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This paper reports a measurement of the cross section for the pair production of top quarks in
pp collisions at /s = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF
Run II detector in a set of runs with a total integrated luminosity of 1.1 fb~!. The cross section is
measured in the dilepton channel, the subset of ¢ events in which both top quarks decay through
t — Wb — lvb, where { = e, u, or 7. The lepton pair is reconstructed as one identified electron or
muon and one isolated track. The use of an isolated track to identify the second lepton increases
the tt acceptance, particularly for the case in which one W decays as W — 7v. The purity of
the sample may be further improved at the cost of a reduction in the number of signal events, by
requiring an identified b-jet. We present the results of measurements performed with and without
the request of an identified b-jet. The former is the first published CDF result for which a b-jet
requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track
candidate events, of which 69 are tagged. With the tagging information, the sample is divided
into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a
likelihood. The result is o,z = 9.6 & 1.2(stat.) 5% (sys.) £ 0.6(lum.) pb, assuming a branching ratio
of BR(W — fv) = 10.8 % and a top mass of m; = 175 GeV/c?.



PACS numbers: 14.65.Ha,13.85.Qk

I. INTRODUCTION

Top quark data collected at the Tevatron have been
an active testing ground for the validity of the standard
model since the discovery of the top quark in 1995 during
Run I [1,2]. The definitive observation at both the CDF
and D@ experiments used data where one or both W's
from the top decays t — W*bh and £ — Wb decay in
turn to a charged lepton and neutrino.

This paper focuses on the dilepton channel, in which
both W’s decay to leptons. The final state contains two
isolated charged leptons with large momentum in the di-
rection transverse to the beamline (pr). The two neu-
trinos also carry large transverse momentum but escape
the detector without interacting. Their presence can
be inferred by an imbalance in the total reconstructed
transverse momentum in the detector, referred to as
the missing transverse energy (r) because it is recon-
structed from calorimeter information. Only the momen-
tum transverse to the beam can be used for this because
in hadron collisions, the total longitudinal momentum of
the system is not known in any one collision, and large
longitudinal momentum may also be carried by very for-
ward prongs which escape detection. Combined with the
jets produced by the hadronization of the b quarks, the
distinctive signature of the charged and neutral leptons
allows the # signature to be distinguished from the back-
ground.

The top quark is unique because of its large mass
(my = 173.1 £ 0.6 (stat.) £ 1.1 (sys.) GeV/c? [3]), which
distinguishes it from the other fermions of the standard
model and is more akin to the masses of the weak force
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carriers (W and Z) and the expected mass range for the
proposed Higgs boson [4]. In Run IT of the Tevatron, at
center-of-mass energy of 1.96 TeV, the CDF detector has
collected well over ten times the amount of integrated lu-
minosity obtained in Run I. Using these data, the study
of the top quark sector continues, motivated by a desire
to better understand this unique corner of the standard
model and to test for physics beyond what the model is
able to describe.

Precise measurements of the cross section are of funda-
mental interest because the top quark is one of the most
recent additions to the array of particles that can be pro-
duced in the laboratory. The standard model predicts
the production of top quark-antiquark pairs through the
strong interaction. The leading order Feynman diagrams
are shown in Fig. [l Approximately 85% of tt pairs at
the Tevatron are produced through quark-antiquark an-
nihilation, and the remaining 15% through gluon-gluon
fusion [3]. Because of the interaction scale involved, the
cross section can be calculated using perturbative QCD
techniques. The pair production cross section has been
calculated at next-to-leading order (NLO), with the re-
summation of the leading logarithmic corrections due
to the radiation of soft gluons completed to next-to-
leading logarithmic (NLL) order |6, [7]. These resumma-
tions do not change the calculated cross section by more
than a few percent, but improve the stability of the re-
sult with respect to the normalization and factorization
scales [3]. Recent updates to the cross section calcula-
tion [8,19, 10] include newer parton distribution functions
(PDFs) sets, with reduced associated uncertainties, and
incorporate calculations of next-to-next-to-leading order
(NNLO) terms. The predicted cross sections cited here
have an accuracy of better than 10%. As the accuracy of
measurements improves to a comparable level, meaning-
ful comparison with the theoretical prediction becomes
possible.

The measurements in this paper were completed using
a reference cross section of 6.7Jj8:g pb, calculated for a
top quark mass of m; = 175 GeV/c? |5]. The newer cal-
culations give similar answers with reduced uncertainties.
For example, the similar calculation from Ref. [§] gives
6.670:2 (scale) T3 (PDF) pb. Most numbers in this pa-
per which depend on the theoretical calculation of the t
production cross section are quoted using the original ref-
erence cross section, but in the Results section (Sec. [X])
we will compare the measured cross sections to the most

recent predictions.

Significant deviation of the measured cross section
from the predicted value could indicate the presence of
new particles or interactions. Top quark pair produc-
tion cross section measurements can be sensitive to new
physics through the production of a new particle or par-
ticles which then decay to top quarks. Examples of this
include a new heavy top quark of the type predicted by
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FIG. 1: Leading order diagrams for top quark pair production at the Tevatron.

“little Higgs” theories [11], which decays to a top quark
and a stable, heavy analog to the photon, which escapes
the detector, adding extra £ to the final state. The re-
sulting signature is similar to top quark decay and would
enhance the measured cross section. The production of
tt pairs through a resonance would also raise the total
cross section 12,113, 14], although current limits on reso-
nance production in the ## channel make it unlikely that
it would be possible to distinguish the effects of a reso-
nance on the cross section at the Tevatron [15, [16, [17].

The cross section could also be affected by a process
with a final state sufficiently similar to the #f signature
to pass the event selection. The decay of supersymmetric
particles is expected to produce multilepton, multijet sig-
natures with significant missing transverse energy from
the lightest supersymmetric particles escaping the detec-
tor [18,119].

Finally, even in the absence of evidence of new physics
at the Tevatron, a solid understanding of the top quark
sector and the composition of the multilepton + multi-
jet + Er sample will be a prerequisite to the discovery
and understanding of new physics processes that may ap-
pear at the higher energies accessible at the CERN Large
Hadron Collider (LHC). This is particularly important
because of the approximately hundredfold increase in the

tt production cross section at the 14 TeV center-of-mass
energy at the LHC relative to the Tevatron [8]. For ex-
ample, the possibility of catching the decay signatures
of supersymmetric partner particles with event selection
designed for top quark pairs implies the converse, that
top quark production will be an important background
in searches for supersymmetry. Searches for new physics
with top quarks in the final state, motivated by models
like those referenced above which have a heavy top part-
ner or resonance, will also rely on thorough understand-
ing of the top signature and associated backgrounds.

In this paper, we measure the tf production cross sec-
tion in the dilepton channel. The final state contains
two isolated charged leptons with large transverse mo-
mentum, missing transverse energy from the undetected
neutrinos, and two jets from the hadronization of the b
quarks (b-jets). One or more additional jets may also be
present, having been produced by initial or final state
QCD radiation.

The dilepton channel, because of the dual leptonic
W decays, has a smaller branching ratio, about 1/9 if
all 7 decays are included, than the channels where one
or both W’s decay to quarks, which are referred to as
the “lepton + jets” and “all-hadronic” channels, respec-
tively. The dilepton channel has the compensating ad-



vantage of a good (1:1 or better) signal to background
ratio even without the identification of jets as possible
b decay products (“tagging”), because so few standard
model processes produce two high-pr leptons and Er.
Production of events with a W and jets (W + jets) is
a background for the dilepton channel, just as it is for
the lepton + jets channel, but it does not overwhelm the
tt signal in spite of its large cross section, because one
of the jets must pass the lepton selection used in this
analysis. Such a misreconstructed jet is referred to a
“fake” lepton. The dilepton channel also does not suffer
from the same large QCD multijet background as does
the all-hadronic channel, for similar reasons. The back-
ground from Drell-Yan (pp — Z/v* + X — 04 + X)|[63]
is reduced by the requirement of multiple jets and EFr.
We also apply several criteria designed specifically to veto
Drell-Yan events, including an increased Ep threshold
when the lepton pair has a reconstructed invariant mass
close to the Z resonance. Finally, those events which
may produce both real leptons and Er, such as WW,
are manageable backgrounds because their cross section
times branching ratio is comparable to or smaller than
that for dilepton tf events after the requirement of two
or more jets.

We report on two measurements of the ## cross sec-
tion using the dilepton final state, with and without b-jet
identification, using data collected between March 2002
and February 2006, corresponding to approximately 1.1
fb~! of integrated luminosity, using the upgraded Col-
lider Detector at Fermilab (CDF II). These are updates
of the previously published result in which one of lep-
tons is reconstructed simply as an isolated track, while
the other must be identified as an electron or muon of
opposite sign |20]. The previous version did not use b-
jet identification. The isolated track selection increases
the acceptance by including most decay channels of 7
leptons, thereby increasing the accessible branching frac-
tion. It also recovers acceptance for electrons or muons
that are not within the fiducial region of the calorimetry
or muon detectors. We will refer to the selection criteria
we use (excluding the b-jet identification), and the corre-
sponding sample selected from the data, using the name
“lepton + track”.

The previous CDF publication used Run II data cor-
responding to an integrated luminosity of 200 pb~!.
It included a cross section measurement in the
lepton 4+ track channel and a similar measure-
ment where both leptons were fully reconstructed
as electrons or muons. The combined result was
7.072:1 (stat.) 1 (sys.) +£0.4 (lum.) pb [20]. The DO
collaboration has also published a measurement in the
dilepton channel using Run II data with an integrated
luminosity of about 425 pb~!. It includes measure-
ments where both leptons were fully reconstructed as
well as a measurement employing lepton + track and
b-jet tagging selection similar to that used in this anal-
ysis. Combining the individual measurements, they find
7.4+ 1.4 (stat.) +£0.9 (sys.) £0.5 (lum.) pb [21].

This measurement is a substantial update of the anal-
ysis in the previous CDF publication. It uses more than
five times the amount of integrated luminosity. The cal-
culated backgrounds and associated systematic uncer-
tainties reflect an improved understanding of the back-
ground composition in the lepton + track sample, with
the overall systematic uncertainty decreasing from about
1.4 pb to about 0.55 pb, i.e., from about 20% to 6% rela-
tive to the measured values of the cross section. We also
perform the cross section measurement using the same
event selection, but with the added requirement that at
least one jet in the event is b-tagged. This significantly
suppresses some otherwise irreducible backgrounds, in-
creasing the purity of the candidate sample. The esti-
mated signal to background ratio, using the theoretical
cross section of 6.7 pb, is about 6:1 in the b-tagged sam-
ple, to be compared to about 1:1 in the pretag sample.
Finally, we divide the pretag sample into its tagged and
untagged components, in order to combine the results
into a single cross section result with smaller uncertain-
ties than the individual measurements.

CDF and D@ have also measured the cross section
in other ## decay modes. In the lepton + jets mode,
CDF has used two different methods to identify b-jets.
One is based on the probability that a large number of
tracks within a jet miss the primary vertex, and finds
o = 8.9 ﬂ:g (stat.) ﬂ:(l) (sys.) pb in a data sample
with an integrated luminosity of 320 pb~! [22]. The
second measurement uses the same sample, but identifies
b jets via a reconstructed secondary vertex significantly
displaced from the beamline, using the same algorithm
as is used in this paper, resulting in a cross section of
8.7 + 0.9 (stat.) T35 (sys.) pb [23]. The D® collabo-
ration also has two recent results in the lepton + jets
channel, both using a data sample with an integrated
luminosity of 0.9 fb~!. The first is a combined result
from an analysis requiring a b-tagged jet and an analysis
using a kinematic likelihood discriminant, with a result of
o = 7.4 + 0.5 (stat.) = 0.5 (sys.) = 0.5 (lum.) pb [24].
The second is a simultaneous fit to the cross
section and the relative branching ratio B(t —
Wb)/B(t — Wyg), where the ¢ represents any
down-type quark, resulting in a measured cross
section of 8.2 109 (stat.4sys.) + 0.5 (lum.) pb [23].
In the all-hadronic channel, both CDF and DO
base their measurements on events with six or
more jets, at least one of which is b-tagged. The
CDF collaboration applies a neural-net-based dis-
criminant before counting tags, and measures
o = 8.3 £ 1.0 (stat.) T2 (sys.) £ 0.5 (lum.) pb  in
data with an integrated luminosity of 1.0 fb~! [26]. The
DO collaboration also uses a neural-net discriminant and
measures 4.5 735 (stat.) 717 (sys.) + 0.3 (lum.) pb
with 0.4 fb=1 [27]. All these measurements are quoted
at the reference mass of m; =175 GeV/c?, and the
uncertainty on the integrated luminosity is included in
the systematic uncertainty if it is not written separately.

The cross section is determined by the number of can-



didate events Nops, the integrated luminosity f Zdt, the
acceptance times efficiency for ¢t events Ae, and the cal-
culated number of background events Nyk,. The accep-
tance A is defined as the fraction of tt signal events pass-
ing the event selection, and includes the branching ratio
of the W boson to a lepton pair of a particular flavor, for
which we use the the measured value, 0.1080 %+ 0.0009 [4].
We calculate the cross sections by maximizing the like-
lihood of obtaining the observed number of candidate
events given the number predicted as a function of the ¢
cross section, o,7. The number predicted, Npreq, is the
sum of the signal and background contributions:

Npred = Ut{Ae/fdt + kag. (1)

The uncertainties are taken from the cross section points
where the logarithm of the likelihood decreases by 0.5,
and systematic uncertainties are included as nuisance
parameters obeying Gaussian probability distributions.
The central value from the likelihood maximization is
equal to the one obtained from the familiar formula

oy = Non = Dtk @

e [Zdt
We choose to use a likelihood because it yields statis-
tical uncertainties correctly reflecting the fact that the
number of candidates follows a Poisson probability dis-
tribution, and allows extraction of a single cross section
from multiple data samples.

The paper is structured as follows: First, we briefly de-
scribe relevant features of the CDF II detector (Section
[). We give details of the observed and simulated data
samples in Section [IIl The event selection is described
in Section [[V], and the acceptance for that selection, in-
cluding corrections, is described in Section[Vl In Section
VI we discuss the algorithm to tag jets from b quarks
and calculate the efficiency for tagging lepton + track ¢t
events. The background estimation methods for the pre-
tag and tagged samples are described in Sections[VII and
[VIIT, respectively. The resulting cross section measure-
ments, including the combination method and combined
result, are presented in Section [X1

II. THE CDF II DETECTOR

The CDF II detector is described in detail else-
where [28]; we summarize here the components relevant
to our measurements. We use a cylindrical coordinate
system where 6 is the polar angle defined with respect
to the proton beam, ¢ is the azimuthal angle about the
beam axis measured relative to the plane of the accelera-
tor, and the pseudorapidity, 0, is defined as — Intan(6/2).
Transverse energy is defined as Er = F'sinf, and trans-
verse momentum (pr) is defined similarly.

The interaction region of the detector has a Gaussian
width of o, = 29 e¢m. The circular transverse cross sec-

tion width is approximately 30 pm at z = 0 cm, rising to
50 pm at z = 40 cm.

A. Tracking

The charged particle tracking system of the CDF de-
tector is contained in a solenoid magnet that produces
a 1.4 T field coaxial with the beams, and measures
the curvature of particle tracks in the transverse plane.
The innermost device employs silicon microstrip sensors,
and is composed of three sub-detectors. A single-sided
layer of silicon sensors (L00) is installed directly onto
the beryllium vacuum beam pipe, at an average radius
of 1.5 cm [29]. Tt is followed by five concentric layers
of double-sided silicon sensors (SVXII), located at radii
between 2.5 and 10.6 cm [30]. The intermediate silicon
layers (ISL) consist of one double-sided layer at a radius
of 22 cm in the central region and two double-sided lay-
ers at radii of 20 and 28 c¢m in the forward regions [31].
Typical strip pitch in the silicon sensors is 55 - 65 um
for axial strips, 60 - 75 um for small-angle stereo strips
(1.2°), and 125 - 145 pm for 90° stereo strips. The axial-
position resolution of the SVXII sensors is about 12 pm.
For the ISL sensors, it is about 16 pum.

Surrounding the silicon sensors is the central outer
tracker (COT), a 3.1 m long open-cell cylindrical drift
chamber covering radii from 40 to 137 cm [32]. The COT
has 96 measurement layers arrayed in eight alternating
axial and 2° stereo superlayers of 12 wires each. The
COT provides coverage for |n| < 1, and the fiducial re-
gion of the SVXII-ISL system extends out to || ~ 2. The
resolution of the combined tracker for tracks with = 90°
is o(pr)/p% = 0.15 %/GeV.

B. Calorimetry

Outside of the tracking systems and the solenoid coil
are the electromagnetic and hadronic calorimeters which
measure the energy of particles that interact electromag-
netically or hadronically, respectively. The central elec-
tromagnetic calorimeter (CEM) is a lead-scintillator sam-
pling calorimeter which covers the range |n| < 1.1. The
CEM has an energy resolution of 13.5%/+/Er for elec-
trons and photons [33]. The electromagnetic calorimeter
in the forward regions (the “plug”) is of similar design,
covers the region 1.2 < |n| < 3.6, and has an energy res-
olution of (16%/v/Er) & 1% [34].

Crucial to electron and photon identification are the
shower maximum detectors, placed at a depth of about
six radiation lengths in the electromagnetic calorime-
ter. The shower maximum detectors allow detailed mea-
surement, in the plane approximately transverse to the
incident particle direction, of the shower shape at the
expected peak of its development. The precision two-
dimensional position measurements are made by orthog-
onal wire proportional chambers and resistive strips in



the central calorimeter, and stereo layers of scintillator
in the plug calorimeter [35, 136].

The hadronic calorimeter is an iron-scintillator sam-
pling calorimeter, and is between 4.5 and 7 interaction
lengths deep, depending on the pseudorapidity. It sur-
rounds the electromagnetic calorimeter and is divided
into three sections: the central section covers |n| < 0.8,
the forward (plug) section covers 1.2 < |n| < 3.6, and the
“wall” section covers the intermediate range.

The entire calorimetry system covers the pseudorapid-
ity range |n| < 3.6. All calorimeters are segmented into
projective towers which point at the nominal center of
the interaction region.

