Open Charm Physics at CLEO-c

Anders Ryd Cornell University for the CLEO Collaboration March 18-25, 2006 $e^+e^- \rightarrow c \ \overline{c} \rightarrow D^0 \ \overline{D}^0$ $\overline{D}^0 \rightarrow K^+ \pi^-, D^0 \rightarrow K^- e^+ \overline{v}$

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Testing the Quark Mixing (CKM) Matrix

0.6

0.5

0.4

0.3

<0.05

exclude

Δm_d

 $\Delta m_s \& \Delta m_d$

'oda'

0.8

ß

0.8

Page:

- •The CKM matrix provides the only mechanism for *CP* violation in the SM.
- •It is an important goal of flavor physics to measure - and overconstrain – the parameters in the CKM matrix.
- •Non-perturbative strong effects limit our ability to extract the fundamental parameters from the measurements.
- •CLEO-c provides unique measurements that will address this limitation.

Testing Theories of Strong Interactions

•Measure form factors in $D \rightarrow \pi l \nu$ and validate theoretical calculations •Can then use this to extract $|V_{ub}|$ from $B \rightarrow \pi l \nu$

- •*B* mixing is well measured $\Delta m_d = (0.502 \pm 0.007) \times 10^{-12} \text{ s}$
- But |V_{td}| from Δm_d has large uncertainties from f_B
 CLEO-c can measure f_D

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Outline

- D physics at ψ(3770)
 Hadronic branching fractions
 Semileptonic decays
 D⁺→μ⁺ν_μ
 D_s scan
- Summary

Moriond QCD, La Thuile, March 18-25, 2006

Hadronic *D*-decays and $\sigma(e^+e^- \rightarrow D\overline{D})$

•Based on 56 pb⁻¹ of data recorded at $\psi(3770)$ •The $\psi(3770)$ decays to pairs of D mesons – and no other particles •Use a 'double tag' technique, pioneered by MARK III

> $N_i = \epsilon_i 2 B_i N_{DD}$ $N_{D\overline{D}} = \frac{N_i N_j \epsilon_{ij}}{4 N_{ii} \epsilon_i \epsilon_i}$ $N_{ii} = \epsilon_{ii} B_i B_i N_{DD}$

•Use 3 D^0 modes ($K^-\pi^+$, $K^-\pi^+\pi^0$, and $K^-\pi^+\pi^-\pi^+$) and 6 D^+ modes ($K^-\pi^+\pi^+$, $K_{\rm s}\pi^+, K^-\pi^+\pi^+\pi^0, K_{\rm s}\pi^+\pi^-\pi^+, K_{\rm s}\pi^+\pi^0, \text{ and } K^-K^+\pi^+)$

•Determine separately the D and \overline{D} yields

•This gives 18 single tag yields and 45 $(=3^2+6^2)$ double tag yields

• In a combined χ^2 fit we extract 9 branching fractions and $D^0 \overline{D}^0$ and D^+D^- yields. The fit includes the systematic errors.

•Many systematics cancel in the *DD* yield (*e.g.* tracking eff, PID eff.).

Moriond QCD, La Thuile, March 18-25, 2006

Single Tag Yields (56 pb⁻¹)

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Double Tag Yields (56 pb⁻¹)

• The statistical errors on the double tag yields set the errors on the branching fractions (assuming the single tag yields don't dominate the errors).

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Results from 56 pb⁻¹ (PRL 95, 121801)

Parameter	Fitted Value	Δ_{FSR}
$\overline{N_{D^0\bar{D}^0}}$	$(2.01 \pm 0.04 \pm 0.02) \times 10^5$	-0.2%
${\cal B}(D^0 o K^- \pi^+)$	$(3.91\pm0.08\pm0.09)\%$	-2.0%
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0)$	$(14.9\pm0.3\pm0.5)\%$	-0.8%
$\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$	$(8.3\pm0.2\pm0.3)\%$	-1.7%
$\overline{N_{D^+D^-}}$	$(1.56 \pm 0.04 \pm 0.01) \times 10^5$	-0.2%
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$	$(9.5\pm0.2\pm0.3)\%$	-2.2%
$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)$	$(6.0 \pm 0.2 \pm 0.2)\%$	-0.6%
${\cal B}(D^+ o K^0_S \pi^+)$	$(1.55\pm0.05\pm0.06)\%$	-1.8%
$\mathcal{B}(D^+ \to K^0_S \pi^+ \pi^0)$	$(7.2\pm0.2\pm0.4)\%$	-0.8%
$\mathcal{B}(D^+ \to K^0_S \pi^+ \pi^+ \pi^-)$	$(3.2\pm0.1\pm0.2)\%$	-1.4%
$\mathcal{B}(D^+ \to K^+ K^- \pi^+)$	$(0.97\pm 0.04\pm 0.04)\%$	-0.9%

