

Model Discrimination with the CMS Detector: a Case Study

Julia Thom
Cornell University (RWTH Aachen)

Particle Physics Seminar

3. Physikalisches Institut, RWTH Aachen

5/8/2009

Perelstein, Spethmann, JT, Vaughan, Hallenbek arXiv:0812.3135 [hep-ph], to appear in PRD

First years of LHC data

- Begin running with a large number of possible New Physics extensions to the SM
- Strong limitations on our understanding of first data sample
 - Small statistics
 - Poorly understood detector, immature simulation
 - Primitive triggers, jets, flavor tagging,...
- If we see excess over SM predictions, what do we do next to identify the correct New Physics model
 - What are the most powerful model discriminators?
 - How do we deal with the large parameter space of the many NP models?

This study

- pick a simple signature with good prospects for clear excess over SM prediction
 - Many New Physics models make a compelling case for pair production of exotic particles decaying to jets + Missing energy (+ X) at the TeV scale
 - Same experimental signature predicted for many of them ("Look-alikes")
 - Difference in spin of exotic particles
- Can we exclude classes of NP models based on spin information, assuming realistic conditions? How sensitive are we to exp. effects?

Perelstein, Spethmann, JT et al arXiv:0812.3135 [hep-ph], to appear in PRD, See also: Lykken, Spiropulu, Hubisz, et al Phys.Rev.D78:075008.

Jets + Missing Energy (+X) at LHC:

- Why do we think we will see signs of New Physics at the LHC?
- Plausible extensions to the SM that result in this signature:
 - MSSM
 - Little Higgs with T-parity
 - UED,...

"Hierarchy"-Problem

- As the Higgs propagates, it interacts virtually with all particles it can couple to, e.g. Fermions
- this will contribute to the Higgs mass ("radiative corrections")

 Higgs mass can receive enormous corrections proportional to the largest scale in the theory ("Planck Mass", 10¹⁹ GeV)

$$\Delta m_H^2 = \frac{|\lambda_t|^2}{16\pi^2} (-\Lambda_{UV}^2 + ...)$$

One plausible solution: Supersymmetry

A symmetry which relates bosons to fermions:

$$Q|Boson\rangle = |Fermion\rangle$$

$$Q|Fermion\rangle = |Boson\rangle$$

 We know that a boson loop would contribute to ∆m_H with opposite sign

$$\Delta m_H^2 = \frac{\lambda_B}{16\pi^2} (\Lambda_{UV}^2 + ...)$$

- This allows for systematic cancellation between Fermion and Boson loop contributions $\lambda_B = \left| \lambda_f \right|^2$
- Supersymmetry implies that Fermions and Bosons come in "super"-multiplets, e.g. (t (spin ½), t (spin 0))

"Minimal" Supersymmetric Standard Model (MSSM)

- Minimal extension of SM that realizes Supersymmetry
- Superpartner for each SM d.o.f., most general SUSYbreaking terms
- •Introduces a discrete R-parity (SM particles are even, superpartners are odd.)

Names	Spin	P_R	Gauge Eigenstates Mass Eigenstate		
Higgs bosons	0	+1	$H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$	h^0 H^0 A^0 H^\pm	
	0	-1	$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)	
squarks			\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R	(same)	
			$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2	
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)	
sleptons	0	-1	$\widetilde{\mu}_L \; \widetilde{\mu}_R \; \widetilde{ u}_\mu$	(same)	
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_{ au}$	$\widetilde{ au}_1$ $\widetilde{ au}_2$ $\widetilde{ u}_{ au}$	
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0 \widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}		
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-} \widetilde{C}_{1}^{\pm} \widetilde{C}_{2}^{\pm}	
gluino	1/2	-1	\widetilde{g} (same)		
goldstino (gravitino)	1/2 (3/2)	-1	\widetilde{G}	(same)	

34 new particles

[table: S. Martin, hep-ph/9709356]

Generic MSSM predictions

 All SM states are R-even, superpartners R-odd, so superparticles need to be pair produced, and Lightest SuperPartner (LSP) is stable

