Weak Decays, CKM, CP Violation

Anders Ryd Cornell University

Presented at the International Conference on Weak Interactions and Neutrinos Delphi, Greece, June 6-11, 2005

Flavor Physics

- The study of flavor physics has proved another success of the standard model.
 - •The goal is no longer to test the standard model,
 - but rather to look for effects beyond the standard model.
- I will review some test of the standard model and what I think will be of interest in the future.
- Many results from BaBar, Belle, CLEO, CDF, D0, KTeV...
 I will only be able to discuss a small number of results from this program

Outline

- Overview of experiments
- Recent progress on magnitudes of CKM matrix elements
 - ${\scriptstyle \bullet V_{us}},\,V_{cb},\,V_{ub},\,V_{td}$
- •CP violation in B decays
 - Measurements of , , and
- •Rare decays
- •Future experiments

B-Factory Experiments

Similar capabilities:
Si Vertex Detector
Driftchamber for p meas.
CsI for EMC
Cherenkov detector for /K separation
Muon detection

Page: 4

B Reconstruction at Y(4S)

B-Factory Luminosities

Both B-factories have been very successful

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

Continuous Injection

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

Experiments at Tevatron

Run II started March 2001
So far recorded ~600 pb⁻¹
Large b cross-section ~30 b

Major upgrades include

- •CDF: Vertex information in
- trigger, and better coverage

•D0: Tracking, with vertexing, in magnetic field

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

Toroic

CKM Matrix

$$\mathbf{V}_{\mathrm{CKM}} = \begin{bmatrix} \mathbf{V}_{\mathrm{ud}} & \mathbf{V}_{\mathrm{us}} & \mathbf{V}_{\mathrm{ub}} \\ \mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathrm{cs}} & \mathbf{V}_{\mathrm{cb}} \\ \mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathrm{cs}} & \mathbf{V}_{\mathrm{cb}} \\ \mathbf{V}_{\mathrm{td}} & \mathbf{V}_{\mathrm{ts}} & \mathbf{V}_{\mathrm{tb}} \end{bmatrix} \approx \begin{bmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - \mathbf{i}\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - \mathbf{i}\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4)$$

Pre B-factory UT (1998)

Measurements limited by theory

Magnitude of CKM Matrix Elements

Current status of magnitudes

Recent V_{us} Changes (KTeV)

V_{us} determined from K_L decays
 Large changes in K_L branching fractions from KTeV
 Changed V_{us} by 5 - detailed treatment of radiation
 PDG was average of many (old) measurements

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

Page: 12

$|V_{cb}|$ from $B \rightarrow D*l$

HQET allow determination of the form factor in the zero recoil configuration.
Rate is zero at this point so one has to extrapolate.

$|\mathbf{V_{cb}}| \text{ from } \mathbf{B} \rightarrow \mathbf{D*l}$

• With F(1)=0.91+0.04• We have $V_{cb}=(41.3\pm1.0\pm1.8)\times10^{-3}$ • This is in good agreement with determinations from inclusive b \rightarrow cl

Page: 14

|V_{ub}| from Lepton Endpoint

- ${\scriptstyle \bullet}$ The first evidence for a nonzero $|V_{ub}|$ came from the lepton endpoint beyond the charm endpoint.
- BaBar and Belle has high statistics measurements.
- Though the inclusive rate for b→ul can be calculated, the rate at the endpoint is harder to predict.
- •However, use of 'shape' functions from $b \rightarrow s$ allows rather precise extraction of V_{ub}

 $V_{ub} = (4.46 \pm 0.23 \pm 0.61) \times 10^{-3}$

WIN '05, Delphi, Greece, June 6-11, 2005 Anders

Anders Ryd, Cornell U.

BaBar |V_{ub}| from m_X

|V_{ub}| Summary

•Exclusive modes prefers smaller V_{ub}

Uses model calculation or lattice for form factors.
CLEO-c can

measure form

factors in D \rightarrow (,)l .

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

B_d Mixing

First observed by ARGUS in 1987
Using events with same sign leptons
Now dominated by Belle and BABAR doing a lifetime analysis.

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

Extraction of |V_{td}|

$$\Delta m_{d} = \frac{G_{F}^{2}}{6} M_{B} M_{W}^{2} |V_{td} V_{tb}^{*}|^{2} \eta_{B} S_{0}(x_{t}) f_{B}^{2} B_{B}$$

f_B and and B_B are nonperturbative.
Dominated by theory error in f_B and B_B
Lattice error ~15%
CLEO-c can measure f_D and f_{Ds} which allow calibration of Lattice calculations

 $f_{D^+} = (202 \pm 41 \pm 17) \text{ MeV}$ $Br(D^+ \to \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$ CLEO-c should measure f_D to 3%

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

CLEO-c D⁺ \rightarrow ⁺ (57 pb⁻¹)