Our branching fractions are corrected for FSR (so they include γ 's) Using our measured luminosity of $55.8 \pm 0.6 \text{ pb}^{-1}$ we obtain: $\sigma(e^+e^- \rightarrow D^0 \overline{D}^0) = (3.60 \pm 0.07 \pm 0.07) \text{ nb} \quad \sigma(e^+e^- \rightarrow D^+D^-) = (2.79 \pm 0.07 \pm 0.10) \text{ nb}$ $\sigma(e^+e^- \rightarrow D \overline{D}) = (6.39 \pm 0.10 \pm 0.17) \text{ nb}$ CLEO-c inclusive: $\sigma(e^+e^- \rightarrow \psi(3770) \rightarrow \text{hadrons}) = (6.38 \pm 0.08^{+0.41}_{-0.30}) \text{ nb}$

(PRL 96, 092002)

Comparison with Other Exp.

With 56 pb⁻¹ CLEO-c measurements are best available, will collect 750 pb⁻¹

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Based on factorization Bigi and Yamamoto (PLB 349, 363 (1995)) Predicts $\frac{\Gamma(D^+ \to K_L) - \Gamma(D^+ \to K_S)}{\Gamma(D^+ \to K_L) + \Gamma(D^+ \to K_S)} \approx 10\%$

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Preliminary Results

- $B(D^+ \rightarrow K^0_{\rm S}\pi^+) + B(D^+ \rightarrow K^0_{\rm L}\pi^+) = (3.06 \pm 0.06 \pm 0.16)\%$
- Asymmetry = $(K_{\rm L}^0 K_{\rm S}^0)/(K_{\rm L}^0 + K_{\rm S}^0) = -0.01 \pm 0.04 \pm 0.07$
 - Consistent with 10% prediction.
- $B(D^+ \rightarrow \eta \pi^+) = (0.39 \pm 0.03 \pm 0.03)\%$ [PDG2004 has $(0.30 \pm 0.06)\%$].

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Dalitz Plot Study of $D^0 \rightarrow K^+ K^- \pi^0$

*Can be used to measure γ in $B^{\pm} \rightarrow DK^{\pm}$

735 events with 82% purity in 9.0 fb⁻¹ from CLEO III data, $E_{cm} \sim m_{Y(4S)}$

◆Measure strong phase of $332^{\circ}\pm8^{\circ}\pm9^{\circ}$ between $D^{0}\rightarrow K^{*-}K^{+}$ and $D^{0}\rightarrow K^{*+}K^{-}$ ◆Destructive interference in $K^{*-}-K^{*+}$ overlap region

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Exclusive Semileptonic Decays 56 pb⁻¹

•Recoil against fully reconstructed D

Summary of Exclusive Semileptonic Decays in 56 pb⁻¹

Mode	B (%)	\mathcal{B} (%) (PDG)
$D^0 \to \pi^- e^+ \nu_e$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
$D^0 o K^- e^+ \nu_e$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
$D^0 o K^{*-}(K^-\pi^0) e^+ \nu_e$	$2.11 \pm 0.23 \pm 0.10$	2.15 ± 0.35
$D^0 \to K^{*-}(\bar{K}^0 \pi^-) e^+ \nu_e$	$2.19 \pm 0.20 \pm 0.11$	2.15 ± 0.35
$D^0 o ho^- e^+ u_e$	$0.19 \pm 0.04 \pm 0.01$	
$D^+ \to \pi^0 e^+ \nu_e$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
$D^+ \to \bar{K}^0 e^+ \nu_e$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
$D^+ \to \bar{K}^{*0} e^+ \nu_e$	$5.56 \pm 0.27 \pm 0.23$	5.5 ± 0.7
$D^+ o ho^0 e^+ u_e$	$0.21 \pm 0.04 \pm 0.01$	0.25 ± 0.10
$D^+ \to \omega e^+ \nu_e$	$0.16^{+0.07}_{-0.06}\pm0.01$	