C. Muon Detectors

In the pseudorapidity range |n| < 0.6, two sets of pla-
nar drift chambers are used to identify muons. The inner
layer (the CMU, for “Central Muon”) is located just out-
side of the central hadron calorimeter towers. The outer
layer (the CMP, for “Central Muon Upgrade”) is also
instrumented with scintillation counters for trigger and
timing information. The CMP has a square profile and
lies outside the CMU, behind an additional 60 cm of iron
shielding. Muons in the region 0.6 < |n| < 1.0 are de-
tected with the Central Muon Extension (CMX), a layer
of drift chambers between layers of scintillator counters.
The geometry of the CMX is that of a pair of truncated
cones, opening from the interaction point at the center
of the detector. The CDF muon system is described in
more detail in Refs. [37] and [38]. By convention, muons
are named according to the muon detector in which they
are reconstructed. A CMUP muon has a track segment
(“stub”) in both the CMU and CMP detectors.

D. Online Event Selection (Trigger)

The 2.5 MHz nominal bunch crossing-rate of the Teva-
tron far exceeds the rate at which data can be writ-
ten to permanent storage (75 Hz). CDF uses a three-
level trigger system to select a subset of the events to
record [39, 40]. Each successive level of processing re-
duces the event rate and refines the criteria used for event
selection.

The first level, is implemented entirely through cus-
tom hardware. It uses information from the calorime-
ter, the axial layers of the COT, and the muon detec-
tors to quickly reconstruct simple objects. Tracks are
built from COT axial hits using a predefined set of pat-
terns, and electron and muon candidates are built from
tracks matched to energetic towers in the electromagnetic
calorimeter and hit segments in the muon detectors, re-
spectively.

Level 1 accepts events and passes them to the next level
of processing, level 2, at a rate of up to 50 kHz. Level

2, also built of custom hardware, performs further recon-
struction. In particular, clustering of calorimeter towers
is performed, for photon, electron, and jet identification.

Events satisfying level 2 criteria are passed to level
3, where they are directed to one of about 300 dual-
processor Linux computers. Level 3 applies the full event
reconstruction, using the same software that is used for
offline analysis, including the application of preliminary
calibration constants. This allows more stringent event
selection to be made, improving background rejection
while maintaining efficiency for signal. Selected events
are written to tape for offline analysis.

E. Luminosity Determination

Luminosity is measured at CDF by a pair of coni-
cal Cerenkov detectors surrounding the beam pipe, at
3.7 < |n| < 4.7, on each side of the interaction region.
Each detector contains 48 smaller mylar cones filled with
isobutane at about 1.5 atmospheres of pressure. Photo-
multiplier tubes at the large ends of the mylar cones col-
lect Cerenkov light produced by particles emerging from
inelastic pp scattering. The mean number of interactions
per beam crossing is inferred from the number of inter-
actions in which no particles are observed in either of the
detectors (the “zero-counting method”). The instanta-
neous luminosity is calculated from the mean number of
interactions, the total inelastic pp cross section, and the
bunch crossing rate. The uncertainties on the luminosity
are from the understanding of the acceptance for the de-
tectors as well as the 4% uncertainty on the value of the
total pp cross section. The combined uncertainty of 6%
contributes to the total uncertainty on the cross section.

III. COLLISION DATA AND MONTE CARLO
SAMPLES

We measure the tt cross section in the subset of the pp
collision data which appear to have at least one high-pr
lepton, as determined by the trigger system. To quantify
the signal acceptance, we use a sample of £ events which
have been simulated using Monte Carlo algorithms. Nu-
merous other observed and simulated data samples are
needed to refine the estimated acceptance and estimate
the background in the lepton + track sample. In this
section we describe the various samples used in this mea-
surement.

A. Data Quality Requirements

Because the lepton + track event selection relies on
many detector subsystems for the reconstruction of elec-
trons, muons, tracks, jets, and Er, as well as the mea-
surement of the luminosity, we use only the CDF data
in which all of the relevant parts of the detector — the



calorimetry, tracking, shower maximum, muon, and lumi-
nosity detectors — are fully operational. For the measure-
ment requiring a b-tag, we also require the silicon track-
ing detector to be functioning because high-precision po-
sition measurements are necessary for the reconstruction
of a displaced secondary vertex. The integrated lumi-
nosity of the data sample including information from the
silicon detector is 1000 4 60 pb~!. For the pretag mea-
surement, we include an additional 70 pb~! which has
no silicon information but which is otherwise acceptable.
For these data, PHX (forward) electrons cannot be recon-
structed and some tracking requirements are changed, as
will be specified in Section [Vl

B. Data Samples

We select lepton + track tt candidates from events
passing the high-pr lepton triggers. There are high-pr
central and forward electron triggers, as well as triggers
for both the CMUP and CMX regions of the muon detec-
tors. The central electron trigger selects events contain-
ing a cluster with transverse energy greater than 18 GeV
in the central electromagnetic calorimeter and a matched
track with pr > 9 GeV/c. Track matching is not avail-
able online for forward electrons. To reduce the back-
ground trigger rate from jets, the electron candidate Er
threshold is raised to 20 GeV, and the events are re-
quired to have at least 15 GeV of Fpr. These require-
ments maintain efficiency for selecting electrons from W
decays, where the mean neutrino pr is above 20 GeV/c.
Both electron triggers require the ratio of the energy in
the hadronic calorimeter to the energy in the electromag-
netic calorimeter to be less than 0.125 in order to reject
hadronic jets. There are separate triggers for CMUP and
CMX muons. Each requires a track with pr > 20 GeV /¢
to be matched with a muon track segment (“stub”) in
the relevant detector(s).

Most of the data samples used in this measurement
are derived from the set of events passing the high-pr
lepton triggers. This includes the Z events used to study
lepton identification and the modeling of jet production
by QCD radiation, as well as the W + jets sample used in
the calculation of the background from events with a fake
lepton and the Z + jets sample used in the calculation
of the background from Z/~4* — ee/up + jets events.

To estimate the background from events with a fake
lepton, we need a sample with a large number of jets. We
use the events passing a photon trigger with a transverse
energy threshold of 25 GeV.

C. Monte Carlo Samples

To calculate the acceptance of the lepton + track se-
lection for the tf signal, we apply the event selection to
a sample of simulated ¢t events generated using PYTHIA
version 6.216 |41] for event generation and parton show-

ering. The leptonic branching fraction for the W boson
is set to the measured value of 0.1080 + 0.0009 [4]. For
the central value of the cross section, we use a sample
generated with a top mass of m; = 175 GeV/c?. Identi-
cal samples generated at other values of the top quark
mass are used to recalculate the cross section at those
mass points. We also use a sample of ¢ events generated
using HERWIG version 6.510 [42] to check the dependence
of the calculated acceptance on the event generator.

To estimate the contribution of backgrounds to the lep-
ton + track sample, we use other Monte Carlo samples,
which will be described in the relevant sections. Most
of them are generated using PYTHIA, in the same ver-
sion as the signal. For some studies, we use a W + jets
sample with matrix elements calculated by ALPGEN ver-
sion 2.10” [43] and PYTHIA used for parton showering.

In the Monte Carlo samples in this paper, we use the
CTEQSL parton distribution functions to model the mo-
mentum distribution of the initial state partons |44]. The
interactions of particles with the detector are modeled
using GEANT version 3 [45], using the GFLASH param-
eterization |46] for showers in the calorimeter. Details
on the implementation and tuning of the CDF detector
simulation may be found in Ref. [47].

IV. LEPTON +4+ TRACK EVENT SELECTION

The lepton + track sample is drawn from the set of
events with one or more fully reconstructed electron or
muon candidates and at least one isolated track which
is distinct from the first lepton and has the opposite
sign. We also require candidate events to have significant
missing transverse energy (£7), a key discriminant be-
tween the tf signal and backgrounds, particularly Drell-
Yan events where the final state leptons are electrons or
muons. The K7 in such events is generally the result of
mismeasurement of the energies of leptons or jets and
the resulting distribution falls off rapidly with increasing
Fr. For this reason, we make a series of corrections to the
Fr and place restrictions on the final-state kinematics to
reduce residual contributions from such events.

The requirement that the isolated track has the op-
posite charge of the fully reconstructed lepton candidate
reduces the contribution from events where, due to a fluc-
tuation of fragmentation and hadronization, a jet has
reproduced the signature of a lepton candidate. This re-
quirement is nearly 100% efficient for the signal and all
other backgrounds, but only 61% efficient for the back-
ground from events with jets producing a lepton-like sig-
nature.

Finally, we require events to have two or more jets.
The tt signal contains two b jets at leading order, while
the cross sections of the backgrounds are significantly
reduced by requiring two or more jets in the final state.



A. Electron Selection

The electron and muon identification criteria used
in this analysis are very similar to those described in
Ref. [28]. Electron selection is based on a reconstructed
track, energy deposition in the electromagnetic calorime-
ter, and the quality of the match between the track and
the energy signature in the calorimeter. This analysis
uses two classes of electrons. Central (“CEM?”) electrons,
in the range |n| S 1.1, have tracks in the central tracker
and deposit their energy in the central electromagnetic
calorimeter. Forward (“PHX”) electrons are identified
in the range 1.2 < || < 2.0, and deposit their energy
in the plug electromagnetic calorimeter. Forward elec-
trons have tracks that use information from the silicon
tracker, and derive their abbreviated name “PHX” from
“Phoenix”, the name of the tracking algorithm [48].

1. Calorimeter Requirements

First, the calorimeter cluster of the electron must have
Er > 20 GeV, calculated after the electron energy has
been corrected for calorimeter nonuniformities and the
absolute energy scale. The cluster must also be isolated,
in the sense that the total energy in the towers in a cone
surrounding the tower containing the candidate electron
shower is required to be less than 10% of the candidate
electron energy. The cone is defined to include objects
within AR = \/An? + Ap? < 0.4 around the candidate,
but the towers in the electron cluster are excluded. The
distribution of energy between the towers in the clus-
ter and the shape of the shower in the shower maximum
detector are required to be consistent with expectation
as determined, for instance, in test beam and studies of
electrons from W and Z decays. Finally, the amount of
energy deposited in the hadronic part of the calorimeter
must be significantly less than the amount deposited in
the electromagnetic part. For central electrons, we re-
quire that the energy in the hadronic calorimeter be less
than 5.5% of the energy in the electromagnetic calorime-
ter, with a small energy-dependent correction to allow
for the fact that showers from more energetic electrons
extend farther into the hadronic calorimeter. For plug
electrons, we require that the energy in the hadronic
calorimeter be less than 5% of the energy in the elec-
tromagnetic calorimeter.

2. Track Reconstruction and Requirements

Central electron candidate tracks are three-
dimensional helices reconstructed from COT hit
information. If there are silicon hits in the path of

the track through the silicon tracking system, the hits
are added and the track is refitted. This makes the
measurement of track parameters more precise, but we
do not require silicon hits, to maintain efficiency and
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allow use of data where the silicon tracking detector was
not in use. Candidate tracks must have at least three
axial and two stereo segments in the COT, where each
segment is a set of at least five of twelve possible hits
contained in a single superlayer.

Forward electron candidate tracks are reconstructed in
the silicon tracker. The track reconstruction algorithm
builds seed track helices from plug calorimeter informa-
tion, taking a point from the shower maximum cluster
centroid and another from the interaction vertex. The
curvature is estimated by equating the momentum to the
energy in the calorimeter. This yields two track hypothe-
ses, one for each choice of sign. A road-based search algo-
rithm attempts to attach silicon hits to each of the track
hypotheses, and helices with attached hits are refit for a
more precise measurement of the track parameters. The
track fit is considered successful if three or more silicon
hits are attached and the fit has a x2 per degree of free-
dom less than 10. If there are multiple tracks found for
an electron candidate, the one with the best fit quality,
as measured using the x? per degree of freedom, is taken.
For both central and plug electron candidates, we require
the track to originate from a point along the beam line
that is less than 60 cm from the nominal center of the
detector (]zo] < 60 cm).

3. Conversion veto

Central electrons may be flagged as having originated
from a photon conversion if there is a second track near
to the electron track with opposite sign. We do not use
central electrons which have been flagged as conversions.
There is no explicit conversion veto for forward electrons,
but the silicon tracking algorithm suppresses tracks from
conversions. The algorithm creates a track hypothesis
assuming that the electron track is prompt and has mo-
mentum equal to the energy in the calorimeter, but these
assumptions are wrong for most conversion electrons. Sil-
icon hits from conversion electron tracks will not gener-
ally be close enough to the track hypothesis to be at-
tached, and the track finding fails.

B. Muons

Muon candidates are defined as a track in the COT
with pr > 20 GeV/c matched to a track segment in one
or more of the muon drift chambers. We require either a
stub in both the CMU and CMP detectors, or a stub in
the CMX detector, and refer to the resulting muon candi-
dates as CMUP or CMX muons, respectively. Requiring
muon signatures in both the CMU and CMP detectors
reduces the probability of reconstructing a muon from
a hadron that reaches the CMU as a result of a par-
ticle shower that is not fully contained in the hadronic
calorimeter.



1. Calorimeter Signature

The energy deposited in the region of the calorime-
ter intersected by the candidate muon track is required
to be consistent with the expectation for a minimum-
ionizing particle. Specifically, there must be no more
than 2 GeV in the electromagnetic calorimeter and 6 GeV
in the hadronic calorimeter, with a small correction for
muons with momentum over 100 GeV/c to allow for the
expected rise in ionization. We also require muon candi-
dates to be isolated in the sense that the total sum E7 in
the calorimeter towers in a cone of AR < 0.4 around the
one intersected by the extrapolated muon track is less
than 10% of the muon pr.

2. Tracking Requirements

Muon candidates use the same tracks and track quality
requirements as central electron candidates. We make a
few additions to the quality requirements from muons,
motivated by backgrounds particular to muons, such as
cosmic rays and kaon decays-in-flight. In addition to
the COT track and zy requirement, the candidate track
must have a small impact parameter (dp). The impact
parameter is the two-dimensional distance, in the plane
transverse to the beam direction, between the beamline
and the point of closest approach of the track helix to
the beamline. We require that the impact parameter for
muon tracks be less than 20 (200) pm for tracks with
(without) attached silicon hits. We also require that the
X2, given the number of degrees of freedom in the track
fit (i.e., the number of hits on the track minus the num-
ber of fit parameters) is such that the probability to have
found a larger x? for that track by chance is greater than
10~8. This in essence requires that the track be well re-
constructed. It is similar in spirit to a requirement that
the x2 or x2 per degree of freedom be less than a specified
value, but it removes the dependence of the efficiency for
good tracks on the number of degrees of freedom.

3. Track-Stub Matching

We check the quality of the spatial match between the
COT track and the muon stub(s). The quantity used is
the distance between the track stub in the muon detec-
tors and the point at which the extrapolated COT track
crosses the front plane of the corresponding detector ele-
ment. The distance is measured in the plane of the muon
detector, transverse to the measurement wires. A CMUP
muon track must extrapolate to within 7 cm of the CMU
stub and within 5 cm of the CMP stub. For CMX, the
maximum allowed displacement is 6 cm.
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C. Track Lepton Selection

We use an isolated high-pr track to identify the sec-
ond lepton in the event. To qualify, the tracks must have
pr > 20 GeV/c, pass certain quality requirements, and
be isolated in 1 — ¢ space from other energetic track ac-
tivity. The track may be left by either a charged lepton
or a charged hadron from the decay of a 7 lepton, but
it is in either case indicative of the presence of a lep-
ton. The isolated track, in this role, is also referred to
as a “track lepton” because its identification relies en-
tirely on information from the tracking detectors, and
also to distinguish it from the fully reconstructed elec-
tron and muon candidates. The added acceptance for t
signal events where one and sometimes even both W’s
have decayed to a 7 and v, is discussed in more detail in

Sec. [Vl

1. Track quality

As is the case for muons, it is important for the track to
be well-measured, both to reject background and because
the track momentum is the only measure of the particle’s
energy. The track must have at least 24 hits in the axial
layers of the COT and at least 20 hits in the stereo lay-
ers and satisfy the same y? probability requirement as
muons. The requirement of a minimum number of track
hits limits the acceptance for track leptons to |n| < 1.15,
according to the geometry of the COT. There is also a
maximum allowed impact parameter, 0.025 cm, but un-
like the muon case, the requirement is independent of the
presence of silicon hits. We also require silicon hits to be
present if they are expected, to reduce the incidence of
fake tracks reconstructed from accidental combinations
of hits. Specifically, if the track passes through three or
more layers of the silicon tracker known to be functional,
it must have at least three silicon hits attached.

2. Track isolation

Track isolation is crucial to the rejection of back-
grounds from jets. We sum the pr of every track with
pr > 0.5 GeV /¢, including the candidate track, within a
cone of AR < 0.4 around the candidate. The ratio of the
candidate track pr to the sum pr in the cone is required
to be at least 0.9. To be included in the py sum, tracks
must pass quality requirements similar to, but less strin-
gent than, those for the track lepton. No x? probability
or impact parameter restrictions are made, and only 20
axial and 16 stereo hits are required.

D. Jet Definition

Jet reconstruction is based on a calorimeter tower clus-
tering cone algorithm with a cone size of AR = 0.4.



Towers corresponding to identified electrons according
to the definition above are removed before clustering.
The Er values of the jets are corrected for the effects of
jet fragmentation, calorimeter non-uniformities and the
calorimeter absolute energy scale [49].

We extend the jet definition to facilitate the calcula-
tion of the rate for a jet to be reconstructed as an isolated
track, and use this jet definition everywhere in the anal-
ysis for consistency. The details of the fake lepton back-
ground calculation are described in Section [VITAL but
the core idea is to ensure that any object which could be
identified as a track lepton is included in the jet collec-
tion, because that jet collection forms the denominator of
the measured probability for an object of hadronic origin
to be identified as a lepton.

This requires modification of the jet definition. For
each track passing all of the track lepton requirements,
but ignoring the isolation requirement, we check whether
it is within AR = 0.4 of the axis of a jet. Here, we con-
sider all jets from the cone algorithm with Er > 10 GeV.
If the track is not matched, we add it to the jet collec-
tion. If it is matched, we check whether the pr of the
track exceeds the corrected Er of the jet. If it does, we
substitute the kinematic information of the track for the
kinematic information for the jet. If the pr of the track
is less than the corrected Er of the jet, we leave the jet
kinematic information as is. Inclusion of track informa-
tion in this manner ensures counting of the products of
parton fragmentation where most of the momentum is
carried by a single charged particle which does not de-
posit all of its energy in the hadronic calorimeter. In
extreme cases, jet energy corrections will not account for
all of the unmeasured energy and the track momentum
is the best measure of the parton energy.