LSP can be a WIMP dark matter candidate

Another plausible Solution: Little Higgs Models with T-parity

Higgs Mass instability cancelled by particles of the same spin, e.g. spin 1/2 "heavy top" T

- Consequence of symmetry structure
- Have to introduce T-parity to satisfy exp. constraints
 - T-odd partner for each SM particle (T-quarks, T-leptons)
- Lightest T-odd particle is stable, spin-1 "heavy photon"
 - WIMP DM candidate

[Carena, Hubisz, MP, Verdier, hep-ph/0610156, PRD75:091701]

Summary MSSM vs.LHT

MSSM:

- "boson cancels fermion"
- Squarks have spin 0
- dark matter candidate χ⁰
 has spin 1/2

Same for UED

Little Higgs with T-parity:

-"boson cancels boson"

-T-quarks have spin 1/2

–dark matter candidate B_Hhas spin 1

Similarly, many other extensions of the SM at the EWK scale possible

- Light Higgs and "mirror particles" at TeV scale
- Lightest New Particle (LNP) is stable and weakly interacting
- Same LHC phenomenology: pair production of new states which then decay down to LNPs and SM states
 - jets, MET (and leptons) in the detector

What can we do to distinguish between them?

- Complete spectrum and coupling strengths hard to measure (ILC)
- Determine spins of new particles X through angular correlations between decay products, but notoriously difficult

Pair Production of exotic particles

Angular distribution of decay products carries spin information.

 Total event rate provides information too (fermions have "more DOF" than scalars).

For example: Jets from spin-0 squarks more central (cons.of ang.mom.)

COM frame unknown: need boost invariant variables. pseudorapidity $\Delta \eta$ or $\cos \theta^* \equiv \cos \left(2 \tan^{-1} \exp(\Delta \eta/2)\right) = \tanh(\Delta \eta/2)$

Squark Pair Production

- Strong dependence of angular distributions on gluino mass
- Heavier gluino more favorable

(left to right: $m(\tilde{g})/m(\tilde{q}) = 1.5, 3.5, 30$).

Shown are quark-initiated processes only, in parton COM frame

Side note: spin correlations in cascade decay

Barr hep-ph/0405052, ...

- Almost all existing proposals to measure spin rely on cascade decays
 - E.g. use invariant mass of lepton and jet, since it depends on angle between q and I in χ_2^0 rest frame
- Studies so far ignore backgrounds and are done at generator level

problems: low rates and combinatorics

Jets + MET: experimental challenges

- The Signal and its Backgrounds
- Experience from the Tevatron
- Plans for the LHC

Jets + MET: exp. signature

LNP escapes the detector and results in "missing transverse energy" (MET)

Signature: at least 2 jets, large MET and 0 leptons Backgrounds:

- Z(vv)+jets, W+jets, ttbar
 - Neutrinos give MET
 - Most have associated leptons
- QCD
 - MET from mis-measurement
 - Detector/Instrumental effects

Physics Backgrounds, Tevatron Experience

SUSY (and LHT) at Tevatron

Roughly excluding m(squark)<400 GeV, M(T-quark)<400 GeV in direct searches

Projections for the LHC

Example: Atlas jet+MET analysis

- m(squark)=600 GeV, m(gluino)=700 GeV
- Require jets, large MET and 0 leptons

Note that "signal" here is optimized benchmark point

This Study

 Given the experimental challenge, can we use measurements of angular jet correlations to tell the spin of the underlying particle (squark or T-quark or ..) and thus exclude certain classes of NP models?

 How to deal with huge parameter space of each model?

This study

- As a case study, we assume MSSM with certain parameter choice is true ("mock-data")
 - Assume that MSSM squark pair-production dominates and that direct
 2-body decays causes excess in 2 hard jets + large MET signature
- try to fit with a look-alike "wrong model", and scan over its parameter space
 - Here: "look-alike" is Little Higgs Model
 - Use jet distributions as model discriminators
- How much data would we need to exclude the wrong model?
 How sensitive are we to experimental effects?