B_s Mixing

CDF/D0 Prospects on B_s Mixing

Tevatron Projection

CP Violation

- •First observed in 1964 in $K_L \rightarrow +$ decays
 - •CP violation is small, $|\epsilon| = (2.284 \pm 0.014) \times 10^{-3}$
- The B-factories have established CP violation in B mesons
 - CP violation via mixing and,
 - Direct CP violation

CP Violation via Mixing

Interference between direct decay and mixing

For J/ K_S S=sin2 and C=0

Experimental Technique at Y(4S)

•Y(4S) \rightarrow BB is a coherent CP=-1 state

• Tag B decay project other B to opposite flavor

 $\sim 9 \text{ GeV}$

 e^+ **e**⁻ (4S) $\sim 3 \text{ GeV}$ **B**⁰ Ζ. t $\mathbf{Z} =$

 \overline{B}_{0}

• Determine t, from vertex separation

Determine flavor from tag D decay products

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

► e⁻

Page: 25

'Golden' Modes for Measuring

•The modes $B \rightarrow J/K_S$ and $B \rightarrow J/K_L$ are known as the golden modes for measuring •Common final states of the B^0 and \overline{B}^0

Tree level decays – large branching fractions

 $Br(B^0 \rightarrow J/\psi K_s) = (4.3 \pm 0.3) \times 10^{-4}$

• Easy to reconstruct, at least for the K_S final state

$B \rightarrow J/K_S$ Yields

Belle 253 fb⁻¹

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

A_{CP} for J/ K_S

BABAR

Summary of J/ K_S

from Gluonic Penguins

• In the standard model there are other modes that provides a clean measurement of sin2 . • For example consider the decays $B \rightarrow K_S$, 'K_S

 Strong penguin – no weak phase – should just measure sin2 .

• Could have new physics contributions in loops.

Experimental Results

Many strong penguin modes have been studied

- Average of these modes are below sin2 from the golden modes by 3.7
- Still large errors on individual channels
- More data needed to settle this

Page: 32

Measurements of

First, it was thought that sin2 could be measured using in the same way as sin2 in J/ K_S.
However, there were large 'penguin' pollution

- The Gronau-London construction allows one to disentangle the penguin pollution with an isospin construction if one measures ^{0 0}.
- also has direct CP violation

$B^0 \rightarrow +$ (BaBar 205 fb⁻¹)

- •Can do same analysis as for +
- Only longitudinal polarization
- Smaller penguin pollution

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

from $B^+ \rightarrow D^0 K^{(*)+}$

•Need final state that are common of the D⁰ and \overline{D}^0 •'Mixed states' like D⁰->K_S + with no definite CP

$$\begin{split} M_{+} &= f(m_{+}^{2}, m_{-}^{2}) + r e^{i \gamma + i \delta} f(m_{-}^{2}, m_{+}^{2}) \\ M_{-} &= f(m_{-}^{2}, m_{+}^{2}) + r e^{-i \gamma + i \delta} f(m_{+}^{2}, m_{-}^{2}) \\ m_{+}^{2} &= m_{K_{s}\pi^{+}}^{2} m_{-}^{2} = m_{K_{s}\pi^{-}}^{2} \end{split}$$

 $f(m_+,m_-)$ is the complex Dalitz amplitude r is ratio of suppressed to favored amplitude

$D^0 \rightarrow K_S^+$ Dalitz Plot

) +

•Belle fit 187K $D^{*+} \rightarrow D^{0}(\rightarrow K_{S}^{+})$

Intermediate state	Amplitude	Phase (°)	Fit fraction
$K_S \sigma_1$	1.57 ± 0.10	214 ± 4	9.8%
$K_S ho^0$	1.0 ~(fixed)	0 (fixed)	21.6%
$K_S \omega$	0.0310 ± 0.0010	113.4 ± 1.9	0.4%
$K_{S}f_{0}(980)$	0.394 ± 0.006	207 ± 3	4.9%
$K_S \sigma_2$	0.23 ± 0.03	210 ± 13	0.6%
$K_S f_2(1270)$	1.32 ± 0.04	348 ± 2	1.5%
$K_S f_0(1370)$	1.25 ± 0.10	69 ± 8	1.1%
$K_{S}\rho^{0}(1450)$	0.89 ± 0.07	1 ± 6	0.4%
$K^{*}(892)^{+}\pi^{-}$	1.621 ± 0.010	131.7 ± 0.5	61.2%
$K^{*}(892)^{-}\pi^{+}$	0.154 ± 0.005	317.7 ± 1.6	0.55%
$K^{*}(1410)^{+}\pi^{-}$	0.22 ± 0.04	120 ± 14	0.05%
$K^*(1410)^-\pi^+$	0.35 ± 0.04	253 ± 6	0.14%
$K_0^*(1430)^+\pi^-$	2.15 ± 0.04	348.7 ± 1.1	7.4%
$K_0^*(1430)^-\pi^+$	0.52 ± 0.04	89 ± 4	0.43%
$K_2^*(1430)^+\pi^-$	1.11 ± 0.03	320.5 ± 1.8	2.2%
$K_2^*(1430)^-\pi^+$	0.23 ± 0.02	263 ± 7	0.09%
$K^{*}(1680)^{+}\pi^{-}$	2.34 ± 0.26	110 ± 5	0.36%
$K^*(1680)^-\pi^+$	1.3 ± 0.2	87 ± 11	0.11%
non-resonant	3.8 ± 0.3	157 ± 4	9.7%