The final jet collection thus includes standard jets clus-
tered with a cone size of 0.4, jets with kinematic informa-
tion from tracks, and unaffiliated tracks. For event selec-
tion we count the number of jets with Ep > 20 GeV and
[n] < 2.0, excluding those jets within AR < 0.4 of either
the lepton candidate or the isolated track. When mak-
ing a W + jets selection, such as is used in the fake lep-
ton background estimates for both the pretag and tagged
samples, only the fully reconstructed lepton is excluded
from the jet counting.

E. Missing Transverse Energy Reconstruction

A transverse momentum imbalance in the detector in-
dicates that particles have exited the detector without
interacting. Dilepton #t events have two high-pr neutri-
nos in the final state, leading to a considerable amount of
Fr in signal events. Figure2shows the simulated £ dis-
tributions for the t¢ signal and some of the backgrounds.
Comparison of these distributions shows that using a Er
threshold to select events reduces the contribution from
many of the backgrounds considered, particularly Drell-
Yan events, but is quite efficient for ¢ events.

12

N Z/y* - eelpp
) ZIy* -1t
(M w + fake lepton

4

Fraction of Events

60 80 100 120 140
E; (GeV)

FIG. 2: Corrected missing transverse energy from several lep-
ton + track backgrounds, compared to the tf signal. The
distribution for WW events is similar to the t¢ distribution
but slightly softer, and is omitted for legibility. Candidate
events are required to have a fully reconstructed lepton and
track and two or more jets, but no other event selection is ap-
plied. For the cross section measurements, we require events
to have ' > 25 GeV. Distributions taken from events gen-
erated with PYTHIA and normalized to have unit area.

The missing transverse energy is defined as:
i

where 7 is an index that runs over all calorimeter towers
with || < 3.6 and 7; is a unit vector perpendicular to
the beam axis and pointing at the i*" calorimeter tower.
The scalar, £, is then defined as Fr = |ﬁT|

Some care must be taken with the Ep calculation, be-
cause a transverse momentum imbalance can also be gen-
erated by incorrect measurements of objects in the event
and the energy resolution of the calorimeter towers them-
selves. To reduce the inclusion of events where the Er
is produced by energy mismeasurements, the Er is ad-
justed in those cases where the calorimeter information
is not the best measure of an object’s energy.

1. Muon Correction

Muons are minimum-ionizing particles and deposit
very little energy in the calorimeter. Thus, if the fully
reconstructed lepton in the event is a muon (CMUP or
CMX), we subtract the transverse components of the
muon momentum from the corresponding components of
the K. No correction is made to the calorimeter energy
for the small amount of energy deposited by the muon.



2. Track Correction

We also correct for all tracks (excepting the fully re-
constructed lepton if it is a muon) pointing at a 3 by
3 block of calorimeter towers where the Ep measured is
less than 70% of the pr of the track. All tracks with
pr > 10 GeV/c, |dp| < 250um, at least 24 (20) hits on
the axial (stereo) wires of the COT, and appearing to
come from the same interaction vertex (JAzg| <5 cm)
as the primary lepton, are considered. The 70% thresh-
old excludes normal fluctuations in the energy and mo-
mentum resolution, so that we correct only for tracks
where the energy deposit measured in the calorimeter is
clearly not consistent with the momentum measured in
the tracker. This correction accounts for tracks pointing
at cracks in the calorimeter, minimum-ionizing particles
such as muons, and cases where showers produced by
hadronic particles in the calorimeters have unusually low
light yields.

3. Jet Correction

We also correct the Er for the jet energy calibrations
by subtracting the difference between the corrected and
uncorrected jet energies. By doing this we use the best
estimate of the energies of those objects which are iden-
tifiable as jets. Jets with corrected Er > 10 GeV and
In|] < 2.0 are included, except for objects in the jet col-
lection which are tracks or have had their kinematic in-
formation replaced by that of an associated track. These
will have already been accounted for in the track correc-
tion.

F. Event Selection
1. Basic event selection

Having defined our basic analysis objects, we can select
events with features typical of tf dilepton events. First,
there must be at least one fully reconstructed electron or
muon with pr > 20 GeV/c in the event. Once a primary
lepton is identified, we take as the track lepton the high-
est pr isolated track with pr > 20 GeV/c. To qualify, the
track must appear to be from the same interaction ver-
tex as the primary lepton, (JAzg| <5 cm). If there is
no such isolated track, we try the event selection again
with the next fully reconstructed lepton, if another has
been identified. The leptons are considered in the follow-
ing order: central (CEM) electrons, CMUP muons, CMX
muons, and finally forward (PHX) electrons. Within a
particular lepton type, the leptons are tested in order of
descending Er or pr. In the CDF data, for a lepton of a
particular type to be considered, the trigger correspond-
ing to that category must have fired for that event, and
the relevant parts of the detector must be known to be
fully functional at the time the event occurred.
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After a track lepton is found, we correct the K, and
require the corrected Fr to be greater than 25 GeV. Each
fully reconstructed lepton in an event is considered in
turn until the event has passed all of the selection criteria,
or has failed them for all leptons.

2. Ay Requirements

Drell-Yan events may appear to have Fr in spite of
the absence of neutrinos in the final state. If the en-
ergy of one lepton or jet is measured incorrectly, false
Fr appears, pointing along or opposite to the direction
of that object. For this reason we require that no lep-
ton or jet in the event be pointing directly at the Fp.
The requirements for different objects are determined
by their respective angular size and potential for mis-
measurement. Studies of Drell-Yan events in simulation
show that although K7 may be generated either pointing
near or away from a track lepton, most K associated
with fully reconstructed leptons or jets is pointing in the
same direction as the lepton or jet. These studies also
show that it is uncommon for Er associated with a jet
to exceed 50 GeV. Therefore, we veto events where the
primary lepton points within 5° of the K7 or the track
lepton is within 5° of parallel or anti-parallel to the K.
Also, all jets in the event must be more than 25° away
from the direction of the Fr, unless the event has Er
> 50 GeV.

8. Z Boson Veto

To further reduce background from Drell-Yan events,
the Fp threshold is raised to 40 GeV if the invariant
mass of the lepton + track pair is in the range of the Z
boson resonance (76 GeV/c*> < M < 106 GeV/c?). This
requirement is referred to as the “Z veto”.

4. Candidate Events

For the cross section measurements we count events
with at least two jets with corrected Er > 20 GeV and
[n| < 2.0. The jets used for this are the extended collec-
tion described in Sec. [V D], which is based on a calorime-
ter clustering algorithm with a cone size of AR < 0.4.
Any jets within AR < 0.4 of either the lepton candidate
or the isolated track are excluded from the jet count-
ing. The final requirement is that the fully reconstructed
lepton candidate and the track lepton candidate have op-
posite sign.

Applying this selection to 1.1 fb~! of CDF Run II data,
we find 129 pretag lepton + track #f candidate events
with two or more jets.



V. tt DILEPTON ACCEPTANCE

We determine the geometric and kinematic acceptance
for tt dilepton events by applying the lepton + track
event selection to the PYTHIA tt sample described in Sec-
tion [IIl The acceptance is defined as the number of
simulated tt events passing the selection criteria, divided
by the total number of ¢ events in the sample. To be
included in the numerator, the event must be identified
as a dilepton decay at the generator level, where the W’s
may decay to any of eve, uv,, or Tv;. Other tt events
passing the event selection are accounted for as back-
ground (see Section [VITAl). Corrected for discrepancies
between observed and simulated data, the acceptance is
0.84 + 0.03 %, where the uncertainty includes the sys-
tematic uncertainties. In the rest of this section, we dis-
cuss the acceptance, the corrections made to it, and the
systematic uncertainties on it.

A. Contributions to the Acceptance

One of the advantages of identifying the second lepton
only as a track is the enhanced acceptance for 7 leptons
from W decays. Standard electron and muon selection
will accept a fraction of 7 decays, since 35% are through
leptonic channels. There will be some inefficiency, be-
cause a portion of the momentum of the original 7 will be
lost to the two neutrinos produced. On the other hand,
if “single-prong” hadronic decays are included, 85% of
7 decays have a single charged track in the final state.
About 20% of the total lepton + track acceptance is from
events where one or both of the W’s decays to a 7 lep-
ton, and 65% of that (13% of the total) is from events
where at least one of the 7 leptons decays hadronically.
Table [ shows how the acceptance is distributed among
the different lepton types.

B. Corrections to the Acceptance

To understand the discrepancies in lepton reconstruc-
tion between observed and simulated data, we study the
performance of the reconstruction in large control sam-
ples and derive appropriate corrections. Real and sim-
ulated Z boson events are used, because the available
samples are large and the reconstruction of the invari-
ant mass peak allows selection of a very pure sample of
dilepton events, even with minimal identification require-
ments placed on the second lepton. We also correct the
acceptance for the small inefficiency of the high-pr lepton
triggers.

These corrections are also used in some of the back-
ground calculations.
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1. Trigger Efficiencies

We measure single lepton trigger efficiencies with a
combination of Z data and data taken using an indepen-
dent trigger. The Z sample is especially useful when the
two lepton candidates are found in sections of the de-
tector corresponding to different triggers. Independent
triggers designed to share some, but not all, of the re-
quirements of the trigger of interest enable measurement
of the efficiency of the omitted requirements.

What we need for the cross section measurements is
the probability for a lepton + track candidate to fire one
of the high-pr lepton triggers. This probability is higher
than the single lepton trigger efficiency since each event
has two chances to fire one of the triggers, one for each
lepton. On the other hand, the second lepton is not fully
reconstructed in our event selection, so the event trigger
efficiency is not just a simple combination of single-lepton
trigger efficiencies. To determine the per-event trigger ef-
ficiency for a particular process and fully reconstructed
lepton type, we count the number of events in a sim-
ulated sample of that process that have one lepton of
that type and the number with two of that type. For
events with one fully reconstructed lepton, we use the
single-lepton trigger efficiency as the event trigger effi-
ciency. For events with two, we use the probability for at
least one of the two leptons to fire the trigger, given by
1 — (1 —€)? where € is the single-lepton trigger efficiency.
We then take the average of the two per-event efficiencies,
weighted by the relative number of events with one and
two fully reconstructed leptons. The plug electron trigger
also includes a Er threshold, so the trigger efficiency we
use for those events also depends on the value of the K
as it would be calculated for the trigger decision. Note
that we include the electron Er and Fr dependence of
the trigger efficiencies where applicable, by convoluting
the single-lepton trigger efficiencies with the Er and or
Fr distributions for the class of events in question.

The per-event trigger efficiency is also needed for back-
ground estimates that use an acceptance calculated from
simulation. For a given lepton type, the per-event ef-
ficiencies are very similar across different physics pro-
cesses, so the tt value is used. The one exception is
PHX + track Z/y* — 77 events. For those events the
typical plug electron Er and 7 fall in the middle of the
turn-on curves for the trigger, and the trigger efficiency,
about 66%, is lower than those typical of tf and diboson
events.

The single-lepton and total per-event trigger eflicien-
cies are given in Table [[Il

2. Fully Reconstructed Electrons and Muons

Identification efficiencies for fully reconstructed lep-
tons are measured in a sample of Z candidates. These
candidates consist of one fully reconstructed lepton can-
didate and one opposite-charge lepton candidate of the
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ee eu o er ur TT total
e+track 174 £ 0.2 29.5 £ 0.3 0.0 £ 0.0 7.6 £0.1 2.3+ 0.1 0.5+ 0.0 574 £ 04
p+track 0.0 £ 0.0 59 £ 0.1 155 £ 0.2 0.5+ 0.0 48 £ 0.1 0.3 £ 0.0 26.9 £ 0.2
total 17.4 £ 0.2 354 4+ 0.3 15.5 £ 0.2 8.1+0.1 7.1+£0.1 0.8 £ 0.0 84.3 £ 0.5

TABLE I: Acceptance for opposite-charge lepton + track events with two or more jets, for each possible pairing of generated
charged leptons from the W decays. Numbers have been multiplied by 10000 for legibility. The first row shows the acceptance
in the channels where the fully reconstructed lepton is an electron, and the second row shows the acceptance for the fully
reconstructed muon channels. The majority of events are accepted as electron plus track because there is more geometric
acceptance for electrons, and because the ordering of primary leptons means that events generated as electron-muon events will
be preferentially accepted as electron+track. The uncertainties quoted only include the statistical uncertainty.

same flavor which meets minimal kinematic and identi-
fication criteria. The fully reconstructed candidate must
pass the corresponding high-pr lepton trigger, and the
invariant mass of the lepton candidate pair is required to
be close to the central value of the Z resonance peak.

For central (CEM) electrons, the minimally-identified
lepton candidate is an electromagnetic cluster fiducial to
the central calorimeter with E7 > 20 GeV and a matched
track with pr > 10 GeV/c and |z| < 60 cm. The elec-
tron candidate pair must have an invariant mass in the in-
terval 76 GeV/c? < M < 106 GeV/c?. Electromagnetic
clusters fiducial to the forward calorimeter are used to
measure the forward (PHX) electron efficiency. No track
requirement is made, so the efficiencies measured include
the tracking efficiency. The invariant mass window used
for this candidate pair is 81 GeV/c? < M < 101 GeV /2.

For muons, the total reconstruction efficiency is the
product of the efficiency to find a track stub in the muon
chambers and the efficiency for a muon candidate with
a track and stub to pass all of the remaining identifi-
cation requirements. To measure the efficiency to find
a track stub, the second muon candidate in the Z pair
is a track pointing at the fiducial region of the muon de-
tectors and meeting the same requirements on the energy
deposition in the calorimeter as fully reconstructed muon
candidates, except with the maximum scaled up by 50%.
To measure the identification efficiency, the second muon
candidate is a track with pp > 20 GeV/c matched to a
track stub in the CMU and CMP, or in the CMX. We ac-
cept only events where the muon candidate pair invariant
mass is in the range 81 GeV/c? < M < 101 GeV /c?.

The denominator of the efficiency is the number of lep-
tons in the Z candidates passing the minimal require-
ments, and the numerator is the subset of those also
passing all lepton selection requirements. We measure
the efficiency in both observed and simulated data, be-
cause the full lepton selection is applied in calculating the
acceptance. We therefore use the ratio of the efficiency
in observed data to the efficiency in simulated data as a
“scale factor” which is multiplied by the acceptance to
correct it. Scale factors for the four primary lepton types
are given in Table [l

3. Track x* Probability

The x? probability requirement, imposed on fully re-
constructed muons and on track leptons, is intended to
reject hadron decays-in-flight that can be mistaken for
prompt high-p7 muons. Tracks reconstructed from a par-
ticle that decays in the tracker have a worse track fit be-
cause the track is constructed from hits from both the
original hadron and the secondary muon, some of which
will be far from the single reconstructed trajectory.

Because the requirement is made only in observed data,
the acceptance is multiplied by the efficiency as measured
in observed data, rather than by a scale factor. We mea-
sure this efficiency in a sample of Z candidates identified
from a fully reconstructed lepton and an isolated track.
One subtlety here is that the x? is correlated between
the tracks of the two objects, through the hit timing in-
formation in the COT, so the efficiency to apply it to
both is not equal to the product of efficiencies of the
individual objects. Thus, for electron + track events,
where the requirement applies only to the track lepton,
the efficiency is the number of tracks that pass the re-
quirement, divided by the total number of tracks. In
contrast, for muon + track events, where the require-
ment applies to both, the relevant efficiency is the ra-
tio of muon + track Z events where both leptons pass
the requirement to all muon+track Z events. The mea-
sured efficiencies are 0.962 4+ 0.001 for electron+track
events, 0.944 £ 0.001 for CMUP + track events, and
0.951 4 0.002 for CMX + track events, and are included
in Table [l

4. Isolated Tracks

Efficiencies for the track isolation and impact param-
eter requirements differ between observed and simulated
data. To quantify the efficiency of the track isolation
requirement, we use Z candidates from a fully recon-
structed electron or muon and an opposite-charge track
passing all of the track lepton requirements except iso-
lation, where the lepton + track pair have an invariant
mass in the interval 76 GeV/c? < M < 106 GeV /c?. To
reduce background from jets, we accept only events where
the track appears to be from a lepton of the same flavor



as the fully reconstructed one, using information from
the calorimeter towers at which the track points. The
efficiency of the isolation requirement is the ratio of the
number of tracks passing it to the total number of tracks.
The efficiencies drop from about 95% for events with zero
jets to about 90% for events with two or more jets. Tak-
ing the ratio of the efficiency from observed data to the
efficiency from simulated data, the resulting scale factors
are 1.004 + 0.001 for events with zero jets, 1.002 + 0.003
for events with one jet, and 0.965 4 0.011 for events with
two or more jets.

We measure the efficiency of the impact parameter re-
quirement similarly. The total observed efficiency in data
is 0.909 £ 0.003, calculated as the weighted combination
of 0.940 £+ 0.002 for data including silicon detector in-
formation and 0.53 £ 0.02 for the rest of the data. The
corresponding efficiency is 0.9185 £ 0.0007 in simulation:
0.947 £ 0.001 for data including silicon detector informa-
tion and 0.55 4 0.01 for the rest of the data. Taking the
ratio of the results yields a scale factor of 0.989 4+ 0.003.

C. Systematic Uncertainties on Acceptance

The systematic uncertainties on the acceptance reflect
the limits on experimental understanding of the final-
state objects used to identify #f events, as well as our
ability to model pp interactions with Monte Carlo simu-
lations. The first category includes uncertainties on lep-
ton identification and the jet energy scale. The second
includes uncertainties on QCD radiation, parton density
functions, and the Monte Carlo generator used to calcu-
late the acceptance.

The systematic uncertainties on the signal acceptance
are discussed individually below and summarized in Ta-

ble [T

1. Primary Lepton Identification Efficiency

The dominant uncertainty on the identification effi-
ciency for fully reconstructed leptons is associated with
isolation and our ability to model additional activity in
the event, such as jets or unclustered low-pr tracks, using
Monte Carlo simulations. As described in Section [V Bl
the lepton identification efficiencies are derived from real
and simulated Z data, in which most events have zero
jets. In the tf sample, where most events have two or
more jets, and nearby jet activity can reduce the efli-
ciency to identify isolated electrons and muons.

