2. Beam Dynamics Studies

2.1 Single-Particle Dynamics

2.1.1 Lattice Design

2.1.1.1 Lattice design for baseline positron ring

Required for Baseline Priority: Very High

2.1.1.2 Lattice design for baseline electron ring

Required for Baseline Priority: V	Very High
-----------------------------------	-----------

2.1.1.3 Lattice design for alternative positron ring

Required for Alternate Priority: Moderate

2.1.1.4 Lattice design for alternative electron ring

Required for Alternate Priority: Moderate

2.1.1.5 Lattice design for injection/extraction lines

Required for Baseline Priority: High

2.1.1.6 Optics designs for injection/extraction sections in damping rings

Required for Baseline Priority: High

2.1.2 Acceptance

2.1.2.1 Characterize damping rings acceptance

Required for Baseline Priority: High

2.1.2.2 Optimize the damping rings acceptance

Required for Baseline Priority: High

2.1.2.3 Specify magnet field quality required to ensure good acceptance

Required for Baseline Priority: High

2.1.3 Optics Measurement and Correction

2.1.3.1 Develop techniques for optics measurement and correction

2.1.4 Low-Emittance Tuning

2.1.4.1 Develop strategies for low-emittance tuning

Required for Baseline Priority: High

2.1.4.2 Specify requirements for survey, alignment and stabilization

Required for Baseline Priority: High

2.1.4.3 Demonstrate < 2 pm vertical emittance

Required for Baseline Priority: Very High

2.1.4.4 Specify support schemes for damping rings magnets

Required for Baseline Priority: High

2.1.4.5 Specify orbit and coupling correction scheme

Required for Baseline Priority: High

2.2 Multi-Particle Dynamics

2.2.1 Single-Bunch Impedance

2.2.1.1 Develop single-bunch impedance models

Required for Baseline Priority: High

2.2.1.2 Characterize single-bunch impedance-driven instabilities

Required for Baseline Priority: Very High

2.2.2 Multi-Bunch Impedance

2.2.2.1 Develop long-range wakefield models

Required for Baseline Priority: High

2.2.2.2 Characterize multi-bunch instabilities

Required for Baseline Priority: High

2.2.2.3 Characterize the effects of injection transients

2.2.3 Electron Cloud

2.2.3.1 Characterize electron-cloud build-up

Required for Baseline Priority: Very High

2.2.3.2 Develop electron-cloud suppression techniques

Required for Baseline Priority: Very High

2.2.3.3 Develop modeling tools for electron-cloud instabilities

Required for Baseline Priority: Very High

2.2.3.4 Determine electron-cloud instability thresholds

Required for Baseline Priority: Very High

2.2.4 Ion Effects

2.2.4.1 Characterize ion effects

Required for Baseline Priority: Very High

2.2.4.2 Specify techniques for suppressing ion effects

Required for Baseline Priority: Very High

2.2.5 Other Collective Effects

2.2.5.1 Characterize space-charge effects Required for Baseline Priority: Moderate

2.2.5.2 Estimate the impact from CSR

Required for Baseline Priority: Moderate

2.2.5.3 Estimate emittance growth from IBS

Required for Baseline Priority: Moderate

2.2.5.4 Determine the Touschek lifetime

2.3 Integrated Dynamics Studies

2.3.1 Integrated Dynamics Studies

2.3.1.1 Perform integrated beam dynamics simulations

Required for Baseline Priority: Moderate

3. Technical Subsystem or Component Development

3.1 Vacuum

3.1.1 Vacuum Chamber

3.1.1.1 Specify vacuum chamber material and geometry

Required for Baseline Priority: High

3.1.1.2 Develop technical designs for principal vacuum chamber components

Required for Baseline Priority: High

3.1.1.3 Characterize vacuum system performance

Required for Baseline Priority: High

3.1.2 Vacuum Pumps

3.1.2.1 Specify vacuum pumps Required for Baseline Priority: Low

3.1.3 Vacuum Diagnostics and Controls

3.1.3.1 Specify vacuum diagnostics and controls

Required for Baseline Priority: Low

3.1.4 Vacuum Valves

3.1.4.1 Specify vacuum valves

3.3 Normal-Conducting Magnets

3.3.2 Dipoles

3.3.2.1 Develop physics designs for main dipoles

Required for Baseline Priority: Moderate

3.3.2.2 Develop engineering designs for main dipoles

Required for Baseline Priority: Low

3.3.3 Quadrupoles

3.3.3.1 Develop physics	designs for quadrupoles