•Model uncertainty can be reduced

- Better parameterization (K-matrix)
- CLEO-c can measure phase with CP-tagged D⁰ events

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

Page: 37

m² (GeV²/c⁴)

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

UT Constraints

Rare B Decays

- •The study of rare B decays provides a window to look for physics beyond the standard model
- Look at decays that are small or forbidden in the SM.
 - Proceeding via loop
- New physics can have amplitudes comparable

 or larger than the standard model
 contributions.

Searches for $b \rightarrow d$

Inclusive searches very hard

- ${\scriptstyle \bullet} BaBar$ and Belle has searched for $B {\rightarrow} ~$, and $B {\rightarrow} ~$
- No evidence yet for signal, though sensitivity to standard model signal is close: $Br_{SM}(B \rightarrow \rho \gamma) = (0.9 1.8) \times 10^{-6}$

$B \rightarrow X_{s}ll$

•Inclusive and exclusive b \rightarrow sll transitions have been observed by both BaBar and Belle

- $\ensuremath{\,^\circ}\xspace$ Use sum of exclusive modes K+n $\ , \ n{<}4$
- Standard model prediction: $Br(B \rightarrow X_{s}ll) = (4.2 \pm 0.7) \times 10^{-6}$

B→**K*****ll**

 Belle has also done a first study of the lepton forward-backward asymmetry

Need more statistics!

Both CDF and D0 has searched for $B_{d,s} \rightarrow +$

Limits on New Physics

SO(10) model with soft SUSY breaking.
tan()~50
New limit rules out most allowed parameters space (white).

$$Br(B_{s} \rightarrow \mu^{+} \mu^{-}) < 1.5 \times 10^{-7}$$

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

Future Experiments

- •BaBar and Belle has so far recorded 250 and 450 fb⁻¹ respectively.
- •Experiments are expecting to collect about 1 ab⁻¹ each.
- •CDF/D0 has recorded about 600 pb⁻¹, and expect to collect a few fb⁻¹ in the current run.

 Many more results expected from this generation of experiments in the next ~3 years.

LHC Experiments

ATLAS

CMS

•ATLAS and CMS are high p_t discovery experiments •Both have good vertexing and muon capabilities •Can do B-physics in modes that they trigger on, e.g.B $\rightarrow\mu\mu$, B $\rightarrow K^{(*)}$.

LHCb

•At the LHC the dedicated B-physics experiment LHCb will study B mesons

Super B-factory

 Both BaBar and Belle has studied the physics case for a high luminosity B-factory.
 Examples from SuperBelle LoI
 50 ab⁻¹

WIN '05, Delphi, Greece, June 6-11, 2005 Anders Ryd, Cornell U.

Page: 49

2

Conclusions

•CKM physics is fairly mature

- •Standard model explanation for CP violation from phase in the CKM matrix confirmed.
- •Attention now at physics beyond the standard model
- New physics expected at or below the TeV scale
 Makes the LHC physics program so exciting
- •Should have some observables in B physics
- Many results from B-factories will come with their increases data samples
- •CDF/D0 are now accumulating large data samples more results to come

Backup Slides

 $B \rightarrow X_s$

- CLEO II measures $Br(B \rightarrow X_s \gamma) = (3.21 \pm 0.53) \times 10^{-4}$
- This branching fraction is important in constraining new physics.
- The shape of the photon spectrum is also important to parametrize nonpertubative QCD effects which can be used to extract Vub in semileptonic B decays.

WIN '05, Delphi, Greece, June 6-11, 2005

Page: 52

Modern b -> sg

- •Today b \rightarrow sg transitions are also of interest to probe the state of the B meson
 - The photon energy spectrum, mean and spread, are sensitive to the b quark mass and momentum inside the B meson
 - •This provides important information for the shape functions used in the determination of V_{ub} from the lepton endpoint.

UT Constraint From $B \rightarrow$

Limits on B→ are now close to the standard model expectations – hints of signals.
 Limits on V_{td} are good – though model dependence large

BaBar and Belle B \rightarrow ⁺

CP Asymmetry for $\mathbf{B} \rightarrow +$

BABAR

Belle

WIN '05, Delphi, Greece, June 6-11, 2005

Anders Ryd, Cornell U.

