FII Simulation Progress

- Ion oscillation frequencies for uniform and Gaussian charge distributions consistent
- Small amplitudes
 - Near the beam axis, Gaussian is nearly uniform
 - Gaussian frequency equal to uniform frequency (with appropriate charge density)
- Large amplitudes
 - Far from the beam axis, Gaussian and uniform approach line charges
 - Gaussian frequency equal to uniform frequency

Frequency Comparisons (CO⁺)

$$r_{beam}$$
 = 2 mm, l_{bunch} = 1 cm

 $N = 10^{10} \,\mathrm{e}^{-} /\mathrm{bunch}$

 $\sigma_x = \sigma_y = 2 \text{ mm}, \sigma_z = 5 \text{ mm}$

Bunch spacing = 14 ns

		Small amplitude (1 µm)	Large amplitude (1 cm)
Uniform (C++)	Solid	272,598 Hz	95,833 Hz
	Bunched	274,696	96,090
Uniform (Fortran)	Solid	272,598	95,833
	Bunched	274,696	96,090
Gaussian (Fortran)	Solid	272,599	94,242
	Bunched	274,686	94,501

CO⁺ Oscillation Frequency vs. Amplitude

