global ILCDR Teleconference

Cornell University Laboratory for Elementary-Particle Physics

Modified CESR-c Wiggler

- \Box λ = 40 cm
- □ 5 periods + end poles
- Pole Width = 238 mm
- Pole Gap = 76 mm
- □ Beam Stay Clear = 50 mm 7
- Performed well in all BCD option DRs...too well?
- OCS v2: DA_{linear wiggler} > PA
 > wiggler map

Jeremy Urban

ILCDR Teleconference

Physics Design Optimization

- CESR-c wiggler optimized specifically for CESR-c conditions
 - gap, width, coil shape, pole cutout/shim
- Field quality greater than necessary for ILCDR
- Potential for cost savings?
 - Field quality
 - Total number

Wiggler models in Opera & Radia

Field Quality

 △B/B_{peak} @ x=10 mm
 Large OCS DA can tolerate poor field quality, but large physical aperture is still required

OCS v1, Wiggler Pole Width

0

X (mm)

Width = 94.0 mm

Width = 90.4mm

Width = 89.5mm

Width = 88.6mm

10

20

Jeremy Urban

70

60

50

40

30

20

10

D

-30

-20

-10

Y (mm)

May 9, 2006

30

ILCDR Teleconference

Peak Field

- □ Why 1.67 T?
- □ Higher field → More damping → Less wigglers (either $N_{tot,wig}$ or L_{wig})
- □ However, increases:
 - ε_x ~ β * B³ * λ²
 - σ_δ
 - magnetic forces in wiggler assembly
 - radiated photons

Jeremy Urban

Engineering Design Optimization

- CESR-c: 12 x 1.3 meters
- □ ILCDR: 3 x 80 x 2.5 meters
- Engineering issues under consideration
 - Wiggler
 - □ Optimum length, pole gap, and field
 - Vacuum chamber
 - Separate bakeable chamber
 - Pumping requirements

- Collaboration with LBNL
- Synchrotron radiation load issues
- Electron cloud suppression
- Cryostat
 - Modifications for no LN₂ in ILC tunnel
 - □ Investigate indirect (vs bath) cooling for cold mass
 - Simplify production

Wiggler Assembly

Vacuum Chamber

CESR-c Design:

- CESR chamber integral to cryostat assembly
- Cold mass bore has 17 cm horizontal aperture
- 2.5 kW/wiggler
- □ ILCDR Requirements:
 - 21 (e⁺) or 42 (e⁻) kW/wiggler
 - 10 wigglers/60 m section
- RDR plan
 - Separated vacuum chamber compatible with present cold bore (LBNL)

Jeremy Urban

May 9, 2006

LHe stack

Gap Height

- Simplify construction & add flexibility
 - Larger gap
 - Simplifiessupport plateconstruction
 - Cost savings
 - Larger gap possible
 - □ 76 → >98 mm @ 1.67 T

Gap Height

Electron Cloud mitigation needs

Larger gap height does not detrimentally degrade field quality.

Clearing Electrodes Pivi, Wang, Raubenheimer, Raimondi

Summary

RDR Plan

- Wiggler and cryostat costed from CESR-c design
- Vacuum chamber design (LBNL) for existing cold bore
- Key areas for possible modification identified
- TDR Plan
 - Fully optimized and engineered design for ILC use

Optimizations:

- Physics
- □ Wiggler/cryostat engineering design
- Vacuum chamber/cold bore interface
- Cost
- □ Compatibility with ILC technical system specifications

Jeremy Urban

May 9, 2006