

First Results from CMS

"Neutrinos"
August 2nd, 2010
Julia Thom, Cornell University

The CMS collaboration:

3170 scientists and engineers (including 800 students) from 169 institutes and 39 countries

CMS Detector

SILICON TRACKER

Pixels (100 x 150 μ m²) ~66M channels Microstrips (80-180µm)

~200m² ~9.6M channels

Total weight : 14000 tonnes Overall diameter : 15.0 m

Overall length : 28.7 m Magnetic field : 3.8 T

HADRON CALORIMETER (HCAL)

Brass + plastic scintillator ~7k channels

MUON CHAMBERS

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

7 TeV operations since March 30th

346 nb⁻¹ delivered by LHC 303 nb⁻¹ collected by CMS (88% efficient)

- Most of the data taken in 2 last weeks
- Fast turnaround: 254 nb⁻¹ validated for analysis

LHC operations: the future

Short term: at least 1 fb⁻¹ delivered by end of 2011

- We have 0.03% so far
- Must reach 1x10³²cm⁻²s⁻¹ this year

Longer Term: 3000 fb⁻¹ collected by end of LHC life

Must reach peak 1x10³⁴cm⁻²s⁻¹ during 2021-2030

SSI

Expected cross sections at 7 TeV

Outline of the talk

- 1. The basic objects, and CMS reconstruction performance with the early data
 - Tracks, Jets, b-tags
 - Missing energy "ME_T"
 - Muons, electrons and photons
- 2. Standard Candles and Early Physics results
 - Jet production
 - Early searches
 - J/ψ, Y, W, Z
 - Top quarks
- 3. Outlook
 - Higgs
 - New Physics (NP): SUSY,...
 8/2/2010 SSI

Outline of the talk

- 1. The basic objects, and CMS reconstruction performance with the early data
 - Tracks, Jets, b-tags
 - Missing energy "ME_T"
 - Muons, electrons and photons
- 2. Standard Candles and Early Physics results
 - jet production
 - Early searches
 - J/ψ, Y, W, Z
 - Top quarks
- 3. Outlook
 - Higgs
 - New Physics (NP): SUSY,...
 8/2/2010 SSI

Tracks

- Central region of detector (r=2.4-110cm)
 instrumented with silicon strip and silicon pixel
 detectors for 3D tracking of charged particles
 - Coverage: pseudo-rapidity $|\eta|$ =0 to 2.5

Side view of tracker quadrant:

Cosmic muon:

Jet reconstruction

Quarks and gluons initiate jet production, detected through had/em showers.

4 jet reconstruction algorithms:

- 1. Calorimeter only
- 2. Calorimeter, corrected using associated track measurements
- 3. Particle flow: reconstruct all particles using all sub-detectors prior to jet clustering
- 4. Track jets (independent)

Jet Energy Calibration

Calorimeter response is non-linear and non-uniform, so observed energy needs to be corrected:

- depending on algorithm, jet p_T and η..: correction up to factor 2!
- Correction done using MC so far, but checked in data,
 e.g. with energy balance in γ+jet events

MC/data agree within ~5-10% (=systematic uncertainty for jet energy measurement)

B tagging of jets

- Identify jets originating from b quark by long lifetime of B hadrons

 Discovered at SLAC/PEP!
 - causes a decay vertex clearly separated from the interaction point
- Example algorithms:
 - Reconstruct secondary vertices based on track impact parameter
 - Select jets with leptons from semileptonic decay of B

B tagging: 3D impact parameter

Measure the 3D impact parameter of tracks within jets:

- Large impact parameter value: track points to secondary vertex
- Need excellent alignment and general tracking performance

Missing Transverse Energy ME_T

Tagged

Tagged

T= 57 GeV/c, eta= -1.4, phi= -2.1

 $M_{uu} = 161 \text{ GeV/c}^2$

Missing transverse momentum is defined as the apparent imbalance of the component of the momentum in the plane perpendicular to the beam direction

- Note: we only have handle in transverse direction since "boost" of initial quark/gluon is unknown
- magnitude is referred to as missing transverse energy ME_T
- Allows for (indirect) detection of neutrinos, WIMPS,.. which cause imbalance in the transverse vector sum
 - E.g. most SUSY models predict ME_T>150 GeV

ME_T: Experimental Challenge

ME_T reconstruction with 3 algorithms: "calo ME_T", trackcorrected ME_T, "Particle flow ME_T".

Reconstructed ME_T has to be cleaned of effects due to

- instrumental noise
- cosmics, beam halo,...

Beam halo tagged events at high ME_⊤.

