CLEO-c Measurements of f_D and f_{Ds}

 $K_s \pi^- \pi^+ \pi^+$ Tag

A. Ryd, Cornell U.

CKM Constraints

1.5

 The CLEO-c program impacts many of the CKM parameters
 In particular, leptonic D and D_s decays allow measurements of the decay constants
 This will help the determination of V_{td}

A. Ryd, Cornell U.

$$\Gamma(D^{+} \to l^{+} \nu) = \frac{G_{F}^{2}}{8\pi} f_{D^{+}}^{2} m_{l}^{2} M_{D^{+}} (1 - \frac{m_{l}^{2}}{M_{D^{+}}^{2}})^{2} |V_{cd}|^{2}$$

• Rate of $e:\mu:\tau$ is ~10-4:1:2.65

- A precise measurement of f_{D^+} allows precise comparison with theoretical calculations, such as lattice QCD.
- This will help determining f_B .

- At threshold produce only D^+D^- , no additional pions.
- Detect muon and make sure it recoiled against neutrino. • Extract signal in M^2_{miss} which peaks at 0.

MARK III and BES Results

A. Ryd, Cornell U.

CLEO-c *D*-tag Reconstruction

281 pb⁻¹
Six tag modes used

• ~160,000 reconstructed D^{\pm}

<u>ــــــــــــــــــــــــــــــــــــ</u>	a: 1	
Mode	Signal	Background
$K^+\pi^-\pi^-$	77387 ± 281	1868
$K^+\pi^-\pi^-\pi^0$	24850 ± 214	12825
$K_S\pi^-$	11162 ± 136	514
$K_S \pi^- \pi^- \pi^+$	$18176~\pm~255$	8976
$K_S\pi^-\pi^0$	20244 ± 170	5223
$K^+K^-\pi^-$	$6535~\pm~95$	1271
Sum	158354 ± 496	30677

A. Ryd, Cornell U.

Signal Side Selection

Require one track consistent with coming from the IP for the muon.
 Muon candidate deposit less than 300 MeV in EM calorimeter
 No additional track from IP

•Veto background from $D^+ \rightarrow \pi^+ \pi^0$

Require no unmatched showers over 250 MeV

Signal Extraction

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Results

•50 signal candidate events with the following backgrounds

Background	$\mathcal{B}~(\%)$	# of events
$D^+ \to \pi^+ \pi^0$	0.13 ± 0.02	$1.40 \pm 0.18 \pm 0.22$
$D^+ \to K^0 \pi^+$	2.77 ± 0.18	$0.33 \pm 0.19 \pm 0.02$
$D^+ \to \tau^+ \nu$	$2.6 \times \mathcal{B}(D^+ \to \mu^+ \nu)$	$1.08 \pm 0.15 \pm 0.16$
$D^0 \bar{D}^0, \ D^+ D^-$		< 0.4, < 0.4, 90% C.L.
$\operatorname{continuum}$		< 1.2 90% C.L.
Total		$2.81 \pm 0.30 \pm ^{+0.84}_{-0.27}$

 With 158,354 D⁺ tags and an efficiency of 67.7% for signal events to satisfy the selection criteria given a D⁺ tag we obtain:

$$Br(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4} \quad f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4}) \text{ MeV}$$

PRL 95, 251801 (2005)

•We also obtain $Br(D^+ \rightarrow e^+ v) < 2.4 \times 10^{-5}$ at 90 C.L.

Comparing with Theory

Search for $D \rightarrow \tau v_{\tau}$

281pb⁻¹ hep-ex/0604043

(accepted by PRD)

Look for $D^+ \rightarrow \tau^+ \nu$ ($\tau^+ \rightarrow \pi^+ \nu$) in events with tags selected as for $D^+ \rightarrow \mu^+ \nu$.

Sample subdivided based on energy deposit of candidate track: (a) <300 MeV and (b) >300 MeV.

MM² small due to $m_{ au}$ close to m_D

A. Ryd, Cornell U.

 $BF(D^+ \rightarrow \tau^+ \nu) < 2.1 \times 10^{-3} (90\% CL)$

SM : $BF(D^+ \rightarrow \tau^+ \nu) = (1.1 \pm 0.2) \times 10^{-3}$

 $D_{S} \rightarrow \mu v_{\mu}$

- Current best measurement from BaBar (230 fb⁻¹)
- Use D⁰, D⁺, D_s tags to get clean

e+e-→cc sample

◆Have 489±55 $D_s \rightarrow \mu v_\mu$ candidates

From P. Patteri (Babar)

(As expected from LQCD)

Scan Results: $D_s D_s$, $D_s D_s^*$, and $D_s^* D_s^*$

$D_s \rightarrow \mu v_\mu$ and $D_s \rightarrow \tau v_\tau$

- •CLEO-c has recorded ~200 pb⁻¹ at E_{cm} =4170
 - These data are being analyzed now no results today.
 - P. Onyisi has shown hadronic branching fractions for D_s
- Will use the same tag technique as for $D^+ \rightarrow \mu v_{\mu}$.
 - •The extra photon in D_s*D_s is not a significant complication.
- The cross-section for D_s is smaller than for D+D- and so is the efficiency for reconstructing a tag
 - But as this decay is not Cabibbo suppressed the signal yield (per pb⁻¹) should be at least as good as for $D^+ \rightarrow \mu v_{\mu}$.

Summary-Outlook

•CLEO-c has studied $D^+ \rightarrow \mu^+ v_\mu$ in 281 pb⁻¹

- $Br(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$
- $f_{D^+} = (222.6 \pm 16.7^{+2.8}_{-3.4}) \text{ MeV}$

Result is statistics limited

- •Plans is to record ~750 pb⁻¹ at $\psi(3770)$
 - •Will measure f_{D+} to ~4.5%
- •Have recorded ~200 pb⁻¹ at $E_{\rm cm} \approx 4170$ MeV
 - These data are now being analyzed
 - No results today
- •Plan to take ~750 pb⁻¹ at $E_{\rm cm} \approx 4170$ MeV