Our "data" point

 the following MSSM parameters create chosen "data" signature

```
\begin{array}{lll} m(\tilde{Q}_L^{1,2}) & = & m(\tilde{u}_R^{1,2}) = m(\tilde{d}_R^{1,2}) = 500 \; \mathrm{GeV} \; \; ; \\ m(\tilde{Q}_L^3) & = & m(\tilde{u}_R^3) = m(\tilde{d}_R^3) = 1 \; \mathrm{TeV} \; ; \\ m(\tilde{L}_L^{1,2,3}) & = & m(\tilde{e}_R^{1,2,3}) = 1 \; \mathrm{TeV} \; ; \quad A_{Q,L}^{1,2,3} = 0; \\ M_1 & = & 100 \; \mathrm{GeV} \; ; \quad M_2 = 1 \; \mathrm{TeV} \; ; \quad M_3 = 3 \; \mathrm{TeV} \; ; \\ M_A & = & 1 \; \mathrm{TeV} \; ; \quad \mu = 1 \; \mathrm{TeV} \; ; \quad \tan \beta = 10 \; . \end{array}
```

- Parameter choice motivated by creating simple signature (pair production of 1st generation squarks)
- Gluino relatively heavy, different than LM1 (SU3) benchmark point (light Gluino)!
- Cross-section is ~5 pb

Analysis Cuts

- Guided by CMS jets+MET SUSY analysis:
 - At least 2 jets
 - Pt_{jet1}>150 GeV, Pt_{jet2}>100 GeV
 - $|\eta_{\text{jet1}}| < 1.7\&\& |\eta_{\text{jet2}}| < 1.7$
 - MET>300GeV (corrected for jets)
 - No identified leptons in the event

SM Backgrounds

Selected SM background events for 2fb⁻¹ after cuts

signal	Z(νν)+jets	(W->√l)+2 jets	(W->ντ)+1jet	ttbar	Total bkg
1296	746	396	85	72	1299

- Note: QCD background not considered, since simulation will not get this right at all
- Even though: S/N only ~ 1-2
 - heavy gluino results in low signal cross-section
 - We kept this "non-optimal" MSSM point as a generic (and realistic) case

Fitting with the "wrong spin" model

- Pick 10 Observables that are sensitive to angular correlations
- Scan LHT parameter space to find the best fit point. LHT ruled out only if that point is ruled out.
- Each point in the scan requires MC simulation, efficient and realistic simulation is the key
 - using parametrized toy MC PGS ("pretty good simulation") tuned for CMS detector

Simulation Setup

Used to scan LHT parameter space, generate background samples

Tuned CMS toy simulation

For jet+MET signature the main issue are jet energies

- PGS jet distributions tuned by comparing to Full CMS simulation for MSSM data point and one LHT sample (100k events)
- Straightforward for high-pt jets (>100 GeV)

corrections applied to PGS generated jet energy:

From CMS note 2006/036

Figure 2: The ratio of the reconstructed jet transverse energy $E_{\rm T}^{\rm Rec}$ to the generated transverse energy $E_{\rm T}^{\rm MC}$ as a function of pseudorapidity of generated jet $|\eta|$ for jets with different $E_{\rm T}^{\rm MC}$ reconstructed by the interative cone R=0.5 algorithm before MC jet calibration.

Jet energy (MSSM)

before PGS jet energy scaling

after PGS jet energy scaling

Summary PGS toy simulation

- Validated using MSSM "data" sample and 1 LHT sample
 - 100k events each
 - Find very good agreement after tuning
- Vary T-quark mass and heavy photon mass (125 points in parameter space)
 - number of events in each sample correspond to 10 fb⁻¹
- PGS used to generate the background samples
 - again cross-checked with Full Simulation results

Observables

- Pick variables sensitive to angular correlations
- Found set of 10 (correlated) quantities

10 Observables

- 5 Asymmetries and ratios based on angular correlations
 - Use large bins of distributions for robustness
 - Use ratios of counts in different bins
- Additionally: $\langle H_T \rangle$, $\langle MET \rangle$, $\langle p_t \rangle$, $\langle \eta \rangle$
- Cross section
 - Calculated from total number of signal and background events after cuts

