CMS Status Report

Anders Ryd **Cornell University** On behalf of the CMS Collaboration

Anders Rvd

2010 2011 _ive fraction (%) 🖶 Pixel - FCAL △ ES HCAL ✓ DT RPC CSC 🗢 Strips 00 000 10 20 20 20 202 20 2 Aug Sep Oct Aug g õ Jul ΰ Ó Ð

Cornell University

Dec. 7, 2011

CMS Preliminary

Dec. 7, 2011

0.7

0.1

Outline

- Detector performance when integrating from 2 to 5 fb-1
- Lessons learnt from the high mu operation
- Updates on calorimeter and tracking performance
- Many (less mundane) physics channels updates
- lessons from high beta running
- pA and AA running experience and plans
- Possibly new insights and wishes for the 2012 running of the LHC
- Plans and progress for the upgrades

The 2011 Proton Run

Anders Rvd Cornell University

Dec. 7, 2011

Page:3

Very Stable Detector Performance

Most detectors over 97% live – and stable in time

CMS Data Taking Efficiency

LHC delivered 5.72 fb⁻¹ Lost due to deadtime:176 pb⁻¹ Lost due to downtime:325 pb⁻¹

Sources of deatime:

- Trigger rules (~0.7%)
- Partition control (sub detectors ~0.5%)
- ◆HLT at start of runs (~0.5%)
- Short stops that don't count as dowtime.

Largest single source of downtime was a cooling failure affecting two fills.

SEUs affecting several subsystems (Pixel, ECAL, CSC, HCAL) has contributed to the downtume.

Anders Rvd Co

Cornell University

Dec. 7, 2011

Souces of down times

Tracking Challenges with High PU

Reconstruction Time in QCD evt

Cornell University

Anders Rvd

Reconstruction Time @ 30 PU

Improved tracking code reduces reconstruction time in high pile-up events by factor or 2

30

Keeping essentially the same performance

Event-with 40 reconstructed vertices from high PU iiii

Dec. 7, 2011

Page:6

DAQ Bandwidth Studies

- The CMS DAQ was designed to operate at 100 kHz L1 trigger rate with 25 ns bunch spacing at 1e34 Hz/cm2 with a PU of about 20.
 - With higher PU in 50 ns operation the design bandwidth guaranteed by the DAQ would be exceeded at ~4.5e33 Hz/cm^{2 -} what is the limit?
 - Using the high pileup fill with 10 colliding bunches we can trigger at up to 110 kHz and read out high PU collisions

- With a PU of >30 at the start of the fill we ran at 110 kHz L1 trigger rate – no limitation seen by the DAQ bandwidth.
- Without modifications to the readout we can operate at 7e33 Hz/cm² with 50 ns bunch spacing.

Anders Ryd Cornell University

Progress in ECAL calibration

Single electron energy scale (E/p) stability in the

ECAL barrel measured using W \rightarrow ev events

Stable energy scale throughout 2011 run after applying laser corrections:

- Barrel: average loss ~ 2.5%, RMS stability after corrections 0.14%
- Endcap: average loss ~ 10%, RMS stability after corrections 0.5%

Good energy resolution with preliminary energy calibration for 2011:

Invariant mass resolution on $Z \rightarrow e+e$ - events: 1.0 GeV in ECAL Barrel (**)

(*) The plot includes only electrons with limited radiation in the CMS tracker (**) Width of Crystal Ball function convoluted to the $Z \rightarrow ee$ Breit-Wigner shape

JET Calibration at High Pile-Up

Cornell University

Anders Rvd

Also the jet composition is very well simulated

Physics Updates

 At the last LHCC on Sept. 21 Darin Acosta gave a detailed overview of many analysis

In the next few slides some updates on recent results are given

Single Top+W

 $\sigma(tW) = 21^{+9}_{-7} \text{ pb}$ Consistent with the SM with a significance of 2.7 σ

Anders Ryd Cornell University

Top Pair Cross-Section

New result for HCP 2011

8% precision – systematics limited

Start to be sensitive to different NNLO approximations

systematic source	single lepton	ee	$\mu\mu$	$e\mu$	$\mu\tau$	hadronic
JES	poly	1.9	1.7	1.9	4.4	14.3
b-tag (single)	poly					
b-tag (hadronic)						15.7
b -tag $(\mu \tau)$					5.5	
b-tag (dilepton)		5.0	5.0	5.0		
Pileup	2.6	5.0	5.0	5.0	3.1	0.6
$t\bar{t} Q^2$	2.8	2.4	2.4	1.8	2.0	10.3
luminosity	4.5	4.5	4.5	4.5	6.0	6.0
Lepton efficiency (single)	3.4					
Lepton efficiency $(\mu \tau)$					2.1	
Lepton efficiency (dilepton)		3.0	1.6	2.3		
W leptonic branching ratio		1.7	1.7	1.7	1.7	
Top quark mass		2.6	2.6	1.5	1.6	5.3
JetMet model		3.2	3.2	0.4	1.0	
ME-PS matching	2.0				1.0	5.2
W +jets Q^2 (single)	poly					
PDF (single)	3.4					
Lepton model (dilepton)		4.0	4.0	4.0		
Decay model (dilepton)		2.0	2.0	2.0		
fake rate $(\mu \tau)$					13.0	
τ jet mis-ID $(\mu \tau)$					7.3	
tau and hadron decay model $(\mu \tau)$					2.0	
MC bkgd $(\mu \tau)$					1.6	
MC tune (hadronic)						8.1
trigger (hadronic)						4.5
bkgd (hadronic)						12.2