To quantify these effects, we measure the scale factor in
the Z samples as a function of the distance AR between
the lepton candidate and the nearest jet. We calculate
the correction appropriate to tt events by folding this
function with the AR distribution for simulated tf can-
didate events. For each primary lepton type, the statis-
tical uncertainty on the re-weighted scale factor exceeds
the difference between the original and re-weighted scale

16

factors. Therefore, we take the statistical uncertainties
on the re-weighted scale factors as the uncertainties on
the scale factors. The total systematic uncertainty is the
weighted average of the uncertainties on the individual
lepton types, where the weights are the acceptances for
each lepton category. The resulting uncertainty is 1.1%.

2. Track Lepton Identification Efficiency

This uncertainty quantifies how well the simulation
models the track isolation requirement in an environ-
ment with many jets, in analogy to the uncertainty on
well-reconstructed leptons. In this case, we base the un-
certainty on the behavior of the correction as a function
of the number of jets. We correct the acceptance with the
scale factor measured in events with two or more jets, and
take the 1.1% statistical uncertainty as the uncertainty
on track lepton identification.

3. Jet Energy Scale

The jet energy scale influences the tf acceptance be-
cause if the jet energies are over-corrected, more events
will have two or more jets and pass the event selection,
and vice versa. It also influences the acceptance through
the jet energy corrections to the Fr and the restriction
on the Ay between the jets and the Fp for events with
Fr <50 GeV. To estimate the uncertainty on the ac-
ceptance from the jet energy scale, we recalculate the
signal acceptance twice. First, we vary the jet energy
corrections up by the uncertainties from Ref. [49] and
recalculate the energies of all the jets in the event, and
then recalculate the acceptance. We repeat the exercise,
varying the jet energies down by their uncertainties, and
then take half the difference between the two recalculated
acceptances, 1.3%, as the systematic uncertainty.

4. Initial and Final State Radiation

Additional jets can be produced in association with
the tt pair through radiation of one or more gluons from
the initial or final state particles. We can measure the
dependence of the acceptance on the rate of QCD radia-
tion by comparing the central value of the acceptance to
values calculated in simulated PYTHIA ¢t samples iden-
tical to those used to calculate the central value, except
that the PYTHIA parameters governing the rate of initial
and final state radiation via parton showering have been
varied. The range of allowed values is set by study of the
reconstructed pr and M? of the Z/~v* in Drell-Yan events
with electrons or muons in the final state |[50]. Drell-Yan
events allow isolation of initial-state radiation effects, be-
cause the dilepton final state is colorless. The range of
parameters found to cover the variation in the observed
initial-state radiation can then also be used to generate



17

Reconstruction

x? probability

Single lepton Event

Event type scale factor efficiency trigger efficiency trigger efficiency
CEM + track 0.981 0.962 0.971 0.975
PHX + track 0.935 0.962 0.918* 0.918
CMUP + track 0.926 0.944 0.908 0.916
CMX + track 0.984 0.951 0.910 0.937

TABLE II: Correction factors applied to the calculated acceptance. Uncertainties on these numbers are about a percent or
smaller. CEM and PHX are the central and forward electrons, and CMUP and CMX are muons. The x? probability efficiency
applies to just the isolated track in electron 4+ track events, but to both the muon and the isolated track in muon + track
events. *For the forward (PHX) electron trigger, this efficiency is for W events, since the trigger also has a K7 requirement.

This also means that the per-event efficiency is identical to the single-lepton efficiency.

Source Uncertainty
Fully rec. lepton identification 1.1%
Track lepton identification 1.1%
Jet energy scale 1.3%
Initial-state QCD radiation 1.6%
Final-state QCD radiation 0.5%
Parton density functions 0.5%
Monte Carlo generator 1.5%
Total 3.1%

TABLE III: Summary of systematic uncertainties on the sig-
nal acceptance.

samples with more and less final-state radiation, because
the same parton shower algorithm is used.

The acceptance increases for the sample with more
initial-state radiation, and decreases for the sample with
less. We take half the full difference, 1.6%, as the sys-
tematic uncertainty. The results for final-state radiation
are less conclusive, as the measured acceptances in the
modified samples differ from the nominal value by less
than their statistical uncertainties of 1%. We therefore
take the larger of the two observed differences, 0.5%, as
the systematic uncertainty.

5. Parton Distribution Functions

The parton distribution functions (PDFs) describe the
probabilities for each type of parton to carry a given
fraction of the proton momentum. Variations of the
PDFs can have a significant effect on the tf cross sec-
tion [8]. The PDFs also have a smaller effect on the ac-
ceptance through the kinematics of the tt decay products.
Twenty independent sources of uncertainty identified for
the CTEQSL PDF set are considered [44]. In evaluating
the total uncertainty, we also include the difference be-
tween the CTEQSL and MRST [51] PDF sets and the effect
of lowering as(M%) from the preferred value of 0.1175
by 0.005, the uncertainty on the world average measured
value at the time the PDF set was calculated [52].

To quantify the effect of PDFs on the lepton + track
acceptance, we recalculate the acceptance twice for each
variable of interest: once each for the upper and lower
bounds on that variable. Information about the types
and momenta of generated particles are stored when
Monte Carlo events are produced, allowing the incoming
partons and their momenta to be identified. The corre-
sponding probabilities for those values are found in both
the nominal PDF and the variation under study. The
event weight is the ratio of the product of the altered
probabilities to the nominal:

p(z1, Q2)p($2, Q2)
p(x1, Q%) p/ (22,Q%)

where p is the nominal PDF and p’ is the modified PDF.
The PDFs depend on the momentum transfer () and the
fraction x; of the hadron’s momentum carried by the
parton, where the index ¢ specifies one of the two in-
coming partons. To calculate the acceptance as a ratio
of accepted to total events, each event contributes the
calculated weight to the denominator of the ratio but
the weight is only added to the numerator if the event
passes the selection. We repeat this process for each PDF
variation and record the resulting change in acceptance.
Adding the results of all the variations in quadrature and
averaging the positive and negative uncertainties, we find
a total uncertainty of 0.5%.

weight = (4)

6. Monte Carlo Generator

To account for a possible dependence of the mea-
sured acceptance on the choice of Monte Carlo event
generator, the tf acceptance is remeasured, again for
my = 175 GeV/c?, using the HERWIG Monte Carlo and
compared to the nominal value obtained using the
PYTHIA Monte Carlo. In calculating the difference, we
exclude the effect of the different W — {¢v branching
ratios used by the two generators: PYTHIA uses the mea-
sured value, 0.1080 £ 0.0009 ([4]), and HERWIG uses 1/9.
The remaining difference between the acceptances mea-
sured with the two generators is 1.5%, which we include
as a systematic uncertainty.



VI. IDENTIFICATION OF JETS FROM b
QUARKS

The CDF SECVTX algorithm identifies b-jet candidates
based on the determination of the primary event vertex
and the reconstruction of one or more secondary vertices
using displaced tracks associated with jets [53, 54]. If a
secondary vertex is found that is significantly displaced
from the primary vertex in the plane transverse to the
beam, the jet is said to be “tagged” as a b-jet candidate.

A. Determination of the Primary Vertex

A primary vertex in an event is defined as the point
from which all prompt tracks originate. The location of
the primary vertex in an event can be found by fitting
well-measured tracks to a common point of origin. In
high instantaneous luminosity conditions, more than one
primary vertex may exist in an event, but these are typ-
ically separated in z. The z coordinate for each vertex
is found by taking the weighted average of the z coor-
dinates of all tracks within 1 cm of the first iteration
vertex. The z position measurement of this first vertex
has a resolution of 100 um [53, [54]. The location of the
primary vertex is then refined by the above information,
along with constraints of the beamline position, and some
tracking information.

B. The secvTX Algorithm

The SECVTX algorithm starts from the primary interac-
tion vertex for each event. In the present application, this
is the vertex that is associated with the lepton + track.
It then examines the tracks associated with each jet and
applies basic quality criteria to them. These include the
number of silicon layers associated with the track, mini-
mum and maximum allowed impact parameters, and the
track x? per degrees of freedom. The algorithm then at-
tempts to resolve a secondary vertex that is significantly
displaced from the primary vertex using tracks with large
impact parameter significance, dy/oq,, where o4, is the
uncertainty on the impact parameter.

The SECVTX algorithm is based on a two-pass system.
The first pass of the algorithm builds an initial vertex,
known as the “seed”, from the two most displaced tracks.
The seed vertex initiates the SECVTX algorithm. Pairs
of tracks with invariant masses consistent with the K?
and A mass are removed from the track list. The algo-
rithm then seeks to add tracks to the seed vertex. The
additional tracks must pass quality requirements on the
impact parameter and pr and must not result in a poor
x? for the resulting three track vertex. If no such ver-
tex is found, then another seed vertex, made of the next
two most displaced tracks is tried. This continues un-
til a vertex is resolved, or the seed list is exhausted. In
the latter case, the algorithm moves on to the second
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pass, in which it attempts to find a vertex using only two
tracks for which the quality requirements of the tracks
are made more stringent. Again, pairs of tracks whose
invariant mass is consistent with the K? and A masses
are removed.

With a secondary vertex in hand, SECVTX calculates
the length of the vector between the primary and sec-
ondary vertices in the plane perpendicular to the beam-
line. This vector is then projected onto the jet axis:

Lzy = (va - Fsv) * Diets (5)

where 7y is the position of the primary vertex, s is the
position of the secondary vertex, and p., is the jet direc-
tion. Ly, is the two-dimensional decay length along the
jet axis, and o, the associated uncertainty. SECVTX
defines a “displaced” (or “tagged”) vertex as one with
significance |Lyy/0r,,| > 3.0. A long-lived hadron will
generally travel in roughly the same direction as the jet
formed from the fragmentation and hadronization pro-
cess. As a result, the cosine of the angle between the jet
axis and the vector extending from the primary to the
secondary vertex will be positive, and so will L;,; see
Fig. A negative value of L, can result from resolu-
tion smearing of the track parameters and poorly recon-
structed tracks. Depending on the sign of L,,, tags will
be referred to as positive or negative. The L, distribu-
tion for negative tags will be interpreted as the result of
“mistags”, or tags from non-b-jets.

C. Event Tagging Efficiency

The event tagging efficiency is the efficiency for tag-
ging at least one of the two b-jets in a ¢t lepton + track
event using the SECVTX tagger. To find the event tagging
efficiency we use a tf PYTHIA Monte Carlo sample with
my = 175 GeV/c?, the same sample used to calculate the
pretag acceptance. Corrections to the event tagging ef-
ficiency are made for two effects. The first correction
accounts for our ability to reconstruct jets which corre-
spond to a B hadron decay. The second correction is for
the possibility of mistakenly tagging light quark jets as
heavy flavor jets.

The event tagging efficiency is given by the formula

€ras = € Fip + 26 (1 — €) Fop + (€))? Fop. (6)

where €, is the corrected single jet tagging efficiency (see
below), and Fy, and Fy, are the taggable jet fractions.
The taggable jet fractions describe the fraction of events
with one or two jets which originate with the hadroniza-
tion of a b quark and might be tagged. The denominator
contains events from the simulated ¢ sample which pass
the lepton + track selection, including the > 2 jet re-
quirement. The numerator of Fy, is the number of those
which have one jet which is matched to a b hadron at gen-
erator level and contains two or more tracks passing the
SECVTX quality requirements described in Section [VIBl
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FIG. 3: Drawing showing reconstructed secondary vertices, illustrating example cases where (a) Loy < 0 and (b) Lgy > 0.

The numerator of Fyp is the number with two such jets.
See Table [[V] for the values of the taggable jet fractions.
The single jet tagging efficiency ¢, is the ratio of the
number of taggable jets with a positive SECVTX tag to the
number of taggable jets. We multiply €, by a scale factor,
€sr to account for differences in the single jet tagging
efficiency between observed and simulated data. We also
apply corrections for the efficiency to tag light quark jets
€4, and the efficiency to match a jet to a b hadron decay
€pmaten- L he corrected single jet tagging efficiency is:

/ €b €sF €bmatch
= — 7
@ (1—¢q) @)

The €,m.cn cOrrection accounts for the situation in
which a b quark fragments to produce a jet which does
not pass the jet selection criteria employed in this analy-
sis. We measure the efficiency for matching a B hadron
to a reconstructed jet in simulated tf events. We find
€pmaten = (98.89 + 0.04) %. We multiply the per jet tag-
ging efficiency obtained above by the matching efficiency
to account for this small b-jet reconstruction inefficiency.

The last correction, 1/(1 — €4), accounts for tags of
light quark jets, which results in an enhancement to the
single jet tagging efficiency. As stated in Section [VIB]
negative tags are interpreted as mistakes made by the
tagging algorithm, and are due to resolution effects. The
negative tagging rate is similar for long-lived b-jets and
for light quark jets. So, to find the efficiency for tagging
light quark jets in tf decays, we find the efficiency for
negative tags in b-jets in PYTHIA ¢t simulation events,
which is equivalent to the rate of tagging of light quark
jets. We find ¢, = (1.3+0.1) %. To correct the single
jet tagging efficiency for the tagging of light quark jets
we divide by (1 — ¢g).

Table [[V] gives a summary of the inputs used to cal-
culate the final event tagging efficiency and we obtain a
value of 0.6694:0.037. This translates into 5.5% system-
atic uncertainty due to event tagging.

Applying the SECVTX tagging algorithm to the jets in

Quantity Value

Fup 0.321 =+ 0.003
Fyy 0.611 =+ 0.003
€b 0.591 =+ 0.002
€sF 0.94 =+ 0.06

€q 0.013 + 0.001

€bmatch 0.9889 + 0.0004

€rag 0.669 =+ 0.037

TABLE IV: Inputs and results of calculation of event tagging
efficiency. Note that the uncertainty on the event tagging
efficiency is dominated by the systematic uncertainty on esg.
The other quoted uncertainties are all statistical uncertainties
from simulation and are negligible.

the 129 lepton + track candidates, we find 69 events with
one or more tagged jets.

VII. BACKGROUND ESTIMATION IN
PRETAG SAMPLE

Background events in the t£ dilepton sample generally
have one or two massive vector bosons decaying to lep-
tons. Non-negligible background processes are W + jets
and similar events where one of the jets is misidentified
as a lepton, diboson production, and Drell-Yan events
where Fr is produced by a combination of 7 decays and
the mismeasurement of the energy of one or more ob-
jects in the event. Fach of these processes requires the
production of extra jets to satisfy event selection criteria.



A. Backgrounds with a Jet Misidentified as a
Lepton (“Fakes”)

W — {lv events with extra jets can pass the lep-
ton + track selection if one of the jets is misidentified as a
lepton. This can happen if the fragmentation of a parton
results in a single charged hadron carrying most of the
momentum of the original parton. If a single charged par-
ticle carries more than about 90% of the total momentum
of all the charged particles produced by fragmentation, it
may satisfy the criteria for an isolated track. This is a rel-
atively rare occurrence, but the inclusive W cross section
times the branching ratio to leptons is about 2700 pb [28],
as compared to the 6.7 pb cross section for ¢f production.
Even though only about one in 500 W+jets events will
have enough (three) jets to produce a fake lepton and
still pass the event selection, it remains the largest single
source of background events.

The estimation of the background from events with a
fake lepton has three primary components: the rate for
the production of W + jets events with the right kine-
matic features, the probability for a jet to be misiden-
tified as a lepton (the “fake rate”), and the fraction of
events in which the fake and true leptons have oppo-
site charge. All present difficulties for the simulation of
physics events. The rate for the production of multiple
extra jets in addition to a vector boson can in principle be
calculated perturbatively, but for large numbers of jets,
the complexity of the calculation grows prohibitively, al-
though progress has been made in recent years [43]. The
fake rate is affected by parton fragmentation, a non-
perturbative QCD process which is not currently mod-
eled with the needed accuracy. The fragmentation model
will also affect the predicted charge correlation between
the true and fake leptons. Inaccuracies in the detector
simulation further complicate the picture. Therefore, we
rely primarily on observed events for the estimate of the
fake lepton background, and use simulated events only
when it is impossible to isolate the relevant effect in data.

We summarize the calculation of the expected num-
ber of background events before describing the individual
components in detail. The total number of lepton + track
events with n jets where one of the leptons is fake, N, ,
is the sum of the number of events N/ with a fake track
lepton and the number N;* with a fake fully reconstructed
lepton, where we use the subscript ¢ to indicate numbers
relating to track leptons and ¢ to indicate numbers re-
lating to fully reconstructed leptons. The estimates IV}
and N are calculated separately using similar proce-
dures, and then corrected for the efficiencies €5y and €7
(explained in more detail at the end of this section) of
the remaining lepton + track event selection:

Nine = €65 €7 (N + Ni') (8)

fake
where

Ni = 30 (A B D) (N B D) (9)

Er,|n|
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and

4
NP =303 (i D) (N Er D)) (A3/A)
i=1 Er,|n|
(10)
To predict the number of events N;* with n jets and
a fake track lepton, we multiply the number of jets

NJ@H)(ET, [n]) in the lepton + Er + (n+1) jet sample,
binned in jet Er and |n|, by the track lepton fake rate

ft("H)(ET, |n]) for the same number of jets and range of
jet Er and |n|. The result is summed over jet Er and |n)|.
The selection for lepton + E1 + jets events is described
in Section [VITA Tl and the fake rate for track leptons is
defined in Sections and [VITA ] after motivating
the choice of the v + jets sample for the fake rate calcu-
lation in Section [VITA2l We test the performance of the
track lepton fake rate by comparison among relevant jet
samples in Section To include the contribution
from events with a fake fully reconstructed lepton, N,

we multiply the same jet distributions N;"H)(ET, Inl)

by the fully reconstructed lepton fake rates f;, where the
index ¢ indicates the type of the lepton identification cri-
teria, and both the fake rate and jet counts are binned in
jet Ep and |n| as for the fake track leptons. This yields
the predicted numbers of events with two fully recon-
structed leptons where one is real and one is fake. We
rescale the result by the ratio of the W — v + jets accep-
tance A; for track leptons to the acceptance A} for fully
reconstructed lepton type ¢, to find the number where
the track lepton is the lepton from the W and the fully
reconstructed lepton is fake. Summing over the four fully
reconstructed lepton types (¢ runs from 1 to 4) gives the
total result. Details on the inclusion of fake fully recon-
structed leptons are given in Section

The dominant contribution to the lepton + Er + jets
sample is W + jets, but for the sample with three or
more jets, which is used in the background prediction for
the cross section measurement, there is also a significant
contribution from ¢¢. This happens in the “lepton + jets”
decay channel, in which the W that decays to a pair of
quarks adds one or two jets to the final state in addition
to the two jets from the b quarks. If the lepton from the
decay of the other W is reconstructed as an electron or
muon and one of the jets in the final state produces an
isolated track (or vice versa), such events can pass the
full lepton + track event selection. The treatment of the
tt contribution to the candidates with a fake lepton is
discussed in Section [VITA7l These events require some
special care, as they introduce a dependence on the cross
section we are measuring. That is treated by explicitly
including the dependence in the likelihood used to calcu-
late the cross section (see Section [XA).

