Hadronic D Decays and the D Meson Decay Constant with CLEO-c

Anders Ryd, Cornell University representing the CLEO Collaboration presented at the 32nd International Conference on High Energy Physics, Beijing, China, Aug. 16-22, 2004

This presentation covers ABS11-0775 and ABS11-0776

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Introduction

- •I will present new, preliminary, results from CLEO-c on
 - $Bf(D^+ \rightarrow \mu^+ \nu_{\mu})$ and determination of f_{D^+}
 - absolute hadronic *D* branching fractions, and • the $\sigma(e^+e^- \rightarrow D\overline{D})$ cross section at E_{em}=3.77 GeV.
- These measurements make use of '*D*-tagging', in which one *D* is exclusively reconstructed.
 - •Once we have found one D we know that it recoiled against a \overline{D} .

- CESR-c had a pilot run Dec. '03 through Mar. '04.
 - 6 of the total of 12 wiggler magnets were installed.
- The remaining magnets were installed this summer.
- We recorded 57.1 pb⁻¹ at the $\psi(3770)$.
 - Will continue running this fall. Goal is to collect 3 fb⁻¹ on the $\psi(3770)$.

CLEO-c Detector

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

$$D^+ \rightarrow \mu^+ \nu_\mu$$
 and f_{D^+}

$$\Gamma(D^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} f_{D^+}^2 m_l^2 M_{D^+} (1 - \frac{m_l^2}{M_{D^+}^2})^2 |V_{cd}|^2$$

- A precise measurement of f_{D^+} allows precise comparison with theoretical calculations, such as lattice QCD.
- This will help determining f_B , which currently can not be measured in leptonic *B* decays.

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Charged D-Tag Reconstruction

tags where we see a small tail on the higher mass

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - \left| p(D) \right|^2}$$

$$\Delta E = E(D) - E_{\text{beam}}$$

Require $|\Delta E| < 20 \text{ MeV}$

	Events
Mode	Sig
$K^+\pi^-\pi^-$	15188
$K^+\pi^-\pi^-\pi^o$	4082
$K_s\pi^-$	2110
$K_s\pi^-\pi^-\pi^+$	3975
$K_s \pi^- \pi^o$	3297
Sum	28652

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Signal Extraction

Preliminary!

•For events with μ candidate form $MM^2 = (E_{beam} - E_{\mu})^2 - (-\vec{p}_D - \vec{p}_{\mu})^2$ •Signal will peak at $MM^2 = m_v^2 = 0$ •Muons are required to deposit less than 300 MeV in the calorimeter •No additional tracks from IP •Largest unmatched shower to be less than 250 MeV, to veto $D^+ - > \pi^+ \pi^0$

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Page:

7

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Results

•8 signal candidate events with the following backgrounds **Luction**

Background	\mathcal{B} (%)	# of events	
$D^+ o \pi^+ \pi^0$	0.13 ± 0.02	0.31 ± 0.04	× .
$D^+ \to K^0 \pi^+$	2.77 ± 0.18	0.06 ± 0.05	P
$D^+ \to \tau^+ \nu$	$3.2 imes \mathcal{B}(D^+ o \mu^+ u)$	0.36 ± 0.08	
$D^+ o \pi^0 \mu^+ u$	0.31 ± 0.15	negligible	uni.
$D^0ar{D}^0$		0.16 ± 0.16	A Dan
$\operatorname{continuum}$		0.17 ± 0.17	A VI
Total		1.07 ± 0.25	•••

• Due to simulation uncertainties we take background as 1.07 ± 1.07 • With 28575 D^+ tags and an efficiency of 69.9% for signal events to

satisfy the selection criteria given a D^+ tag we obtain: $Bf(D^+ \rightarrow \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4} \quad f_{D^+} = (201 \pm 41 \pm 17) \text{ MeV}$

• Theoretical predictions for f_{D} are in the range 190 to 260 MeV.

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Hadronic *D* Decays and $\sigma(e^+e^- \rightarrow D \overline{D})$

- In order to measure the cross section and absolute branching fractions we need to determine the number of produced *DD* events
 - Use a 'double tag' technique, pioneered by MARK III

$$N_{ii} = 2 \epsilon_{i} B_{i} N_{D\overline{D}} \qquad \qquad N_{D\overline{D}} = \frac{N_{i}^{2}}{4N_{ii}} \frac{\epsilon_{ii}}{\epsilon_{ii}^{2}}$$

•Use 3 D^0 modes ($K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^-\pi^+$) and 2 D^+ modes ($K^-\pi^+\pi^+$, $K_{\rm s}\pi^+$) •Determine separately the D and \overline{D} yields

- This gives 10 single tag yields and 13 $(=3^2+2^2)$ double tag yields
- In a combined χ^2 fit we extract 5 branching fractions and $D^0\overline{D}^0$ and D^+D^- yields. The fit includes the systematic errors.
- •Many systematics cancel in the $D\overline{D}$ yields.