Asymmetries, Ratios

- Beamline asymmetry (alignment of 2 leading jets with the beam pipe) $BA = \frac{N_+ N_-}{N_+ + N}$
 - N_+ (N_-) is number of events with 2 lead jet $\eta_1\eta_2>0$ ($\eta_1\eta_2<0$)
- Directional asymmetry (alignment of jets with each other)
 - let θ be the angle between the two leading jets. N_+ (N_-) is number of events with cos θ positive (negative)
- Transverse Momentum Asymmetry
 - The ratio N₊/N₋ of the number of jets with pt larger than the average and the number of jets with pt smaller than the average
- Transverse Momentum Bin Ratios
 - Distribute jets into 3 pt bins and define bin count ratios $R_1 = N_2/N_1$ and $R_2 = N_3/N_1$

Asymmetries

- $\Delta\eta_{\rm jj}$ smaller for MSSM, $\eta_1\eta_2>0$ more often
 - Beam Line (and Directional) asymmetry "more positive" for MSSM

example distributions at one LH point (M_Q = 500, M_B =100 GeV)

Observables: p_t

- Different p_T spectra of jets depending on squark/T-quark masses and angular distributions
 - e.g. for same jet energy, central jets have higher p_T

Syst.Uncertainties

 Jet energy and jet η uncertainty estimated using parameterizations from CMS TDR1

$$\sigma_{p_T} = \left(rac{5.6}{p_T^{ ext{PGS}}} + rac{1.25}{\sqrt{p_T^{ ext{PGS}}}} + 0.033
ight) p_T^{ ext{meas}}$$

- Estimated systematic on the cross section measurement using luminosity uncertainty, pythia factorization and renormalization scale, total ~30%
- Note that we don't yet include systematic uncertainties on shapes - potentially large uncertainty

Statistical Analysis

- Compute "measured" value of observables using "data"
- 2. For each LHT point in the scan, we compute the expected central values
- 3. Use standard χ^2 technique to estimate quality of fit between expected and measured values
 - Assume observables to be gaussian distributed with stat. and syst errors
 - Correlation matrix obtained from MC samples
- 4. Can convert each χ^2 value into probability that disagreement between model and data is the result of fluctuation

Results

- Expressed as "Exclusion Plots"
 - For each of our scan points, at which confidence level can we exclude the look-alike model from our data point?

Exclusion Plots

 Combined fit to 10 observables

 Y-axis: heavy photon (B_H) mass

X-axis: heavy
 T-quark mass

Green: 40 deviation between "data" and LHT model

Light blue: 3 σ deviation

dark blue: 2 σ deviation, etc...

Exclusion Levels

 Combined fit to 10 observables

 Y-axis: heavy photon (B_H) mass

X-axis: heavy
 T-quark mass

E.g "best fit" point: less than 1 σ deviation from the "data"

How dependent on individual observables?

Exclusion levels without cross-section info

..without <MET> and <H $_{T}>$ info

Correlation matrix

- Correlation between variables change χ^2 values of combined fit considerably
- Estimate correlations from the MC using bootstrapping method

	$\langle p_T \rangle$	$\langle H_T \rangle$	$\langle E_T \rangle$	$\langle \Sigma \eta \rangle$	BLA	DA	PTA	R_1	R_2
$\langle p_T \rangle$ $\langle H_T \rangle$ $\langle E_T \rangle$ $\langle \Sigma \eta \rangle$ BLA DA PTA R_1 R_2	1	0.86	0.42	-0.08	-0.03	-0.37	0.30	0.88	0.00
$\langle H_T \rangle$	0.86	1	0.66	-0.10	-0.05	-0.34	0.22	0.76	-0.06
$\langle E_T \rangle$	0.42	0.66	1	-0.04	-0.04	-0.06	0.05	0.35	-0.11
$\langle \Sigma \eta \rangle$	-0.08	-0.10	-0.04	1	0.64	0.50	-0.01	-0.07	0.02
BLA	-0.03	-0.05	-0.04	0.64	1	0.41	-0.02	-0.02	-0.00
DA	-0.37	-0.34	-0.06	0.50	0.41	1	-0.21	-0.38	-0.16
PTA	0.30	0.22	0.05	-0.01	-0.02	-0.21	1	0.22	0.64
R_1	0.88	0.76	0.35	-0.07	-0.02	-0.38	0.22	1	0.14
R_2	0.00	-0.06	-0.11	0.02	-0.00	-0.16	0.64	0.14	1