The remaining component of the estimate is the effi-
ciency for the selection criteria that cannot be applied
in selecting the lepton + Er + jets sample. First is the
opposite-charge requirement. We calculate the efficiency
ess for this requirement using a combination of observed



data and Monte Carlo simulations in Section [VITAg
The other two requirements are the increased Fr thresh-
old for events with a lepton + track invariant mass close
to the Z resonance, and the track lepton-E7 opening an-
gle veto. The efficiencies for these, collectively labeled €7,
in Eq. B are given in Section

Finally, we tally the systematic uncertainties on this
background estimate in Section [VITATQl

1. Selection of W + jets Events

The selection for W + jets events in the data is based
on the event selection described in Section [Vl with all
requirements involving the track lepton omitted. That
is, we select events from the same high-pr electron and
muon trigger sample containing the signal candidates,
with one fully reconstructed electron or muon. We also
require that these events have ' > 25 GeV and pass the
A criteria for the fully reconstructed lepton and the jets.
Since one of the jets will be reconstructed as a lepton in
events with a fake lepton, we predict the number of events
passing the full lepton + track selection and having N
jets by using events with N+1 jets. We count the number
of events with one jet, two jets, or at least three jets.

The largest contribution to this sample is W + jets,
where the W decays leptonically. There is also a sig-
nificant contribution from t¢, which will be discussed in
more detail below. There is also a small contribution
from pure-QCD multijet events where one of the jets has
been wrongly identified as a fully reconstructed electron
or muon.

2. Jet Properties Influencing the Fake Rate

To motivate the choice of the v + jets sample for the
fake rate, we focus our attention on the largest contribu-
tion to the fake lepton background, W + jets events. The
lepton fake rate is determined by parton fragmentation,
and fragmentation is determined by the energy and type
of the parton. The energy dependence will be included
by parameterizing the fake rate as a function of jet Ep
and |n|. Here we consider the possible influence of the
parton type.

A jet produced in association with a W has a higher
probability of being a quark jet, meaning a jet which orig-
inates from a quark, than a jet of the same energy pro-
duced in a generic QCD multijet event. To understand
this, note that most W and multijet production at the
Tevatron takes place at relatively low x, where x is the
fraction of the proton momentum carried by an individ-
ual parton. For Q? values typical of W + jets or multijet
production at the Tevatron, the gluon PDF is strong rel-
ative to the valence quark PDFs for < 0.15. The two
leading diagrams for W + 1 jet production (see Fig. H)
at the Tevatron have the same amplitude. The pref-
erence for diagrams with incoming gluons implies that
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the diagram with an outgoing quark will prevail, so the
jets associated with a W boson are more likely to be
quark jets. This preference for quark jets is even more
marked in vy + jets samples because the photon is mass-
less, so we sample an even lower-z part of the PDF. In
the case of multijet production, the leading order dia-
gram for gg — gg has a larger amplitude than any of
the other leading order 2 — 2 diagrams containing other
permutations of light quarks and gluons. Taking that
in combination with the strength of the gluon PDF, one
expects jets produced in pure strong interaction events
to be predominantly gluon jets, that is, jets originating
from gluons.

The different partonic origins of jets matter because
jets from light quarks appear to have a different fake
rate than jets from gluons. Gluon fragmentation results,
on average, in a larger number of charged particles than
quark fragmentation. This behavior has been verified
experimentally, and can be seen in simulation [55]. An
immediate consequence is the fact that a quark jet will be
more likely than a gluon jet to contain a single charged
track carrying most of the parton’s energy. This also
implies an increased probability to produce a fake lepton.

We can test the partonic origins of the jets in different
processes and their effect on fake rates using simulated
data. In simulation, it is possible in most cases to match
a reconstructed jet to the quark or gluon from which it
most likely developed. While we do not trust the abso-
lute value of fake rates in simulation, relative compar-
isons are still meaningful. First, we find the fraction of
jets matched to a quark in simulated v + jets, W + jets,
and QCD multijet events. All of these samples are gener-
ated using PYTHIA, as described in Section[[ITl The min-
imum photon E7 in the photon sample is 22 GeV and we
select events with reconstructed photon Ep > 25 GeV.
The minimum parton pr in the jet sample is 18 GeV/c.
The quark jet fractions for all of these processes as a func-
tion of jet Er are shown in Fig. Bl For any choice of jet
multiplicity, the fraction of jets which are from quarks is
highest in the photon sample, next highest in the W sam-
ple and smallest in the multijet sample. Also note that in
the W and photon samples with higher jet multiplicities,
the tendency toward quark jet dominance persists but is
diminished by the enhanced impact of higher-order pro-
cesses. Finally, one also sees that with increasing jet Er,
the preference for quark jets in multijet events increases.
This is also to be expected given the increased Q2 of the
interaction and hence a reduced probability of an initial
gg interaction.

Figure [6 shows the difference in the fake rates be-
tween the three jet samples considered earlier: v + jets,
W + jets, and QCD multijet. The v + jets sample has
the highest fraction of quark jets (See Fig. [, followed
by the W + jets and multijet samples, and their fake
rates follow the same pattern. Figure [6] also shows that,
in simulated multijet events, the quark jet fake rate is
nearly an order of magnitude higher than the gluon jet
fake rate. Combined with the different propensities for
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FIG. 4: Leading diagrams for W and + production with one associated jet at the Tevatron. Diagrams (a) and (b) are for v + 1
jet production, and (c) and (d) are for W + 1 jet production. Diagrams (a) and (c) dominate because of the relative strength

of the gluon PDF at low z.

producing quark jets, this leads to different fake rates in
different samples. We also compare the separated quark
and gluon jet fake rates for the three samples in Fig. [6]
and observe that the agreement between the separated
fake rates is better than the agreement between the in-
clusive ones.

8. Fake Rate Definition

The track lepton fake rate is the number of isolated
tracks, divided by the number of jets, in a sample con-
taining no true leptons. The numerator is the number of
track leptons according to the definitions in Section [[V_Cl
The denominator is the number of jets according to the
definition in Sec. [V Dl Recall that in addition to the
standard calorimeter cluster-based jets, this jet collection
includes tracks not associated with a jet as well as jets

containing a high-pr track which otherwise would have
fallen below the jet selection Ep threshold. The jets used
in constructing the fake rate are identical to those used
to count jets for candidate event selection. Note that a
fake track lepton is a true isolated track, but one that
does not originate from a lepton.

Ideally, the fake rate is measured in a data sample
where the contamination from true leptons is negligi-
ble. For this analysis, we use a sample of events trig-
gered by a photon with Epr > 25 GeV. Photons are
restricted to the central calorimeter and selected with
criteria similar to those used for electrons, except that
there must be no track pointing at the energy deposited
in the electromagnetic calorimeter [56]. To further re-
duce the possibility of lepton contamination, we ex-
clude events in which the invariant mass of the pho-
ton and any jet in the event is close to the Z resonance
(76 GeV/c? < M < 106 GeV/c?) when the jet is a track
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FIG. 5: The fraction of jets matched to a quark in simulated photon (filled circles), W (filled squares) and multijet (open
squares) events, as a function of jet Er. The fraction is shown for events with any number of jets (a), and then separately for

events with one (b), two (c), and at least three (d) jets.

or has more than about 90% of its energy in the electro-
magnetic calorimeter. Finally, we require the photon to
have at least 80 GeV of energy (not Er), to strengthen
the analogy to W production through the required Q2.
The fake rate depends strongly on the Er and |n| of
the jets in the denominator, so we parameterize it as
a function of these quantities. The fake rate for track
leptons for each jet multiplicity is shown as a function of
the E7 and |n| of the denominator jets in Fig. [7
Taking the jets for the lepton fake rate from a photon-
triggered data sample instead of a jet-triggered has not
been done before in a dilepton tf cross section measure-
ment. The Run I dilepton cross section measurement [57]
and the Run IT measurement with 200 pb~! of integrated

luminosity [20] both used samples triggered by high-Ep
jets. The Run I measurement placed an uncertainty of
62% on the fake lepton background. In the two mea-
surements of the previous Run II result, the uncertainty
on the fake lepton background is 30% for the earlier ver-
sion of this analysis, and 51% for the analysis using two
fully reconstructed leptons. The uncertainty on the fake
lepton background for this analysis will be described in
detail at the end of this section, but it is a total of 20%,
with 6% from the statistical uncertainty. The previously
published measurements have a factor of 5 to 10 less in-
tegrated luminosity, so the statistical uncertainty would
have made this technique impractical in earlier measure-
ments. As an aside, it is because of the availability of
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FIG. 6: Track lepton fake rates in simulation as a function of denominator jet Er. (a) Fake rate for all jets in simulated
v + jets, W + jets, and multijet events. The fake rate in multijet events is lower than the fake rate in W + jets events,
and both are lower than that in 7 + jets events. Note that this v + jets sample does not have the E, > 80 GeV requirement
applied. (b) Fake rate for jets matched to quarks (“quark jets”) compared to the fake rate for jets matched to gluons (“gluon
jets”), showing the disagreement between them. Fake rates taken from the simulated multijet sample. (c) Fake rates for quark
jets in the three samples. The agreement is better than that observed in (a). (d) The same, but for jets matched to gluons.

larger data samples that the failings of fake rates calcu-
lated with jet-triggered samples have started to become
apparent. We also note that our initial attempts to im-
prove the fake lepton background estimate were based on
adding a third parameter, such as the number of tracks
per jet, to the fake rate. This technique was dropped in
favor of the one presented here because it was less suc-
cessful when tested in simulation.

4. Use of Z+jets Data

In photon plus one jet events, conservation of momen-
tum implies that events where the measured Ep of the
balancing jet is significantly lower than the photon Er
are rare. Because of this, there are very few events in the
lowest E bins of the fake rate. This is not crucially im-
portant since this is an input to the zero jet event count
prediction, which does not enter into the cross section
calculation. Nevertheless, it is possible to fill the gap in
the one jet fake rate by including the Z + 1 jet sam-
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FIG. 7: Track lepton fake rates as a function of Er (a) and |n| (b) of the faking jet. The fake rate is the probability for a
jet to pass the track lepton identification requirements, including the track isolation. The fake rate is measured in jets from
photon + jets data, and includes Z + 1 jet events in the 1 jet fake rate. The uncertainty is statistical only. See Section [VII A 3

for details.

ple. The Z + jets sample is a near-perfect analog to the
W + jets sample, up to the slight difference in mass scale.
Most Z + jets events have at most one jet, typically near
the Er threshold, so there is not enough data to make
useful measurements of lepton fake rates for higher jet
multiplicities. But, one-jet events where the jet is in the
lower Er range is exactly what v + jets events are lack-
ing. Therefore, the total rate used to predict the number
of fake leptons in the zero-jet lepton + track sample is
the combined rate from the v + 1 jet and Z + 1 jet sam-
ples. We combine the two fake rates by adding the jets
from the Z + 1 jet numerator (denominator) to the v + 1
jet numerator (denominator) before calculating the fake
rate.

5. Validation of Track Lepton Fake Rate

We test the accuracy of the track lepton fake rate in
both real and simulated data. To increase the size of
the sample for validation, a lower kinematic threshold of
15 GeV is used for both the track leptons and jets. This
adds jets to the sample because of the steep falloff of the
Er distribution. Also, the fake rate for 15 GeV track
leptons is higher than for 20 GeV track leptons, because
it corresponds to a larger portion of the fragmentation
spectrum.

Using simulated CDF data, it is possible to test the
fake rate estimation procedure by using the fake rates
obtained from simulated v + jets events to predict the
number of fake leptons in simulated W + jets events.
Events with 0, 1, and > 2 jets in addition to the fake

lepton are considered. Figure 8 shows the predicted and
observed number of fake track leptons as a function of
the Er of the misidentified jet, for each jet multiplicity.
The integrated results are provided in Table[V]l The fake
rate from jets associated with an 80 GeV photon is seen
to overestimate the number of fake leptons observed in
jets associated with a W. This effect is only statistically
significant in events with one jet, and we will include
this 18% discrepancy in the systematic uncertainty on
this background. Omitting the Z + 1 jet data from the
fake rate only exacerbates the disagreement (The previ-
ous section describes the use of the Z + jets data in the
one jet fake rate).

We directly test the fake rate obtained from the pho-
ton data using Z + jets data. The number of isolated
tracks predicted in the Z + jets data is compared to the
number observed for events with 0, 1, and > 2 jets in ad-
dition to the isolated track. For this test, only the fake
rate from 7 + 1 jet events is used to predict the num-
ber of fake leptons coming from the Z + 1 jet sample.
Although the event sample is small, no statistically sig-
nificant discrepancy is observed for any jet multiplicity
in this test. Figure [ shows the predicted and observed
number of isolated tracks as a function of the Er of the
jet, for each jet multiplicity. Table [V] provides the in-
tegrated results. The integer number of isolated tracks
is well-predicted, and the shape of the isolated track pp
distribution is well-modeled for events with zero or one
jets in addition to the isolated track. The agreement
between the predicted and observed distributions in the
two-or-more jet case is more difficult to assess. There are
2358 Z events with three jets, so the predicted distribu-



Predict W + jets with v and Z + jets:
Test in simulated data

Predicted Observed
1 jet 5473 + 147 4480
2 jets 1332 + 200 1047
> 3 jets 304 + 67 226
Predict Z + jets with v + jets:
Test in CDF data
Predicted Observed
1 jet 100 £+ 13 101
2 jets 28 + 2 26
> 3 jets 12+1 13

TABLE V: Predicted and observed number of isolated tracks
of hadronic origin in tests performed in observed and sim-
ulated data. The number of jets quoted is in addition to
the jet which is reconstructed as an isolated track. The only
statistically significant discrepancy observed is in the one jet
category in the simulation, and is taken as part of the basis of
the systematic uncertainty on this background estimate. Note
that in the column headings, “Observed” refers to the directly
counted isolated tracks, regardless of whether the study is
done in real or simulated data.

tion is smooth, but there are only thirteen Z candidates
with two jets and an isolated track, so the distribution of
the pr of the isolated tracks is highly prone to statistical
fluctuations.

We use the same framework to test fake rates obtained
from multijet events. To mimic the fake rate used in the
previous published version of this analysis, we simulate
the requirements of the 50 GeV jet trigger at CDF on a
PYTHIA multijet sample produced requiring a minimum
parton pr of 18 GeV/c. The fake rate is constructed
as described above, except that events with any number
of jets are included. The inclusive jet fake rate is then
applied to jets from simulated W + jets events. The
results are shown next to the prediction from the pho-
ton + jets fake rate in Fig. § For W + 1 jet events,
3040 + 350 events are predicted, and 4480 are observed.
Using the same logic as used to derive the 18% system-
atic uncertainty quoted above, this corresponds to a 47%
systematic uncertainty for the fake rate from data col-
lected using a jet trigger. This motivates the choice to
use the jets from the photon trigger sample to build the
fake rate.

6. Fake Rates for Fully Reconstructed Leptons

We also measure fake rates for all four primary lep-
ton types, using the same method and data as is used
for the track leptons. The fake rate is at least an order
of magnitude smaller for primary leptons than for track
leptons. Because there are so few events in the numer-
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ator of the fake rate for the primary leptons, we use an
inclusive fake rate instead of calculating it separately for
events with different numbers of jets. The fake rates for
the fully reconstructed leptons, as a function of the Ep
and |n| of the denominator jets, are shown in in Fig.
To find the number of events where the track lepton is
the lepton from the W and the fully reconstructed lepton
is fake, we multiply the fully reconstructed lepton fake
rates by the jet Ep and |f| distributions from the lep-
ton + Kt + jets data described in Section [VITA 1l That
gives the number of events with two fully reconstructed
leptons where one is fake. To find the number where
the true lepton is the track lepton, we scale the number
by the ratio of the W — fv + jets acceptance for track
leptons to the acceptance for fully reconstructed leptons.
This ratio is measured in W + jets events simulated using
PYTHIA. There are other sources of fake leptons in the
sample, but W + jets is the dominant contribution, and
the ratio of the acceptances for the sub-dominant contri-
bution from t¢ should be similar, since the real lepton is
still from a W. Summing over all lepton types yields the
total contribution from fake fully reconstructed leptons,
which are 6% of the total fake lepton background.

7. Contribution from tt Events with a Fake Lepton

Other than W + jets, the only process contributing
significantly (more than 5%) to the lepton + Er + jets
data sample is # lepton + jets events. For a top quark
mass of 175 GeV /c?, corresponding to a cross section of
6.7 pb, such events produce 19% of the jets in the lep-
ton + Er sample with three or more jets, the sample used
derive the fakes contribution to the background for the
cross section measurement. Lepton + jets ¢ events make
a negligible contribution to lepton + Fp samples with
one or two jets. Single top quarks, produced through the
electroweak interaction, can also generate the required
lepton, Fr, and jets signature, but the small cross sec-
tion and lower jet multiplicity at leading order mean that
their contribution is negligible.

Because of its size, the lepton + jets tf contribution
deserves separate consideration. Study of simulated ¢
events indicates that over 90% of the jets in these events
come from quarks. This is a very different fraction than
for any other sample considered, although many (roughly
2/3) of the jets are from heavy quarks, such as a b from
t decay or a ¢ from W decay. The track lepton fake rate
for jets from a light quark is about twice the rate for jets
from a heavy quark, because the latter typically produce
a larger number of charged tracks, leading to a greater
likelihood to fail the track isolation criteria. As a result,
the fake lepton is associated with the jet produced by
a quark from W decay in about 90% of the simulated
events with a fake lepton.

The fake rate designed for W + jets events is still us-
able. First, the smaller probability that heavy quark jets
will be manifested as isolated tracks partially compen-
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sates for the fact that there are fewer gluon jets in
than in the photon plus jets data used to define the fake
rate. Second, the contribution of #7 is still relatively small
compared to W + jets and the large systematic on the
fake rate due to the discrepancy in the single jet bin is
adequate to cover any remaining difference. We test the
validity of these statements using the fake rates from the
simulated W + jets sample, because there is an insuffi-
cient number of events in the simulated v+ > 3 jet sam-
ple to make a meaningful comparison. If the W + jets
fake rate is sufficiently similar to the one from #f lep-
ton + jets events, we may still use the same fake rate for
both. The fake rate from the W + jets sample predicts
518 + 45 isolated tracks in a simulated ¢t lepton + jets
sample, in which 424 are actually observed. The level of
disagreement (18%) is not egregious when compared to
the statistical uncertainty, and is comparable to the sys-
tematic uncertainty. We therefore use the photon + jets

fake rate to predict the number of fake leptons for all
events passing the W 4+ jets selection, regardless of their
source.