Single Tag Yields

Prelin	ninary!		$ \begin{array}{c} (c) D^{2} \rightarrow \kappa \pi^{+}\pi^{0} \\ 0 \\ 0 \\ 0 \\ 10^{2} \\ 10 \\ 10 \\ 1.83 \\ 1.84 \\ 1.85 \\ 1.86 \\ 1.87 \\ 1.88 \\ 1.88 \\ 1.89 \\ M(D) \\ (GeV/c^{2}) \end{array} $
$D^- ightarrow K^0_S \pi^-$	1.12 ± 0.04	45.9 ± 0.5	$\widehat{\mathbf{n}} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$
$D^+ ightarrow K^0_S \pi^+$	1.09 ± 0.04	45.6 ± 0.5	M(D) (GeV/c ²)
$D^- \rightarrow K^+ \pi^- \pi^-$	7.57 ± 0.09	51.9 ± 0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$D^{\circ} \rightarrow K \ \pi \ \pi \ \pi \ \pi'$ $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$	7.39 ± 0.10 7.58 ± 0.09	45.5 ± 0.5 52.2 ± 0.5	
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$ $\bar{D}^0 \rightarrow K^+ = - +$	7.39 ± 0.10	45.1 ± 0.5	
$\bar{D}^0 \to K^+ \pi^- \pi^0$	9.58 ± 0.12	34.0 ± 0.4	
$D^0 \to K^- \pi^+ \pi^0$	9.62 ± 0.12	$\textbf{33.6} \pm 0.4$	
$ar{D}^0 o K^+ \pi^-$	5.16 ± 0.08	66.3 ± 0.6	510^2
$D^0 o K^- \pi^+$	5.14 ± 0.07	65.1 ± 0.6	
\overline{D} or \overline{D} Mode	Yield (10^3)	Efficiency (%)	\Im
Single tag data yields a	nd efficiencies ar	nd their statistical unc	$10^{3} = (a) D^{0} \rightarrow K^{-}\pi^{+}$

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

LEPP

Fits for Double Tag Yields

 $m(\overline{D})$ (GeV/c²)

2-D fit for double tag yields
Fit includes correlations due to beam energy fluctuations and ISR.

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Double Tag Yields

ABLE III: Double tag data yields and emciencies and their statistical uncertainties $\sqrt{25}$

				- 5 -	•
D Mode	$ar{D}$ Mode	Yield (10^2)	Efficiency (%)	- 9_20	
$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^-$	1.09 ± 0.11	42.6 ± 0.5	- <u>-</u> <u>-</u>	
$D^0 \to K^- \pi^+ \pi^0$	$ar{D}^0 ightarrow K^+ \pi^- \pi^0$	4.84 ± 0.23	12.1 ± 0.3	ë ¹⁵	
$D^0 \to K^-\pi^+\pi^+\pi^-$	$\bar{D}^0 \to K^+ \pi^- \pi^- \pi^+$	2.80 ± 0.17	20.8 ± 0.4	uts 10⊢	₩ NL
$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^- \pi^0$	2.45 ± 0.16	23.2 ± 0.4		∥ Ą
$D^0 \to K^- \pi^+ \pi^0$	$\bar{D}^0 \to K^+ \pi^-$	2.62 ± 0.16	22.6 ± 0.4	5	
$D^0 \to K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^- \pi^- \pi^+$	2.05 ± 0.14	29.6 ± 0.4	o Ē	
$D^0 \to K^-\pi^+\pi^+\pi^-$	$ar{D}^0 ightarrow K^+ \pi^-$	1.97 ± 0.14	29.6 ± 0.4	1.83 1.84	1.85 1.86 1. $M(D)$ (GoV/ c^2)
$D^0 \to K^- \pi^+ \pi^0$	$\bar{D}^0 \to K^+ \pi^- \pi^- \pi^+$	3.59 ± 0.20	15.2 ± 0.3		
$D^0 \to K^-\pi^+\pi^+\pi^-$	$ar{D}^0 ightarrow K^+ \pi^- \pi^0$	3.40 ± 0.19	15.5 ± 0.3	F^{r,r,r,r,r,r,r,r	
$D^+ ightarrow K^- \pi^+ \pi^+$	$D^- \to K^+ \pi^- \pi^-$	3.79 ± 0.20	26.7 ± 0.4	100⊢ (a)D+→	$-K^{-}\pi^{+}\pi^{+}$
$D^+ ightarrow K^0_S \pi^+$	$D^- ightarrow K^0_S \pi^-$	0.090 ± 0.030	20.6 ± 0.4		
$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^- ightarrow K^0_S \pi^-$	0.609 ± 0.079	23.7 ± 0.4		
$D^+ ightarrow K^0_S \pi^+$	$D^- \to K^+ \pi^- \pi^-$	0.530 ± 0.073	$\textbf{23.9} \pm \textbf{0.4}$		
				- 0 -	ļ
				0 40	
		, A	6	nts /	
•2480 net	utral double	tags 🚬 🧹	Ċ/j	[®] 20	
•502 char	red double	tage	nin		1
•J02 Chai	geu uouble	lags	uldr.		
					M(D) (GeV/c ²