Example: MSSM plus BKGD "data" (2fb-1)

Determine correlations

- Ideally generate every point in LH parameter space ~1000x to determine correlation between variables. Takes too long.
- Instead, subdivide each sample into small samples and determine correlation
 - pick 20 sets "with replacement" and repeat 10,000x
 - Get distribution of correlation matrix values plus error

Correlation between H_t and MET For 2 fb-1 of SUSY plus BKGD events 20 subsamples and 10,000 repeats

Summary

- Have developed the machinery to study exclusion levels of a New Physics model, given a data signal, backgrounds, and systematic uncertainties.
 - Based on angular correlations of decay products
 - Scans over parameter space of the model in question
 - First study of its kind
- Presented case study of a specific MSSM data signal and LHT "look-alike"
 - Uses "generic" (=non-optimal) MSSM point as "truth"
 - made a few simplifications:
 - Jets + MET signature assumed dominant
 - Backgrounds, toy MC, etc

Conclusions

- Difficult task but not impossible: jet angular correlations "washed out" by background and jet reconstruction uncertainty
 - Will for example need considerable amount of data (>2fb⁻¹) to reliably exclude large areas of "wrong-spin model"
 - Even then, need to combine information from many observables

Lessons and Extensions

- Scanning parameters of the candidate model is crucial
- Improvements needed to make this study fully realistic
 - shapes of distributions assumed to be exact
 - Better/complete background estimates
 - Cross-check results with CMS FastSim
- Further studies
 - Sensitivity to masses in the "correct" model?
 - Repeat for signature with leptons
 - Fit to UED and other models

Backup Slides

Backgrounds

	σ_{tot}	σ_1	σ_2	σ_3	σ_6	σ_7	N_{sim}
Signal (SUSY)	5.00	4.98	4.10	2.91	2.06	0.65	10,037
$(Z \rightarrow \nu \nu) + jj$	271.54	259.73	94.05	64.34	10.21	0.20	543,080
$(W \rightarrow \nu \ell) + jj$	55.80	52.58	19.30	12.89	6.27	0.37	111,602
$(W \rightarrow \nu \tau) + j$	138.27	92.67	12.18	2.49	0.52	0.04	276,540
$tar{t}$	398.52	384.14	27.85	13.89	1.62	0.04	797,039
total BG	864.13	789.11	153.37	93.61	18.62	0.65	1,728,261

- Size of each sample corresponds to 2fb⁻¹ of LHC data
- Listing dominant backgrounds EXCEPT QCD jet background with mis-measured MET

Instrumental Backgrounds

- Sources: Calorimeter noise, cosmic rays and beam halo muons showering hard in calorimeter
- From CDF experience: lengthy process to understand MET distribution

Comparison to jet+MET TDRII analysis

 For similar cuts TDRII jet+MET analysis quotes S/N=26 (factor 10 higher LM1 SUSY signal x-section because of light gluino)

Table 4.3: Selected SUSY and Standard Model background events for 1 fb⁻¹

Signal	$t\bar{t}$	single t	$Z(\rightarrow \nu \bar{\nu})$ + jets	(W/Z,WW/ZZ/ZW) + jets	QCD
6319	53.9	2.6	48	33	107

Main systematic: varying the pythia renormalization and factorization scale

MSSM	LHT
0.149±0.006	0.090 ± 0.006
-0.025±0.009	-0.017±0.009
0.147±0.006	0.106±0.006
-0.051±0.009	-0.002±0.009
0.159±0.006	0.103±0.006
-0.029±0.009	-0.021±0.009
	0.149±0.006 -0.025±0.009 0.147±0.006 -0.051±0.009 0.159±0.006

This is a systematic effect of the order of ±0.02 (we don't know the "correct" factorization scale)

After cuts Before cuts Lead Jet PTs ad Jet PTs CMS full simulation 200 2000 PGS output Lead jet pt Lead jet pt Jet PT t PT 20000 10000 800 PT (GeV) jet pt jet pt Missing Transverse Energy lissing Transverse Energy Thin-2500 2000 1500 MET (GeV)