8. Fraction of Events having Opposite Sign Leptons

We must also estimate the fraction of events with a fake
lepton in which the real and fake lepton have opposite
sign. This fraction is different for W + jets and tt events,
so they must be considered separately.

First we will consider the opposite-sign fraction for
W + jets events. Leading diagrams for W + jets produc-
tion have the W recoiling against a quark which becomes
a jet in the event, so the charge of the tracks in that jet
is expected to be anti-correlated with the charge of the
wW.

In simulated W + jets events, the charge correlation
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FIG. 10: Fully reconstructed lepton fake rates as a function of Er (a) and |n| (b) of the jet in the denominator. The fake rate
is the probability for a jet to pass the lepton identification requirements and is measured in jets from photon + jets data. The

shown uncertainty is statistical only.

is large, but falls off with increasing jet multiplicity. We
measure opposite-sign fractions of 81 + 3% for events
with zero jets, 73 + 2% for events with one jet, and
75 + 5% for events with at least two jets. The difficulty
with the numbers from the simulation is that the charge
correlation, like the fake rate, is influenced by details of
jet fragmentation that may not be fully taken into ac-
count in the Monte Carlo simulations. The opposite-sign
fractions can be checked in candidate lepton + track
events with no jets, where the contribution from #f is neg-
ligible but where the expected contribution of events with
a fake lepton is large. Prior to an opposite-sign require-
ment, the total number of predicted events agrees with
the number observed, within the statistical uncertainty.
When the predicted opposite-sign fraction from simula-
tion is applied, more same-sign events are observed than
are predicted, and the number of opposite-sign events
observed is correspondingly too small compared to the
prediction. This suggests that the simulation overesti-
mates the fraction of events with a fake lepton of opposite
charge. We therefore obtain the opposite sign fraction
from observed data, using the zero-jet candidate events.
We can further enhance the fraction of events with a
fake lepton by requiring a significant amount of energy
in the region of the hadronic calorimeter at which the
track points. This is about 70% efficient for events with
a fake lepton and Z/y* — 77 events, but reduces all
other contributions by an order of magnitude. We then
subtract the estimated number of events from sources
with two real leptons for all events and for those with
opposite sign. We find that 67 + 3% of remaining events
are opposite-sign, which is taken to be the opposite-sign

fraction for all events with zero jets.

As a cross-check, we also measure the opposite-sign
fraction using the zero-jet events without the hadronic
energy requirement described above, and find 69 & 5%,
in good agreement with the number calculated with the
requirement. The larger uncertainty is due to the sys-
tematic uncertainties on the larger contributions to the
zero-jet sample from the other processes.

We cannot apply the same procedure to derive the
opposite-sign fraction for higher jet multiplicities because
the contribution from #¢ is non-negligible. To obtain the
charge correlation for events with more jets, we rely on
the simulation to model the dependence of the correlation
on the number of jets in the event. The assumption made
is that each additional jet dilutes the opposite-sign frac-
tion toward 50%, the fraction corresponding to no cor-
relation. Defining a dilution factor x, the opposite-sign
fraction f;+1 of events with ¢+ 1 jets can be expressed in
terms of the fraction f; for events with ¢ jets as

fir1 =052+ fi(1— =) . (11)

From the (81 £ 3)% and (73 + 2)% figures, we find
x = (26 +12)%. Applying this to the (67 + 3)% fraction
from the zero-jet events, we find an opposite-sign frac-
tions of (63 &+ 3)% for events with one jet. Repeating the
procedure with the same = and the one-jet opposite-sign
fraction, we find (59 £ 3)% for events with two or more
jets.

Turning to the case of tt lepton + jets events with
a fake track lepton, we observe in simulation that 79%
of such events have opposite-sign leptons. It seems likely
that the charge correlation here is attributable to the fact



that the summed charge of the quark pair produced by
the W will be the opposite sign of the charge of the lepton
from the other W. We prefer not to use the number from
simulation directly, since our results in the W + jets sam-
ple suggest that the fragmentation model in simulation
tends to overestimate charge correlations. We correct the
result from simulation using the observed difference be-
tween observed and simulated data for W + 1 jet events
where the jet is reconstructed as an isolated track, using
the same method described in the previous paragraph.
In simulation, 81% of events are opposite-sign, compared
to the 67% in the CDF data. For tt lepton + jets events
with three or more jets, we scale the fraction from sim-
ulation to (67 + 6)%, which is higher than the fraction
for W + jets events with the same number of jets. The
uncertainty is taken to be half the difference between the
original and rescaled numbers, or 9%. The statistical un-
certainties on the fractions from simulation are less than
a percent and negligible in comparison.

To obtain a fake lepton background prediction for
events with two or more jets, we must combine the two
opposite-sign fractions obtained for W + jets and ¢t lep-
ton + jets in proportion to the estimated number of fake
leptons contributed by each process. Because the pre-
dicted fraction of tt in the W + jets data is based on an
acceptance measured in simulation, this introduces a de-
pendence on the ## cross section. We remove this depen-
dence by including it explicitly in the pretag background
calculation in the likelihood expression used to measure
the cross section, which will be described in more detail
in Section[[X_Al The result is that, for the measured cross
section of 9.6 pb, (27 + 4)% of jets in the normalizing
W + jets sample are predicted to be from ¢t for the fi-
nal cross section value, and the re-weighted opposite-sign
fraction is (61 £ 3)%. Note that the 27% is calculated
from the measured ¢ cross section and is in a sense the
result of the fit, so the uncertainty on it is the observed
change in the fraction when the cross section is varied by
its calculated uncertainties.

9. Efficiency for Additional Selection

We measure the efficiency of the Z veto and the track
lepton Agp requirement in simulated W + jets events
generated using ALPGEN-+PYTHIA Monte Carlo. The
efficiency for the two criteria is (82 £+ 2)% for events
with zero jets, (85 £ 1)% for events with one jet, and
(89 £ 2)% for events with two or more jets. Scaling the
event counts by these efficiencies yields the final predic-
tion of candidate events with a fake lepton as a function
of the number of jets.

10. Systematic Uncertainties

There are three sources of uncertainty in the estimate
of the background from events with a fake lepton: the
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statistical uncertainty on the fake rate, the systematic
uncertainty on the overall normalization of the estimate,
and the uncertainty on the fraction of events with a fake
lepton where the leptons have opposite sign.

The uncertainty on the overall normalization comes
from the largest observed discrepancy in the simulated
and observed data tests described above. We have also
argued that this 18% uncertainty covers possible discrep-
ancies between the fake rate for jets in W + jets events
and jets in tf lepton + jets events. The uncertainty on
the opposite-sign fraction is the statistical uncertainty
on the fraction calculated from zero-jet candidate data,
combined with the systematic uncertainty from the scal-
ing of the fraction for t lepton + jets events, and is 5%.

Combining the 18% and 5% systematic uncertainties
with the 6% statistical uncertainty, the total uncertainty
on this background is 20%.

B. Diboson
1. Diboson Acceptance

Diboson events (WW, W Z, and ZZ) events have small
cross sections, comparable to the tf cross section. It is
only recently that CDF and D@ have obtained sufficient
data to observe WZ production [58, 59] and ZZ pro-
duction [60, [61]. Also, if one or both bosons decay to
leptons, these events can mimic the tf signature, so it
is not possible to isolate a large sample of such events
in the data. Therefore, the acceptance calculated from
simulated events is used together with the theoretical
production cross sections to estimate this background.
We use event samples generated with the PYTHIA Monte
Carlo generator and apply the same corrections to the
diboson acceptance as we did for the signal acceptance,
with one additional correction for the rate of jet produc-
tion, described below. The estimated number of events
in the candidate sample is then the corrected acceptance
multiplied by the theoretical cross section and the in-
tegrated luminosity. The theoretical cross sections for
these processes are 12.4 4+ 0.8 pb for WW, 3.7 + 0.3 pb
for WZ,and 3.7 + 0.3 pb for ZZ [62]. The ZZ sample in-
cludes the 7* contribution, with M/« > 2 GeV/c? for
both bosons. These cross sections are calculated using
the MCFM Monte Carlo program [62] and the uncer-
tainties are based on the Q2 and PDF dependence of the
cross sections.

2. Correction for Number of Jets

PYTHIA is a leading order Monte Carlo program and
so is not expected to correctly predict the fraction of
events with extra high-pr jets in addition to the core
process. A scale factor derived from a comparison of jet
production in real and simulated Z + jets data is applied
to correct the acceptance for events with two or more



jets up to the observed level. A sample of Z’s are se-
lected with two opposite-charge, fully reconstructed elec-
trons or muons having an invariant mass in the interval
76 GeV/c? < M < 106 GeV/c?. The fraction of events
with two or more jets in simulation, 0.0142 4+ 0.0002, is
lower than the fraction observed in data, 0.0153 £ 0.0008.
A scale factor, once again defined as the ratio of the
fraction in observed data to the fraction in simulated
data, is calculated for each jet multiplicity. The scale
factors found are 1.006 + 0.002 for events with zero jets,
0.940 £ 0.018 for events with one jet, and 1.08 £ 0.06 for
events with two or more jets, where the uncertainties are
statistical only. We then multiply the acceptance by the
appropriate scale factor for each jet multiplicity. In order
to maintain the same overall normalization, we rescale all
three acceptances by a common factor so that their sum
is unchanged.

3. Systematic Uncertainties

The systematic uncertainties relevant to the signal ac-
ceptance also apply here. The lepton identification un-
certainties are still 1.1% for both fully reconstructed and
track leptons. The uncertainty on the number-of-jets cor-
rection, 5.5%, also applies to the predicted number of
events. The jet energy scale uncertainty is also relevant
here, and is evaluated in the same way, but has a larger
effect: the energy spectrum of radiated jets falls sharply,
so that small changes in the jet energy can lead to large
changes in the event selection efficiency. The resulting
uncertainty is 5.8%. Finally, we also include the theoret-
ical uncertainties on the cross sections used to normalize
the background prediction, which are 6% for the WW
and 7% for WZ and ZZ. The total uncertainty on the
diboson background calculation is 11%.

C. Drell-Yan

Drell-Yan events with Fr are a significant
source of background for ¢t lepton + track
events since there are two real leptons in the fi-
nal state and the inclusive cross section is large
(o(pp — Z/v*) x Br(Z/y* - €*4~)=251+5pb for
66 GeV/c? < My < 116 GeV/c? [28]). In the case of
Z/y* — 77, the Fr is mostly from the neutrinos from
the 7 lepton decays, and the background calculation is
based on simulation. For Z/y* — ee/up, there are no
neutrinos in the final state and any Er is the result of
the flawed reconstruction of one or more leptons or jets.
Such events are rare and difficult to distinguish from
other sources of two leptons and K, so it is difficult to
verify that they are simulated accurately. It is possible,
however, to select a sample of events from the collision
data with a high concentration of Z/y* — ee/uu events
with Fr, and build an estimate using it, integrating
information from simulation. The drawback is that
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the precision of this hybrid method is limited by its
statistical uncertainty. This background estimate carries
the largest uncertainty of any input to the cross section
measurement.

1. Z/y =771

It is difficult to isolate Z/+* — 77 events in the data,
but Monte Carlo simulation is expected to do a rea-
sonable job of modeling the event kinematics because
real neutrinos are responsible for the Fr in the final
state. Therefore the estimate of the Z/y* — 77 back-
ground is calculated in the same way as the diboson
backgrounds, including the rescaling to compensate for
the deficit in generated extra jets. Events are generated
with M(Z/v*) > 30 GeV/c?; the corresponding cross
section is 327 £+ 7 pb [28]. The fractional systematic un-
certainties on the resulting background are also identical
to those in the diboson case.

2. Calculation of Z/~v* — ee/up Background

The estimate of the background from Z/~* — ee/uu
events is calculated as follows:

Ny = N, + N, (12)
N., = (ngs —fos) fi Ri (13)
N, = (nao — fuo) fi (14)

The total number of background events, N, is the sum
of the number inside and outside the “Z region”, defined
as those event where the lepton + track invariant mass is
between 76 and 106 GeV/c?. The label i designates the
number of jets, where i may be zero, one, or two. All
events with two or more jets are included in ¢ = 2. Out-
side of the Z region, the 7 minimum from the event
selection is 25 GeV, so the background estimate N/ for
that region is based on the number na5 of lepton + track
events with at least 25 GeV of Fr in the CDF data in
the Z region. Inside the Z region, the Fp minimum is
40 GeV, so we count the number of events ngg in the
same data with at least 40 GeV of Fr. To isolate the
contribution of Z/y* — ee/up to those samples, we sub-
tract the estimated number of events from other sources
passing the selection, labeled ns5 and 749 in the above.
The selection used for nos and nyg, and the calculation
of g5 and 74, are described in Section [VITC3l

These data include events with any number of jets, so
we multiply the number of events by the fraction f; ex-
pected to have a particular jet multiplicity 7. Also, the
background estimate for events outside the Z region is
based on an event count inside the Z region, so we mul-
tiply it by the expected ratio R; of the number of back-
ground events outside the Z region to the number inside
the region. These fractions are measured in simulated
Z/v* — ee/up events. See Section [VITC 4] for details.



The statistical and systematic uncertainties on this
method are described in Section VITC5

3. Data Sample for Normalization

To obtain a sample of events from the CDF data
similar to the candidate sample but with a larger con-
tribution from Z/v* — ee/up, we alter the event
selection by restricting the sample to the Z region
(76 GeV/c? < M < 106 GeV/c?) and including events of
all jet multiplicities. The event selection is otherwise
identical to that of the main analysis. In this sample,
we count the number of events with Zr > 25 GeV and
1 > 40 GeV, corresponding to the £ thresholds used
inside and outside the Z region in the candidate selec-
tion. The number of events in these samples are ns5 and
ngo in Equations [2HI4]

These data are expected to contain many Z/v* —
ee/uu events with Zr, but may also contain events from
other sources, including ¢tt, WW, WZ, ZZ, Z/v* — 77,
and events with a fake lepton. We calculate the contri-
butions of each of these exactly as described for the main
analysis, except that the event selection is the modified
version described above. The predicted number of events
in both the Fr > 25 GeV and Er > 40 GeV samples,
labeled 795 and 749 in Equations are subtracted
from the corresponding number of observed events in the
data to yield the number attributable to Z/v* — ee/upu.

Once again, a dependence on the tf cross section ap-
pears and must be treated with care. As with the back-
ground from events with a fake lepton, we include this
dependence explicitly in the likelihood used to calculate
the cross section (See Section [XAl).

4. Application of Simulated Data

We use calculations from simulated Z/v* — ee/uu
events to divide the Drell-Yan events among the jet mul-
tiplicity bins and estimate the number of events outside
the Z region. To calculate the necessary ratios f; and
R;, we select events in the simulation using the criteria
described in the previous section (VIILC3)), except that
the Fr threshold is kept constant at 25 GeV and events
both inside and outside the Z region are included. That
is, the event selection is identical to the main event se-
lection except that there is no Z veto.

To measure R;, we count the number of events inside
and outside the Z region for each jet multiplicity. The
ratio of the number outside to the number inside is R;.
We correct R; for the different invariant mass resolutions
in observed and simulated data. Comparing the frac-
tions of events inside and outside the Z region for the
different fully reconstructed lepton types, we find cor-
rection factors significantly different from unity only for
electron + track pairs. For CEM + track Z events, the
mass region only includes 98% as many events in real
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data as it does in simulation. For PHX + track events,
the number is 94%. We multiply these numbers by R;.
The uncertainties on these numbers are negligible com-
pared to other uncertainties on this background.

To distribute the estimate among the zero, one, and
two-or-more jet categories, we measure the fraction of
events in the Z region having each of these jet multiplic-
ities. These fractions, labeled f; in Equations [[2HI4] de-
pend on PYTHIA’s modeling of the probability to produce
extra jets, like the acceptances measured for diboson and
Z/y* — 77 events. Therefore, we apply the correction
factors derived in Section [VII B2 here as well. After cor-
rection, the fractions f; are rescaled by a common factor
so that they sum to unity.

The values of R; and f;, after correction, are shown in
Table [Tl for each type of fully reconstructed lepton.

5. Systematic Uncertainties

The largest uncertainty on the Z/y* — ee/up back-
ground estimate is the statistical uncertainty, which is
20%. This uncertainty is due in approximately equal
parts to the sizes of the real and simulated data samples.
The Monte Carlo samples used to calculate the ratios R;
and f;, described in the previous section (VILC4), con-
tain 13.8 million events. To generate enough events to
significantly reduce the uncertainty is impractical, and
even if enough events were generated to make the con-
tribution from simulation negligible, the total statistical
uncertainty would still be 13%.

Since the scale factor that is used to correct the num-
ber of extra jets produced by PYTHIA is applied to R;,
the fraction of events with jet multiplicity ¢, the statis-
tical uncertainty of 5.5% on the correction factor also
contributes here.

Finally, the reliability of the ratios R; and f; depends
on the ability of the simulation to model the Fr from
mismeasured objects. One way to make a quantitative
comparison between observed and simulated data is to
compare the fraction of events which exceed the 25 GeV
Fr threshold. Since many processes will contribute to
the high-Fr “Drell-Yan” data sample, we require the K
to be pointing at a jet or the track lepton by inverting
the corresponding Ay selection requirements. This en-
sures that the comparison is mostly between real and
simulated Z/v* — ee/pp events in which the Zr is due
to a mismeasured jet or lepton. The fraction of events
with Zr > 25 GeV is then measured in the data, and the
B distribution from the simulation is integrated to find
the threshold that would give the same fraction of events
above threshold. The outcome is a shift of 1 GeV in the
threshold, to 24 GeV. All of the ratios from the simu-
lation are re-derived with the 24 GeV threshold and the
background is recalculated. The recalculated background
estimate is 13.5% lower than the default estimate, and
the full difference is taken as a systematic uncertainty.