Required for Baseline	Priority: Moderate

3.3.3.2 Develop engineering designs for quadrupoles

Required for Baseline Priority: Low

3.3.4 Sextupoles

3.3.4.1 Develop physics designs for sextupoles

Required for Baseline Priority: Moderate

3.3.4.2 Develop engineering designs for sextupoles

Required for Baseline Priority: Low

3.3.5 Higher-Order Multipoles

3.3.5.1 Develop physics designs for higher-order multipoles

Required for Baseline Priority: Moderate

3.3.5.2 Develop engineering designs for higher-order multipoles

Required for Baseline Priority: Low

3.3.6 Steering Magnets

3.3.6.1 Specify steering magnets

3.3.7 Skew Quadrupoles

3.3.7.1 Specify skew quadrupoles

Required for Baseline Priority: Moderate

3.4 Superconducting Magnets

3.4.6 Damping Wiggler

3.4.6.1 Develop physics designs for damping wigglers Required for Baseline Priority: Moderate

3.4.6.2 Develop engineering designs for damping wigglers

Required for Baseline Priority: High

3.5 Kickers

3.5.1 Damping Ring Injection/Extraction Kickers

3.5.1.1 Develop a fast high-power pulser for injection/extraction kickers

Required for Baseline Priority: Very High

3.5.1.2 Develop physics designs for kicker striplines

Required for Baseline Priority: High

3.5.1.3 Develop engineering designs for kicker striplines

Required for Baseline Priority: Moderate

3.6 Damping Ring RF Systems

- 3.6.1 RF System
 - 3.6.1.1 Specify 650 MHz RF system

Required for Baseline Priority: High

3.6.1.2 Prototype complete 650 MHz RF unit and test at high power

3.6.2 RF Cavities

3.6.2.1 Develop conceptual design for 650 MHz RF cavities, cryomodules and supporting hardRequired for BaselinePriority: High

3.6.2.2 Develop engineering design for 650 MHz RF cavities, cryomodules and supporting hard Required for Baseline Priority: High

3.6.4 RF Controls (Low-Level RF)

3.6.4.1 Develop RF controls Required for Baseline Priority: High

3.7 Instrumentation and Diagnostics

3.7.1 Beam Intensity Diagnostics

3.7.1.1 Develop beam lifetime instrumentation

Required for Baseline Priority: Moderate

3.7.1.2 Develop fast loss monitors

Required for Baseline Priority: Moderate

3.7.2 Beam Position and Phase Diagnostics

3.7.2.1 Develop beam position monitors

Required for Baseline Priority: Moderate

3.7.2.2 Develop feedforward for extraction kicker stabilization

3.7.3 Beam Size and Bunch Length Diagnostics 3.7.3.1 Develop high-precision beam size monitor Required for Baseline Priority: Moderate 3.7.3.2 Develop precision bunch-by-bunch beam size monitor Required for Baseline Priority: Moderate 3.7.3.3 Develop instrumentation for measuring injected phase space Required for Baseline Priority: Moderate 3.7.3.4 Develop instrumentation for monitoring emittance damping Required for Baseline Priority: High 3.7.3.5 Develop fast coupling monitor Required for Baseline Priority: Moderate 3.7.4 Higher-Order Beam Diagnostics 3.7.4.1 Develop coherent signal receivers Required for Baseline Priority: Moderate 3.7.5 Other Instrumentation and Diagnostics 3.7.5.1 Develop tune monitors Required for Baseline Priority: Moderate 3.7.5.2 Develop instrumentation for fast dispersion measurements Required for Baseline Priority: Moderate 3.7.6 Integrated Instrumentation and Diagnostics Systems 3.7.6.1 Specify overall requirements for instrumentation and diagnostics Required for Baseline Priority: High

3.8 Feedback Systems

3.8.1 Damping Ring Bunch-by-Bunch Feedback Systems

3.8.1.1 Specify bunch-by-bunch feedback systems

Required for Baseline Priority: Moderate

3.8.1.2 Model bunch-by-bunch feedback systems Required for Baseline Priority: Moderate

ritority. Woderate

3.8.1.3 Develop bunch-by-bunch feedback systems

Required for Baseline Priority: Moderate

3.10 Supports and Alignment Systems

3.10.1 Normal-Conducting Magnet Supports

3.10.1.1 Specify alignment techniques appropriate for different sections of the rings

Required for Baseline Priority: Moderate

3.10.1.2 Specify support and stabilization hardware

Required for Baseline Priority: High

3.13 Multiple Systems

3.13.1 Systems Integration

3.13.1.1 Develop integrated mechanical design