Most modes are improvements over the PDGIncluding two first observations

• $D^0 \rightarrow \rho^- e^+ \nu_e$ and $D^+ \rightarrow \omega e^+ \nu_e$

•Most systematics can be reduced with more data

•Updating analysis to 281 pb⁻¹ and studying form factors

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Inclusive Semileptonic *D***-decays**

281 fb⁻¹ (Preliminary) DΓ(D e⁺Xv)/Dp (ps⁻¹ GeV⁻¹) D⁺
 D⁰ 0.3 0.2 0.1 0.2 0.4 0.6 0.8 Momentum (GeV)

•This analysis uses only the cleanest tags: $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ •Correct for *e* momentum cut •Obtain the branching fractions $Br(D^+ \rightarrow X ev_e) = (16.13 \pm 0.20 \pm 0.30)\%$ (PDG: $(17.2\pm 1.9)\%$) $Br(D^0 \rightarrow X ev_e) = (6.46 \pm 0.17 \pm 0.12)\%$ (PDG: $(6.87\pm 0.28)\%$) •Using the measured lifetimes we

obtain

 $\frac{\Gamma(D^+ \to X e \nu_e)}{\Gamma(D^0 \to X e \nu_e)} = (0.984 \pm 0.028 \pm 0.015)$

•The sum of exclusive final state $\sum_{i=1}^{n} Br(D^+ \to X_i e \nu_e) = (15.1 \pm 0.5 \pm 0.5)\%$ $\sum_{i=1}^{n} Br(D^0 \to X_i e \nu_e) = (6.1 \pm 0.2 \pm 0.2)\%$

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

$$D^+ \rightarrow \mu^+ \nu_\mu$$
 and f_{D^+}

$$\Gamma(D^{+} \to l^{+} \nu) = \frac{G_{F}^{2}}{8 \pi} f_{D^{+}}^{2} m_{l}^{2} M_{D^{+}} \left(1 - \frac{m_{l}^{2}}{M_{D^{+}}^{2}}\right)^{2} |V_{cd}|^{2}$$

- A precise measurement of f_{D^+} allows precise comparison with theoretical calculations, such as lattice QCD.
- This will help determining f_B , which currently can not be measured in leptonic *B* decays.

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Analysis Technique

• Detect muon and make sure it recoiled against neutrino.

- Extract signal in M^2_{miss} which peaks at 0.
- This analysis uses ~160,000 fully reconstructed tags (281 pb⁻¹)

Moriond QCD, La Thuile, March 18-25, 2006

Observed Signal (PRL 95 251801 (2005))

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Comparing with Theory

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Scan for D_s Running

•CESR/CLEO-c performed a scan from 3980 to 4260 MeV •Optimal point for D_s physics is at E_{cm} =4170 MeV.

• Producing $D_s D_s^*$ pairs

•Plan is to take about 750 pb⁻¹ at E_{cm} =4170 MeV

- Should allow us to measure $Br(D_s \rightarrow \phi \pi)$ to about 4%
- f_{Ds} to a few percent

Moriond QCD, La Thuile, March 18-25, 2006

Summary - Outlook

- •CLEO-c has recorded 281 pb⁻¹ at $\psi(3770)$
 - •Hadronic and semileptonic branching fractions from 56 pb⁻¹
 - Should soon have results on 281 pb⁻¹, including form factor measurements in semileptonic decays.
 - Measured $f_D = 222.6 \pm 16.7^{+2.8}_{-3.4}$ in $D^+ \rightarrow \mu^+ \nu_{\mu}$
 - •Plan is to take 750 pb⁻¹ of data at the $\psi(3770)$
- Performed scan for D_s running
 - Recorded ~70 pb⁻¹ at $E_{\rm cm}$ =4170 MeV
 - Plan is to take 750 pb⁻¹ at this energy
 - Should allow measurements of $D_s \rightarrow \phi \pi$ to 4% or better

Backup Slides

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

$D \rightarrow n(\pi^{\pm})m(\pi^{0})$ (PRL 96, 081802 2006)