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

M(D) (GeV/c²)

[- (a) D⁰→K⁻π⁺ 30

0140804-024

1.87

1.87

1.88

Page:

1.89

1.88

0140804-027

1.89

Systematics

Source	Fractional Uncertainty (%)	Quantity
Data processing	0.3	All yields
Yield fit functions	0.1 – 2.9	All yields
Background bias	2.5	DT yields
Double DCSD interference	0.8	Neutral DT yields
Detector simulation	3.0	Tracking efficiencies
	3.0	K_S^0 efficiencies
	4.4	π^0 efficiencies
	0.3	π^{\pm} PID efficiencies
	1.0	K^{\pm} PID efficiencies
Trigger simulation	0.3	ST efficiencies
Final state radiation	0.5	D efficiencies
$ \Delta E $ requirement	1.0	${\cal D}$ efficiencies, correlated by decay
Resonant substructure	3.0	$D^0 \to K^- \pi^+ \pi^+ \pi^-$ efficiencies

• Background bias

Currently dominated by tracking efficiency systematics
We have a 3%/track correction to the MC tracking efficiency
Most systematics will improve with more data

•Most systematics will improve with more data

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Preliminary Fit Results

and systematic, respectively.

Parameter	Fitted Value	PDG 2004*
$N_{D^0\bar{D}^0}$	$(1.98 \pm 0.04 \pm 0.03) \times 10^5$	-
${\cal B}(D^0 o K^- \pi^+)$	$0.0392 \pm 0.0008 \pm 0.0023$	0.0380 ± 0.0009
${\cal B}(D^0 o K^- \pi^+ \pi^0)$	$0.143 \pm 0.003 \pm 0.010$	
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$	$0.081 \pm 0.002 \pm 0.009$	
$N_{D^{+}D^{-}}$	$(1.48 \pm 0.06 \pm 0.04) imes 10^5$	
$\mathcal{B}(D^+ o K^- \pi^+ \pi^+)$	$0.098 \pm 0.004 \pm 0.008$	
${\cal B}(D^+ o K^0_S \pi^+)$	$0.0161 \pm 0.0008 \pm 0.0015$	0.092 ± 0.006
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0) / \mathcal{B}(D^0 \to K^- \pi^+)$	$3.64 \pm 0.05 \pm 0.17$	-
$\mathcal{B}(D^0 \to K^-\pi^+\pi^+\pi^-)/\mathcal{B}(D^0 \to K^-\pi^+)$	$2.05 \pm 0.03 \pm 0.14$	3.42 ± 0.22
$\mathcal{B}(D^+ \to K^0_S \pi^+) / \mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	$0.164 \pm 0.004 \pm 0.006$	1.96 ± 0.06
		0.153 ± 0.003

The results of the data fit are shown in Table V. The $\sqrt{2}$ of the *Our branching fractions are corrected for FSR, PDG values are not.

- •Using our measured luminosity of 57.2 ± 1.7 pb⁻¹ we obtain:
 - $\sigma(D^0\overline{D}^0) = (3.47 \pm 0.07 \pm 0.15) \,\text{nb}$ $\sigma(D^+D^-) = (2.59 \pm 0.11 \pm 0.11) \,\text{nb}$ $\sigma(D\overline{D}) = (6.06 \pm 0.13 \pm 0.22) \,\text{nb}$

ICHEP, Beijing, Aug. 16-22, 2004 Anders Ryd, Cornell University

Conclusions

• CLEO-c has taken ~60 pb⁻¹ of pilot data at the $\psi(3770)$

- The full compliment of wigglers has been installed, and data taking will resume this fall.
- Using this sample we have obtained the preliminary results
 - $Bf(D^+_{} \to \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4} \quad f_{D^+} = (201 \pm 41 \pm 17) \text{ MeV}$
 - $Bf(D^0 \to K^+\pi^-) = (3.92 \pm 0.08 \pm 0.23)\% Bf(D^+ \to K^-\pi^+\pi^+) = (9.8 \pm 0.4 \pm 0.8)\%$
 - At E_{cm} =3.773 GeV we measured the e⁺e⁻ cross sections
 - $\sigma(D^0\overline{D}^0) = (3.47 \pm 0.07 \pm 0.15) \,\text{nb}$ $\sigma(D^+D^-) = (2.59 \pm 0.11 \pm 0.11) \,\text{nb}$
 - $\sigma(D\overline{D}) = (6.06 \pm 0.13 \pm 0.22) \,\text{nb}$
- Using all tagging modes we have a *D*-tagging efficiency of 25%.
- Look forward to many more results from CLEO-c in the near future as we continue to take data at charm threshold.