Combining the statistical and systematic uncertainties
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The fraction f; with each jet multiplicity

i =0 jets i =1 jet i = 2 jets

CEM 0.63 + 0.02 0.28 + 0.02 0.09 £ 0.01
CMUP+CMX 0.57 + 0.02 0.32 + 0.02 0.11 £ 0.01
PHX 0.68 + 0.03 0.26 + 0.02 0.06 £ 0.01

Ratio R; of number inside 76-106 GeV / ¢? to number outside

© =0 jets i =1 jet i = 2 jets
CEM 1.22 £+ 0.09 0.94 + 0.10 0.89 £+ 0.19
CMUP+CMX 0.41 + 0.04 0.31 £+ 0.04 0.34 £ 0.08
PHX 0.47 + 0.05 0.47 + 0.08 0.84 + 0.29

TABLE VI: Inputs to the Z/v* — ee/uu background estimate from simulation. The index 4 represents the number of jets
in the events in which the quantity is measured, and the ¢ = 2 category includes all events with two or more jets. Shown
uncertainties are statistical only; systematic uncertainties are discussed in Section [VITC3

in quadrature yields a total uncertainty of 25% on this
background.

D. Summary of Pretag Backgrounds

Backgrounds to the lepton + track tf sample come from
diboson, Drell-Yan, and W + jets events. Where possi-
ble, background estimates include information from con-
trol samples in the observed data. In the case of W + jets
with a fake lepton, the background estimate is based al-
most entirely on data. For the Z/v* — ee/up back-
ground, measurements in the data set the overall nor-
malization but simulation is used to fill in the details.
Diboson and Z/y* — 77 contributions are estimated
using simulation alone, with corrections obtained from
comparisons between real and simulated applied where
relevant.

The predicted number of background events for each
of these sources is presented in Table[XIl The systematic
uncertainties on all of the backgrounds and the corre-
sponding uncertainty on the cross section measurement
are collected in Table[VIIl Some care must be taken when
combining the background uncertainties, due to correla-
tions. The systematic uncertainties due to lepton and jet
reconstruction are fully correlated between the diboson
and Z/v* — 77 estimates, and must be summed directly
rather than in quadrature. Similarly, the uncertainty on
the jet multiplicity correction is correlated between the
Drell-Yan and diboson backgrounds. All other uncertain-
ties are uncorrelated.

VIII. BACKGROUND ESTIMATION IN

TAGGED SAMPLE

The tagged background estimate differs substantially
from the pretag background estimate. First, the nature
of the background changes when a tagging requirement is
added. In the pretag analysis the dominant background

is W+jets events with a fake lepton. In the tagged anal-
ysis backgrounds containing b-jets dominate. This in-
cludes processes producing two leptons and one or more
b-jets, such as Z + bb events, as well as events from tf
in the lepton + jets channel where one of the jets, either
from the light quarks from the W decay or from one of
the b quarks, is misidentified as a lepton. Second, in the
tagged analysis, we are able to estimate all backgrounds,
except for those arising from ¢t itself, using a single data-
driven technique discussed below. The background from
tt events with a fake lepton are estimated separately us-
ing a combination of real and simulated CDF' data.

The tagged background estimate is based upon jet tag-
ging rates obtained in generic QCD multijet events. We
apply this tagging rate to the pretag candidate events,
taking advantage of the fact that it has a large back-
ground component. We then correct this for tagged
events from tf decays in the pretag sample, and for ¢t
lepton + jets events with a fake lepton. Simulated events
are used to estimate the size of the corrections.

A. Data-Based Estimate of Background

The background of the tagged lepton + track sample
can be organized into two parts. The first is made up
of processes with a decay signature similar to the sig-
nal, such as Z + bb events, or any event passing pretag
selection criteria that also has a mistagged jet. In the
Z + bb case, the b tag is legitimate and the mismeasure-
ment of some object in the event produces false Zr. In
the mistag case, a jet is falsely identified as a b-jet. Such
backgrounds may be estimated using tag rate matrices,
discussed in more detail below. The second category of
background events are fakes from tf decay in the lep-
ton + jets channel, where a jet is falsely identified as a
track lepton. For these events, the probability to tag the
event will be underestimated by the matrix because there
are two b-jets in the event.

As stated in Section [VIBl positive tags are interpreted
to be tags of long-lived B hadrons and negative tags are
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Source

Lepton identification
Jet energy scale

Jet multiplicity
Diboson normalizations

Z[y" — ee/pp

Uncertainty Uncertainty
on background on cross section
1.6% 0.3%
5.8% 1.0%
5.5% 1.8%
6-7% 0.5%

25% 3.6%

20% 7.9%

W + fake lepton

TABLE VII: Summary table of systematic uncertainties on the pretag background estimate. The Z/v* — ee/uu uncertainty
includes the statistical uncertainty and the systematic uncertainty on the projection of the number of events to outside the Z
mass region. The uncertainty on the jet multiplicity correction is listed separately, as it applies to the diboson and Z/y* — 71

backgrounds as well.

interpreted as “mistags”, or mistakes due to material in-
teractions or resolution effects. Positive and negative tag
rates of generic QCD jets are parameterized in five quan-
tities: jet Ep, the number of tracks in the jet, jet 7, the
number of primary vertices in the event, and the total
scalar sum of the Ep of all the jets in the event, Xpp.
These parameterizations are termed “tag matrices”. The
generic QCD jet samples used to build the matrices con-
tain real tags from B hadron decays, as well as mistags.

As a first step in estimating the backgrounds, we treat
all events in the pretag sample as if they are from back-
ground sources that have the same relative proportion of
heavy and light flavor jets as the generic multijet sample.
We apply the positive tag rate matrix to all of the jets
in the sample to obtain a first estimate of the expected
number N,,...;x of background events in the sample. This
estimate has to be corrected for the fact that the sam-
ple is not entirely background and the fact that the jets
do not have the same mix of heavy and light quarks as
generic QCD multijet events.

In particular, ¢t events do not have the same tagging
rate as generic QCD events, the rate represented by the
tag rate matrices. Top quark pair decays via the dilep-
ton channel make up a considerable portion of the pre-
tag events by design, but these should not contribute
to the background estimate. We estimate this number
N4t in Section [VIIIBl and subtract it from Ny .-
Also, a portion of the fake lepton background is not due
to generic QCD processes, but arise from tf decays in the
lepton + jets channel. Recall that in this analysis ¢t de-
cays in the lepton + jets channel decays are considered a
background. Again, these tt events do not have the tag-
ging rate predicted by the tag rate matrices, but unlike
the dilepton contribution, they are a background. There-
fore, we need to subtract their contribution N7 . from
the matrix estimate, and add back the correct contribu-
tion N2 . NE  is the proper estimate of the number
of lepton + jets events which pass the lepton + track se-
lection with a fake lepton and are tagged because of the
presence of b-jets. These numbers will both be derived

in Section [VIITCl Thus, the total tagged lepton + track

Ninatrix 137 +£1.1
N 8.6 +23
NE 0.7 +0.1
Npretas 30.7 +6.7
Fss, 0.239 + 0.008
o 0.70 =+ 0.03
NEL.. 52 4 1.2
NS 95 +28

TABLE VIII: Details and results of the tagged background
calculation. Uncertainties include systematic contributions.

background is given by:

_ N

matrix

_ NL.I

matrix

tag __
Nb:i - Nmatrix

+ NL.I

fakes *

(15)

Note that the tagging rate for background events with
a fake lepton from W + jets processes is well estimated
by the tag rate matrices, and is included in N,,..... Also,
we are now including jets from W/Z + jet events in the
category of generic jets though we pointed out earlier that
they differ from QCD jets in average track multiplicity,
which has a significant impact on the lepton fake rate.
The impact of these differences is taken into account in
the tag rate matrix, which is parametrized as a function
of track multiplicity. As such, it can be applied equally
well to jets in generic multijet processes and W/Z + jet
events.

B. Correction for ¢t Dilepton Content in the
Pretag Candidate Sample

The pretag lepton + track sample has a large fraction
of tt events, which should not counted in the background
estimate. The contribution to N, ...« from dilepton t# de-
cays is estimated using simulated tt events. We derive the
matrix tag rate, €,..ix Dy applying the tag rate matrix
to all jets in the pretag candidate events in simulated ¢t
events, and divide by the total number of pretag events.



We find €., = 0.122 £ 0.025. The total contribution
to the background N2 . from dilepton ¢t events is then
given by
N s = Emaunix (NJ2™ = NJG™%) (16)
where €,,,..; is the t tag rate, and the estimated number
of tt events in the pretag candidate sample is the differ-
ence between the number of observed pretag candidates
and the predicted background, NFree — Npretes  which
were described in Section [VIIl
We find N4 = to be 8.6 + 2.3 events. Values used in

matrix

the calculation are found in Table [VIII

C. Correction for ¢t Lepton + Jets in Pretag
Sample

As discussed in Section [VIIlthe fake lepton background
originates from two processes. The first is the QCD ra-
diation of extra jets in W + jets events, for which we
can estimate the tag rate using the matrix. The second
is the lepton + jets channel decay of tt events, which is
estimated separately.

We treat the ¢t lepton + jets channel as a background
source and these events are rejected from the acceptance
for our selection. These events are present in the pretag
sample, and therefore contribute to IV, ... However, like
dilepton tt events, lepton + jets tf events do not have the
same tag rate as predicted by the tag rate matrices. As
such, their contribution to N,,....x needs to be replaced by
a more accurate estimate. We subtract the lepton + jets
tt contribution in the same manner as for dilepton events.
The tag rate in lepton + jets events is slightly larger than
in dilepton events because there are more jets per event.
Using simulated ¢ lepton + jets events we use the matrix
to find the tag rate, and then multiply by the number of
predicted pretag background events from the ¢t process
with a fake lepton:

N — NPretas fL.I - (17)

matrix fakes fakes ~matrix ?

where NpPio*¢ is the estimated number of fakes in the
pretag sample and provides an overall normalization for
the tagged estimate. fL!  is the fraction of pretag fakes
that come from #¢ decays in the lepton + jets channel,
derived from simulation. We find N . to be 0.7 & 0.1.

The actual contribution from the tf lepton + jets chan-
nel, NJJ . now needs to be estimated and added back
into the total background; see Eq. Because the pre-
tag fake lepton background estimate is based on W + jets
data, this is equivalent to finding the actual ¢ content of
the events passing that selection which are also tagged.

The quantity NZI is factorized as

fakes

NL.I — Nprctag f{t/;g_i_zgjets top . (18)

fakes fakes tag

Recall that in the pretag background estimate we used
the fraction of events with a fake lepton that has the op-
posite charge of the primary lepton. We need it here as
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well, but it is different in the pretag fake lepton sample
than in the tagged fake lepton from ## sample, so we cor-
rect for the different opposite sign fractions in pretag and
tagged fakes. flt/fa/ngZBjets is the fraction of W+ > 3 jet
events observed in data that are tagged, and fo* is the
fraction of tagged W+ > 3 jet events which are from the
tt lepton + jets channel. As in the pretag case, we are
concerned with W+ > 3 jet events because we require at
least two jets in the events selection, and so an additional
jet is required to fake the track lepton.

The fraction flt/fa/ngZBjets is calculated directly from the
data, without using simulation. We select W+ > 3 jet
events with the same criteria that defines the lep-
ton + K1 + jets sample used to normalize the pretag
fake lepton estimate (See Section [VITAl). The fraction of
those events which are tagged is ftt/;ngZS Jets-

The fraction fP of tagged W+ > 3 jet events which

= tag
are tt lepton + jets is estimated as
top __

_ Qg O f.,gdt

tag LJ
cand

(19)

In the above, oy is the lepton + jets acceptance in simu-
lated ¢t events using the lepton + E7 + > 3 jet selection,
including the requirement that at least one jet be tagged,
that defines the tagged W+ > 3 jet sample described
above. f Zdt is the total integrated luminosity, oz is
the t¢ cross section, and N’ is the number of tagged
lepton + jets events in the CDF data. Those events are
selected using the same criteria as the events used to find
TW>3jets- So the number of tagged W + > 3 jets events
which are from tt decays is estimated by multiplying the
acceptance for the tf lepton + jets channel by the inte-
grated luminosity and the #t cross section. By dividing
by the number of candidate lepton + jets events in the
data we find the fraction of tagged events which are from
tt.

Like some of the pretag backgrounds, this background
depends on the tt cross section, so we also include this
dependence explicitly in the likelihood calculation (See
Section [XAl). The final value of f2" is in Table [VIITl

D. Systematic Uncertainties on Tagged
Background Estimate

The systematic uncertainty on the tagged background
estimate consists of the combined uncertainties from the
two components of the background: the background es-
timated using the tag rate matrix and the background
from lepton + jets channel events with a fake lepton.
Statistical errors on quantities derived from simulation,
such as €7, and fip% 55, are negligible.

matrix?

1. Data-Based Background Prediction

The systematic uncertainty one the data-based predic-
tion method is 8%. This uncertainty applies to all pre-



dictions from the mistag matrix. It mostly arises from
charm and light flavor contamination in the data used to
derive the tag rate matrices. Because this systematic un-
certainty is correlated among all predictions made using
the matrix, we only apply the systematic for the matrix
technique to the physics background portion of N, ..ix,
the difference N, — N — NY

matrix matrix*

Tagging predictions made by the tag rate matrices also
have a statistical uncertainty due to the limited sample
size for each entry in the matrix. This uncertainty applies
to each of the three numbers calculated using the matrix,
but is uncorrelated between them. This contributes un-
certainties of 1.1 events to N..ix, 1.8 events to NI - .
and 0.1 events to NI . (see also Table [VIII). Com-
bined, these contribute an uncertainty of 2.1 events, or
47%, to the predicted matrix background of 4.4 events.

The predicted contribution from #f dilepton events,
Nt . is computed from the number of predicted pre-
tag tt events, which is based on the number of observed
candidates and the predicted background in the pretag
sample. The uncertainty on this prediction contributes
another 1.5 events to the uncertainty on N2 . bringing

its total uncertainty to 2.3 events. This is another 34%
uncertainty on the matrix background prediction.

The total systematic uncertainty on the data-based
background prediction is 2.6 events or 59%.

2. Lepton + Jets with a Fake Second Lepton

The estimate N _ of the number of background events
from tt lepton + jets events with a fake second lepton
has the same sources of systematic uncertainty as the
pretag fake lepton background estimate, upon which it
is based. This is a 20% systematic uncertainty on the
overall normalization and a 9% systematic uncertainty on
the opposite sign fraction used for lepton + jets events.

See Section [VITA] for details.

This background has a smaller additional contribution
to the uncertainty which is unique to the tagged back-
ground estimate. These are a 3% statistical uncertainty

tag « g . .
on fi%;; and a 4% statistical uncertainty on ft°r. Com-

tag *

bined, these add an extra 5% uncertainty to the fake
lepton background.

The total systematic uncertainty on the background
from lepton + jets events with a fake lepton is 1.2 events.

The total tagged background systematic uncertainty is
obtained by adding the total uncertainty on the matrix
and fakes predictions in quadrature. We find the overall
systematic uncertainty on the background estimate to be
2.8 events, or 30%. The systematic uncertainties on all of
the backgrounds, and the corresponding uncertainty con-
tributed to the cross section measurement, are collected
in Table [[X]
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IX. RESULTS

We first describe the likelihood used to derive the cross
section results, including the treatment of uncertainties.
Then we summarize the predicted and observed event
counts and present the cross sections for the two individ-
ual samples, the combined result, and selected kinematic
distributions.

A. Likelihood Fit

To calculate the cross section results, we construct
a likelihood function describing the joint probability of
finding a particular number of candidate events in each
sample given the predicted signal and backgrounds. We
vary the input parameters to find the cross section value
most likely to give the observed number of candidates in
each sample.

In order to combine the results, we must define two
statistically independent samples so that the number of
candidates in each can be described by independent Pois-
son distributions. Because the tagged events are a subset
of the pretag events, we can divide the pretag candidate
events into non-overlapping tagged and untagged sam-
ples. Although everything in this paper is described in
terms of the pretag and tagged samples, the combined
result is found from the tagged and untagged samples.
The expected number of events in the tagged sample
has already been characterized in terms of the signal
acceptance, the event tagging efficiency, and the calcu-
lated background. The expected number of events in the
untagged sample may be derived from the information
about the tagged and pretag samples. The acceptance is
identical to both the pretag and tagged samples, and the
fraction of pretag events that go into the untagged sam-
ple is approximately 1 — €tag, Where €rg is the event tag-
ging efficiency. The equality is not exact because there
are some events in the pretag sample which cannot be
tagged because the silicon tracking was not in usable
condition when those events were recorded (data quality
requirements are described in Section[[II)). Therefore, we
calculate the number of expected untagged signal events
as the difference between the predicted number of pre-
tag and tagged signal events. Similarly, the backgrounds
in the untagged sample are calculated as the difference
between the pretag and tagged backgrounds.

The likelihood function has seven independent param-
eters. One is the input cross section, and the other six
are “nuisance parameters” corresponding to systematic
uncertainties. The likelihood £ may be expressed as:

log L = log P (Ny, NI™*) + log P (Ny, NFeY)

+§: ( % (Qiéé f??)) (20)
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Source Uncertainty Uncertainty Uncertainty
(in events) on background on cross section

tag matrix technique 2.6 59% 4%

tt (lepton + jets) + fake lepton 1.2 22% 2%

total 2.8 30% 5%

TABLE IX: Summary table of systematic uncertainties on the tagged background estimate.

where
NP — g Acwns / Zdt + By(o) (21)
and
Nt —
= aA/th+B(a) — NPT, (23)

Nprcd _ N;md (22)

A Poisson distribution & (N, N*?) describes the proba-
bility to find N candidates given the mean number N®*¢
predicted. The number of tagged and untagged candi-
dates are each described as independent Poisson distri-
butions. In the above, NP is the number of candidates
predicted in the pretag sample, Nf*¢ is the number pre-
dicted in the tagged sample, and NP*¢ is the number
predicted in the untagged sample. The corresponding
numbers of observed candidates are N, Ny, and N,. A
is the pretag acceptance, €., is the event tagging efli-
ciency, [.Zdt is the integrated luminosity, and o is the
tt cross section, for which we are fitting. The pretag
and tagged background estimates, which depend on the
signal cross section, are B(o) and Bi(c). The probabil-
ity distribution used for the nuisance parameters, such
as the acceptance and backgrounds, is a Gaussian cen-
tered on the predicted value and having width equal to
the relevant systematic uncertainty. This is shown as the
sum in Equation 20, where QY is the central value of the
nuisance parameter, (); is the varied value, and §Q); the
associated uncertainty.