Anders Rvd

Cornell University

Top Mass From Cross-Section

SUSY - Razor

 $M_{\rm R}$ – Estimate of the heavy particle scale R^2 – Related to the event MET

Perform fits to the M_R vs R^2 distributions Powerful search based on kinematics

Anders Rvd

Cornell University

Dec. 7, 2011

Page: 14

Jet-Z Balance: Jets+Z+MET

 $JZB = \left| \sum_{iets} \vec{p}_T^{jet} \right| - \left| \vec{p}_T^z \right|$

Method allows a very robust prediction for Z+jets background.

Page: 15

Multilepton SUSY Searches

Anders Rvd

Cornell University

SUSY Summary: CMSSM

Many different search strategies

Simplified Models

CMS Preliminary

The dark blue range corresponds to a range of neutralino masses down to 200 GeV below the gluino mass.

SUSY: MET + jets + b-tags

Page: 19

Longlived Particle Decays to Photon+MET

Reconstruct photon conversion to deterimine impact parameter of photon

Anders Ryd Cornell University

Summary of CMS Exotica Searches

CMS-ATLAS Combined Higgs

Updates to the Higgs searches with more data on Dec. 13

Anders Ryd Cornell University

Pb-Pb Data Taking in 2011

CMS was reconfigured for Pb-Pb data taking in the last Technical Stop
Non-zero suppressed readout of the strip tracker
New trigger/HLT configuration
Running with ~2.5 kHz L1 rate has been very smooth
Recorded a factor of 15 more data in 2011 than in 2010

Anders Rvd Cornell University

Pb-Pb from the Most Complicated...

...to the Simplest Final States at the LHC: J/Ψ in an Ultra-Peripheral Event

Only two tracks in the event (the two muons), virtually no energy in the Calorimeters, and classified in the 2.5% most peripheral collision bin for heavy ions

Gains in Statistics

The higher statistics in 2011 allows probing higher energies

Page:26

Gamma-jet Event centrality bin 30-40%

Anders Rvd

Cornell University

Dimuons in Pb-Pb Collisions

28

Anders Ryd Cornell University

 $Z \rightarrow e^+e^-$

Cornell University

Dec. 7, 2011

29

The 2012 Proton Run

- CMS strongly supports 4 TeV in 2012 enhances discovery portential:
 - Overhead in machine commissioning small
 - •Higher luminosity (allows smaller β^*)
 - Larger cross-section (gluon-gluon luminosity)
 - MC tuning and production not an issue
- •We want the largest usable luminosity possible:
 - Detector and readout OK for both 25 and 50 ns
 - Challenges with physics and trigger for high PU (50 ns)
 - · These effects are now being quantified

Anders Rvd

CMS Upgrade Scope

CSC Factory

Winding

Anders Ryd Cornell University

New Pixel Detector

It will have the following features

Anders Ryd

- 4 barrel and 3 endcap layers (current has 3 barrel 2 ec)
 - Barrel Inner layer closer to the beam
- Less material in the tracking volume!
- Capable of handling more hits (Required for luminosity beyond 1 x 10^34)

	Layer #	Radius	# of faces	
	4	160	64	
CONTRACTOR CONTRACTOR	3	109	44	
	2	68	28	
YEAR AL	1	30	12	
		or		
	1*	39	16	
100 bar pressure tested Tubes, 50μ wall thickness	Baseline: 45 mm Ø beampipe 30 mm radius L1 tight installation tolerances → adjustable wheels 1* = backup solution for old beampipe			
Andere Dud Correll Linivet			W. Erdmann	

Tracking Trigger Simulations

Need to build candidate layouts to study how much information is needed from the tracker to get reliable trigger information as well as keeping the tracking performance

Long Barrel (LB) Simulation

- Stack separation: 1mm
- Pixel size: 1mm (z) x 100um (phi)
- Module area: ~100 cm²
- Available alternative: swap SuperLayer 2 and 3 (not covered in this talk)
- Sim hits → digi hits → clusters → stubs

J. Nash - CMS Upgrades Dec 2011 CMS Week

Page:34

Anders Rvd

34

Cornell University

Conclusions

The 2011 run has been a great success:
We thank LHC for the excellent performance!
The CMS detector performance has been outstanding
Many physics results on 1 to 2 fb⁻¹ of data ready
Ion run was also very successful
LHC has provided test fills with high PU and 25 ns has
Detectors+DAQ OK for both conditions

- Trigger and Physics more challenging with PU of around 30
 - We are still working on quantifying the effects of high PU on trigger and physics
- For the 2012 run CMS wishes are:
 - Running at 4 TeV beam energy from the start
 - · MC tuning and production for 4 TeV is not an issue for us
 - Record the largest possible data sample before the long shutdown
- Upgrades for the long shutdown progressing well