This analysis doesn't use *D*-tags.Measure ratio to normalization

mode

T							
	Mode	<i>B</i> (x10 ⁻³)	PDG (x10 ⁻³)				
	$\pi^+\pi^-$	$1.40 \pm 0.04 \pm 0.03$	1.38 ± 0.05				
	$\pi^0\pi^0$	$0.78 \pm 0.05 \pm 0.04$	0.84 ± 0.22				
	$\pi^+\pi^-\pi^0$	$13.3 \pm 0.2 \pm 0.5$	11±4				
	$\pi^0\pi^0\pi^0$	< 0.30					
	$\pi^+\pi^+\pi^-\pi^-$	$7.42 \pm 0.14 \pm 0.27$	7.3±0.5				
	$\pi^+\pi^-\pi^0\pi^0$	$10.2 \pm 0.6 \pm 0.7$					
	$\pi^+\pi^+\pi^-\pi^-\pi^0$	$4.31 \pm 0.44 \pm 0.18$					
	$\pi^+\pi^0$	$1.23 \pm 0.06 \pm 0.06$	1.33±0.22				
	$\pi^+\pi^+\pi^-$	$3.36 \pm 0.10 \pm 0.16$	3.1 ± 0.4				
	$\pi^+\pi^0\pi^0$	$4.80 \pm 0.27 \pm 0.34$					
	$\pi^+\pi^+\pi^-\pi^0$	$11.7 \pm 0.4 \pm 0.7$					
	$\pi^+\pi^+\pi^+\pi^-\pi^-$	$1.67 \pm 0.18 \pm 0.17$	1.82±0.25				
	$\eta\pi^+$	$3.56 \pm 0.24 \pm 0.21$	3.0 ± 0.6				
	$n\pi^0$	$0.61 \pm 0.14 \pm 0.05$					

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

$D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$ Systematics

Source	56 pb^{-1}	281 pb^{-1}	$750~{ m pb}^{-1}$
Trk. eff.	0.7%	0.35%	0.25%
Kaon PID eff.	1.3%	0.3%	0.3%
Pion PID eff.	0.3%	0.2%	0.2%
ΔE selection	1.0%	0.3%	0.3%
Fit shape	0.8%	0.5%	0.5%
FSR	0.5%	0.5%	0.5%
Res. Sub. Structure	0.6%	0.4%	0.4%
Double DCSD interf.	0.8%	0.8%	0.5%
$D^0 \to K^- \pi^+$ Stat	2.1%	0.9%	0.6%
$D^0 \to K^- \pi^+$ Syst	3.1%	1.3%	1.1%
$D^0 \to K^- \pi^+$ Total	3.7%	1.6%	1.2%
$D^+ \rightarrow K^- \pi^+ \pi^+$ Stat	3.9%	1.2%	0.7%
$D^+ \rightarrow K^- \pi^+ \pi^+$ Syst	2.6%	1.4%	1.2%
$D^+ \to K^- \pi^+ \pi^+$ Total	4.7%	1.8%	1.4%

•Systematics limited at 281 pb⁻¹

•Some systematics should improve with additional statistics

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Results

•50 signal candidate events with the following backgrounds

Background	$\mathcal{B}~(\%)$	# of events
$D^+ \to \pi^+ \pi^0$	0.13 ± 0.02	$1.40 \pm 0.18 \pm 0.22$
$D^+ \to K^0 \pi^+$	2.77 ± 0.18	$0.33 \pm 0.19 \pm 0.02$
$D^+ \to \tau^+ \nu$	$2.6 \times \mathcal{B}(D^+ \to \mu^+ \nu)$	$1.08 \pm 0.15 \pm 0.16$
$D^0 \overline{D}{}^0, \ D^+ D^-$		< 0.4, < 0.4, 90% C.L.
continuum	—	< 1.2 90% C.L.
Total		$2.81 \pm 0.30 \pm ^{+0.84}_{-0.27}$

With 158,354 D⁺ tags and an efficiency of 67.7% for signal events to satisfy the selection criteria given a D⁺ tag we obtain:

 $Br(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4} \quad f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4}) \text{ MeV}$

(Accepted by PRL)

•We also obtain $Br(D^+ \rightarrow e^+ v) < 2.4 \times 10^{-5}$ at 90 C.L.

CLEO-c Experiment

Most results use 56 pb⁻¹ or 281 pb⁻¹ of data collected at $\Psi(3770)$ resonance

Moriond QCD, La Thuile, March 18-25, 2006

Anders Ryd

Comparison with PDG Averages