The systematic uncertainties treated as nuisance pa-
rameters are on the acceptance, the event tagging ef-
ficiency, the fake lepton background in the pretag and
tag samples, the remaining pretag background from
Drell-Yan and diboson events, and the remaining tagged
background as estimated using the data-driven matrix
method. These sources of uncertainty are independent
from each other, but some of them are shared between
the pretag and tagged measurements, and are varied to-
gether in the fit. Table [X] shows the cross section in-
puts and their uncertainties, with the correlations be-
tween uncertainties shown. For example, the systematic
uncertainty on the acceptance is correlated because the
same number is used in both the tag and pretag samples.
The number of expected tagged and untagged events vary
up or down together with the acceptance. In contrast,
the uncertainty on the event tagging efficiency applies
to the tagged sample but not the pretag sample. As

the event tagging efficiency is varied in the fit, the num-
ber of events predicted shifts between the tagged and
untagged samples but their sum, the number of pretag
events, remains constant. To put it another way, the
number of predicted untagged signal events is correlated
with the number of pretag and tagged events through
the acceptance, but anticorrelated with the number of
tagged signal events through the event tagging efficiency.
The common 20% systematic uncertainty on the back-
ground from fake leptons is treated similarly to the ac-
ceptance, because the predicted pretag, tagged, and un-
tagged background from fake leptons will all increase or
decrease together. This happens because the tagged fake
lepton background prediction is normalized to the pre-
tag fake lepton background prediction. All additional
uncertainties on the pretag and tagged backgrounds are
treated independently, because the calculations do not
depend on each other, and the sources of uncertainty are
distinct.

Some of the background calculations depend on the ¢t
cross section, the quantity we wish to measure. In the
fitting procedure, the number of predicted events is cal-
culated as a function of the cross section. In addition
to recalculating the number of expected signal events,
we also recalculate the number of background events for
the cross section at each point in the fit. This removes
any dependence of the measured cross section on the ex-
pected value and allows the statistical uncertainties to be
correctly calculated.

The seven parameters is allowed to float, and we find
the combination that maximizes the likelihood. The cross
section at the maximum is our result. To calculate the
uncertainty on the combined cross section, we find the
points above and below the maximum value of the like-
lihood function at which the logarithm of the likelihood
function has decreased by 0.5.

To estimate the expected improvement in precision of
the combined cross section over the two single measure-
ments we perform pseudoexperiments with an input cross
section of 6.7 pb. We find an expected improvement in
precision of 15%, from 21% to 18%. The pull distribu-
tion from these pseudoexperiments is shown in Fig. [T}
The pull distribution width is one within the uncertain-
ties, demonstrating that the experimental uncertainties
are correctly estimated. The slight bias in the mean is
due to the fact that the number of candidates is restricted
to integer values. This limits the possible values of the
measured cross section for samples with small expected
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Pretag Tagged

Acceptance (%)

Event Tagging Efficiency

Background from Fake Leptons (events)
Other Pretag Backgrounds (events)
Other Tagged Backgrounds (events)

0.84 £ 0.03 £ 0.0 0.84 £ 0.03 £ 0.0
- 0.67 £ 0.0 =+ 0.04
299 +£59 £0.0 52 £12 +£0.05
240 £00 *£31 -
- 44 £00 £26

TABLE X: Likelihood inputs for the pretag and tagged samples, with systematic uncertainties. Uncertainties are shown in
the form (number) £ (correlated uncertainty) £ (uncorrelated uncertainty). The fake lepton background for tagged events
includes only the leading ¢t lepton + jets contribution, because the W + jets contribution is included in the tag-matrix-based
background calculation, which is uncorrelated with the pretag background estimate.

[%2]
< 2500 mean -0.040 + 0.003
S I width 0.997 + 0.002
£ 2000
= i
E [
5] i
< 1500 -
) |
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(measured - input)/uncertainty

FIG. 11: Pull distribution from pseudoexperiments run with
the likelihood used to find the combined cross section.

numbers of events.

B. Pretag Sample

Using the event selection described in Section [[V] we
find 129 pretag candidate events in the data, which
has an acceptance-weighted integrated luminosity of
1070 #+ 60 pb~!'. The background is calculated to be
53.8 + 6.7 events and the summed acceptance times
efficiency is 0.84 £+ 0.03%. Using these, we calculate
the cross section using the likelihood fit described ear-
lier in this section. Assuming m; = 175 GeV/c? and
BR(W — tv) =10.8 %, we find

0,7 = 8.3 £ 1.3(stat.) £ 0.8(sys.) £ 0.5(lum.) pb ,

consistent with the standard model prediction of
6.670% (scale) 703 (PDF) pb [g].

For the pretag sample, the signal and background pre-
dictions are summarized and compared to the observed

—e— CDF data (1.1 fb})
It (0 =6.7ph)
[ W + Fake Lepton
B Drell-Yan

[ Diboson
Uncertainty

on prediction

Number of Events

.
SLLLLILILI SIS b 4SS IS IS II IS IS
iz zzzzz

0 1 =2

Number of Jets

FIG. 12: Number of predicted pretag lepton + track events
compared to the number observed in the CDF data. The
cross-hatched areas show the combined statistical and system-
atic uncertainties (one standard deviation) on the prediction.

number of candidate events, for events with zero, one,
and two or more jets, in Table [XIl The zero and one jet
event comparisons test the background predictions, be-
cause the contribution from t£ in these jet multiplicities
is very small. The number of events predicted and ob-
served agree for all jet multiplicities, although it should
be noted that the zero jet events are not as strong of a
cross-check, since a subset of these is used to derive the
opposite-sign fraction for W + jets events with a fake
lepton (see Section [VITA)). Figure [[2]is a visual repre-
sentation of Table [XII In both the table and the figure,
the signal prediction is shown at the theoretical cross sec-
tion value of 6.7 pb, but the backgrounds which depend
on the tt cross section are calculated at the measured
value of 8.3 pb.

The cross section calculated at other values of my is
shown in Table [XIVl The measured cross section de-
creases with increasing m; even though the number of ob-
served events is unchanged. For higher top quark masses
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0 jets 1 jet > 2 jets
WWw 85.8 £ 8.7 149 + 1.5 3.7+04
wWZzZ 9.3+ 1.0 43+ 05 1.3 £0.2
YA 6.0+ 0.6 1.6 £ 0.2 0.8 £0.1
Z/v* — ee 71.3 £ 15.7 25,5 £ 6.0 7.6 £ 2.2
Z/v* — pp 179 £ 5.2 84+ 2.7 32+1.1
Z/y — 71T 35.5 + 3.2 26.5 + 2.5 7.3 £0.9
Fakes 244.1 + 46.4 76.8 £ 14.6 29.9 £5.9
All Backgrounds 469.9 £ 52.5 1579 £ 17.2 53.8 £ 6.7
tt,o = 6.7 pb 1.2+ 0.1 173 £ 0.6 60.3 £ 1.9
Predicted 471.1 £ 52.5 175.2 £ 17.3 1142 £ 7.1
Observed 443 187 129

TABLE XI: Predicted and observed pretag events in 1.1 fb™!, with details of the background contributions. Systematic

uncertainties on the predictions are included.

tt decay products are more energetic and therefore more
likely to pass the kinematic selection, increasing the ac-
ceptance. The background estimates also depend weakly
on the top quark mass through the use of simulated tt
events to calculate the prevalence of # in control data
samples and the background from #f lepton + jets events
with a fake lepton.

We compare the kinematic features of the observed
pretag lepton + track candidates to the expected dis-
tributions. In each of these figures, the tf contribution
is normalized to the measured cross section, so only the
shapes of the distributions are to be compared, not the
normalization. One of the most prominent features of
dilepton tt events in particular is the K7 from the two
neutrinos. Figure [[3] compares the Zr spectrum of can-
didate events to the summed spectra expected for signal
and background as predicted by simulation. Because the
top quark is so massive, the Hr distribution of ¢ events,
defined as the scalar sum of the primary lepton Er, track
lepton pr, Er, and the Er of all jets in the event, is also
distinctive. The Hyp distribution, shown in Fig. [[4], is
skewed toward higher values for the tf signal than for
its backgrounds. Turning to the charged leptons in the
event, we show the pr of the fully reconstructed lepton
and the track lepton in Fig.[I5] and their invariant mass
in Fig. Fig. is useful for comparing the signal
to the background contribution from events with a fake
lepton, since the latter produces a much softer lepton
pr distribution, due to the exponentially falling jet pr
spectrum. Similarly, Fig. [If] is useful for comparing the
signal to the background from Drell-Yan events, since
the invariant mass distribution is more peaked for this
background than for the signal. The agreement between
the predicted and observed distributions suggests that
the content of the candidate sample is well-understood
within the uncertainties.
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FIG. 13: Missing transverse energy of pretag lepton + track
candidate events with two or more jets, compared to the pre-
dicted distribution. The highest bin shown includes all events
which would be past the right edge of the plot.

C. Tagged Sample

In the tagged sample, we find 69 candidate events,
and measure 9.5 £ 2.8 background events. The pre-
dicted and observed numbers of events in the sample,
with the prediction divided by source, are shown in Ta-
ble XTIl The inputs to the tagged cross section calcula-
tion are summarized in Table XIIIl Using data with an
integrated luminosity of 1000 + 60 pb~!, and assuming
my = 175 GeV/c? and BR(W — (v) = 10.8 % we find:

o7 =10.5713 (stat.) 153 (sys.) & 0.6(lum.) pb .

The tagged cross section as a function of assumed top
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FIG. 14: Summed transverse energy (Hr) of pretag lep-
ton 4 track candidate events with two or more jets, com-
pared to the predicted distribution. The sum includes the
fully reconstructed lepton, the track lepton, the Er, and all
jets passing the analysis selection. The highest bin shown in-
cludes all events which would be past the right edge of the
plot.

S 80 —e— CDF data (1.1 b))
S F Jtt c=83pb)
S o0F [ W + Fake Lepton
g 60 E_ - Drell-Yan
2 F |:| Diboson
Y s0f
40
30F
20
10F
C -~ . .
o -0- -0
0 [ —— :

0 20 40 60 80 100 120 140 160 180 200
Transverse Momentum of Both Leptons (GeV c)

FIG. 15: Distribution of lepton transverse momenta in pretag
lepton + track candidate events with two or more jets, com-
pared to the predicted distribution. There are two entries for
each event; one each for the fully reconstructed lepton and
the isolated track. For fully reconstructed electrons, the Er
is used to estimate the pr. The highest bin shown includes
all events which would be past the right edge of the plot.
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FIG. 16: Reconstructed invariant mass of the fully recon-
structed lepton and isolated track pair in pretag candidate
events with two or more jets, compared to the predicted dis-
tribution. The highest bin shown includes all events which
would be past the right edge of the plot.

quark mass is included in Table [XIVl Similar to the
pretag measurement, the background estimate is rela-
tively insensitive to the value of the top quark mass.
The event tagging efficiency, for top quark masses be-
tween 170 and 180 GeV /c?, is consistent with that mea-
sured at m; = 175 GeV/c?2. Therefore, the only change
to the measurement as a function of the top quark mass
is the acceptance for tt events.

The tagged cross section has a combined lower uncer-
tainty of 1.6 pb, including the uncertainty on the lu-
minosity. This translates to an excess above the stan-
dard model prediction of 2.4 in units of the calculated
uncertainty on the measurement. However, the tagged
measurement is consistent with the pretag measurement.
The two measurements differ by the observed 2.2 pb in
about 10% of pseudoexperiments, where the exact frac-
tion depends on the assumed true cross section. The
kinematic features of the observed candidates are also
consistent with the standard model expectation, which
for the tagged sample are predominantly tt.

Figures [[7H2T] display some of the kinematic features
of the tagged candidate sample, compared the expected
combined signal and background contribution. In all of
these figures, the signal is normalized to the measured
cross section. The Hr and Fr of the tagged candidate
events are shown in Fig. [[7 and Fig. I8 respectively.
These both have distinctive distributions for ¢ events;
see the discussion above on pretag kinematic distribu-
tions for details. Fig.[I9 and 20 show the transverse mo-
mentum distributions of the fully reconstructed leptons
and the isolated tracks. Fig.2Ilshows a unique feature of



Source Number of events
From Matrix (e.g. Z + bb) 44+ 26
Fakes 52+ 1.2
All Backgrounds 9.5 + 238
tt,oc = 6.7 pb 377+ 24
Predicted 47.3 £ 3.7
Observed 69

TABLE XII: Predicted and observed events with two or more
jets, at least one of which is tagged, in 1.0 fb~!, with details
of the background contributions.

Input Value
N*# 69
Ny 9.5 +£28
Ax [ Zdt 84 4 0.03pb~?
€tag 0.669 + 0.037

TABLE XIII: Predicted background and observed events in
1.0 fb~!, with inputs to the cross section calculation for the
tagged analysis. Systematic uncertainties are included in the
prediction numbers.

the tagged events, the distance along the tagged jet axis
from the interaction point to the reconstructed secondary
vertex, which corresponds to the distance traveled by the
b hadron before decaying. In all of the figures, the last
bin on the right includes all events which would be past
the right edge of the plot.

In all of the distributions, good agreement is observed
between the candidate events from data and the ex-
pected distributions. Comparing the distributions from
the tagged sample to the ones from the pretag sample,
the improvement in sample purity from the b-tag require-
ment is evident. The agreement between the predicted
and observed distributions shows that although the mea-
sured cross section is on the high side, the observed can-
didates are consistent with the expected tt signature.

D. Combined Cross Section Results

Using the likelihood fitter, we find a combined cross
section of

o = 9.6715(stat+sys) & 0.6(lum) pb
or
o = 9.6 £ 1.2(stat) 08 (sys) + 0.6(lum) pb.

The 14% combined statistical and systematic uncertainty
is an improvement in precision on either of the individ-
ual measurements. The combined cross section is also
shown as a function of the assumed top quark mass in
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FIG. 17: Summed scalar energy (Hr) of the fully recon-
structed lepton, the isolated track, the Fr and all jets in the
tagged candidate sample, compared to the combined signal
and background predictions.
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FIG. 18: Missing transverse energy of the lepton + track
tagged candidate sample, compared to the combined signal
and background predictions.

Table XIV] and Fig. In both, the measured cross sec-
tion is compared to the theoretical prediction. Both the
predicted and measured cross section depend on the top
quark mass, but the dependence is stronger for the pre-
dicted cross section. The predicted cross section drops
off with increasing top quark mass because of the in-
creased collision energy needed to exceed the kinematic
threshold for pair production of top quarks. The mea-
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FIG. 19: Transverse momentum of the fully reconstructed lep-
ton in the tagged lepton + track candidate sample, compared
to the combined signal and background predictions. The Er
is used as an estimate of the lepton pr for fully reconstructed
electron candidates.
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FIG. 20: Transverse momentum of the track lepton (isolated
track) in the tagged lepton + track candidate sample, com-
pared to the combined signal and background predictions.

sured cross section depends on the assumed mass more
weakly, through the increased acceptance at higher top
quark masses because of the increased average transverse
momentum of the decay products.

To facilitate comparison of this result with other mea-
surements and calculations, which may be performed at
different assumed top quark masses, we fit the combined
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FIG. 21: Distance along the jet axis to the reconstructed sec-
ondary vertex in tagged jets in the lepton + track candidate
sample, compared to the combined signal and background
predictions.

cross section results shown in Table[XIVlto the functional
form

oi(mi) = A+ B(my — 175) + C(M; — 175)?

in the spirit of Ref. [§. The top quark mass m;
is in GeV/c?, and the fit yields the coefficients A =
9.6 pb, B = 4.4 x 1072 pb/(GeV/c?), and C = 9.6 x
1073 pb/(GeV /c?)2.

We compare the measured cross section to the standard
model prediction at the current world average measure-
ment, 173.1 GeV/c? [3]. Using the fit described in the
previous paragraph, we measure 9.72:‘2 pb, where the
uncertainty includes the statistical, systematic, and lu-
minosity uncertainties. The prediction for this top quark
mass from Ref. [§] is 7.0702 pb. The uncertainty on the
difference between the two, 1.5 pb, includes the uncer-
tainty on the measurement and the theoretical predic-
tion. The significance of the the difference is therefore
2.7 pb/1.5 pb = 1.8. Comparison of the kinematics of
the pretag and tagged candidate samples to the standard
model expectation shows that the content of the sample
is reasonably well-understood. Also, the measurement
agrees with the D@ measurement in the dilepton channel,
7.4+ 1.4 (stat.) +0.9 (sys.) £0.5 (lum.) pb [21], as well
as with the published measurements from other channels
cited in the Introduction, most of which are also above
the predicted theoretical value.
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Input Theoretical Pretag Measured cross section (pb)
my (GeV/c?) o (pb) tt Acceptance Pretag Tagged Combined
170 7708 0.80 & 0.02 % 8.8 1% 11.0 F11 10.1 T2
1725 71798 0.83 + 0.02 % 8.5 1% 10.7 £11 9.8 1113
175 6.679:5 0.84 + 0.03 % 8.3 118 10.5 7% 9.6 713

TABLE XIV: The pretag and tagged cross section as calculated at several input top masses. Theoretical prediction from
Ref. [§]. The statistical and systematic uncertainties are combined, and a common uncertainty of 6%, due to the uncertainty

on the integrated luminosity, is omitted.
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FIG. 22: Measured cross section as a function of the assumed
top quark mass, compared to theoretical predictions for the
cross section.

X. CONCLUSION

We have measured the ¢ production cross section in
the dilepton channel using events selected with one fully
reconstructed lepton and one isolated track, both with
and without the requirement that at least one jet in the
event be tagged as a b. The combined result of these
measurements is

o = 9.6 £ 1.2(stat) T5 S (sys) + 0.6(lum) pb

for a top quark mass of 175 GeV/c?. This is the first
dilepton cross section result from CDF which uses b-
tagging information. We have also improved the estima-

tion of the pretag backgrounds with respect to the pre-
vious publication, particularly for the background from
events in which a jet has been reconstructed as an isolated
track. These changes, combined with the integration of
more data, result in a more precise measurement of the
cross section in the dilepton channel compared to other
published results.

The cross sections measured are high compared to the
standard model prediction, but the consistency between
the tagged and pretag measurements, their agreement
with other published measurements, and the consistency
of the candidate event kinematics with the standard
model all support the hypothesis that the high cross sec-
tions observed are consistent with an upward fluctuation
in the number of tf events accepted by the lepton + track
selection.
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