8/2/2010

ME_T resolution

 ME_{T} resolution due to noise, calorimeter response etc strongly depends on the associated sum of transverse energy, ΣE_{T} Very good (5-10 %) ME_{T} resolution, esp. for particle flow and track-corrected ME_{T} , as measured in minimum-bias data

Simulation of ME_T over 7 orders of magnitude

Minimum Bias events:

Muons: the "M" in CMS

- Hits in muon detectors, matched up with tracks
- CMS trigger flexible: can use very loose muon triggers
 - 50k J/ ψ per pb⁻¹ down to 0 p_T in forward direction!

Muon identification studied using minimum bias events and

dimuon resonances

Min bias data, compared to simulation.

Muon momentum resolution

- Excellent momentum resolution ~1% for $|\eta|$ <0.7, as determined by fits to the J/ ψ line shape
- Uncertainty dominated by statistics, will improve with more data from Y resonance

Electrons and Photons

- Reconstructed using ECAL clusters
 - Detector Material causes conversions and bremsstrahlung, energy flow spreads due to magnetic field
 - Superclusters formed to collect the total energy

Supercluster pseudorapidity, Minimum Bias data

SSI

Electrons and Photons

- Photons selected using ECAL and tracking isolation
- Electrons selected using ECAL and track matching

Electron candidates: reconstructed transverse mass

Triggers

- Reducing data stream with fast online decision
- Two levels: "L1" (hardware) and "HLT" (software)
- HLT trigger menu: 150 triggers (jet, ME_T, muon,..)
- Current total trigger processing time per event: <50 ms

Outline of the talk

- 1. The basic objects, and CMS reconstruction performance with the early data
 - Tracks, Jets, b-tags
 - missing energy "MET"
 - Muons, electrons and photons
- 2. Standard Candles and Early Physics results
 - jet production
 - Early searches
 - J/ψ, Y, W, Z
 - Top quarks
- 3. Outlook
 - Higgs

New Physics (NP): SUSY,...
 8/2/2010 SSI

Inclusive jet cross section

- Basic measurement at hadron collider- very high rate of jet production
- Good test of jet reconstruction- see good agreement with NLO theory
- Jet p_T spectra produced for all jet rec. approaches
 - Extending distributions to low p_⊤ using "Particle Flow"

8/2/2010

Incl. b-jet cross section

- Sizable theoretical uncertainties, interesting to verify results at high energy
 - Reasonable agreement with NLO
- important background to NP searches

Search for narrow resonance in dijets

- Measure differential cross section for centrally produced jets
- Many NP models predict new massive objects coupling to q,g, resulting in resonances
- Starting to exclude certain NP ranges, e.g.
 - string resonances with m<1.6 TeV,
 - excited quark mass m<0.59 TeV
 - axigluon mass m<0.52 TeV8/2/2010

Starting to reach beyond Tevatron:

Highest di-jet mass in first 120nb⁻¹ of data: m_{jj}=2.13 TeV

Stopped Gluinos and Heavy Stable Charged Particles

- Search for long lived particles decaying in the detector after end of each LHC fill
 - No signal observed during search intervals, can be interpreted as exclusion limit on gluino masses: <229GeV (t=200ns) and <225GeV (t=2.6μs).
- Search for anomalous signals from heavy particles

Interpret in context of (quasi-)stable stau, gluino, scalar top as limits on cross

section

8/2/2010

$J/\psi \rightarrow \mu + \mu^-$ differential and total cross section

Total cross section for incl. J/ ψ production in the di-muon decay channel (4 $\leq p_{T} \leq 30 \text{GeV/c}$ and |y| < 2.4):

BR(J/
$$\psi$$
→ μ + μ -)· σ (pp \to J/ ψ + X) = (289.1 ± 16.7(stat) ± 60.1(syst)) nb

 Syst. dominated by the stat. precision of the muon efficiency determination from data

17156 ± 569 signal events (central)

Differential cross section

(null polarization scenario)

Fraction of J/Ψ from B Hadron decay

 Use transverse decay length to separate prompt from non-prompt component

Prompt diff. cross section:

8/2/2010

$Y(1s, 2s \text{ and } 3s) \rightarrow \mu + \mu^{-}$

measured the Y(1s) cross section x BR in dimuons and the corresponding differential cross section $\sigma(pp \rightarrow Y(1S)X) \cdot B(Y(1S) \rightarrow \mu + \mu -) = (8.3\pm0.5\pm0.9\pm1.0) nb$

W and Z production cross sections

- Precision test for pert.QCD (NNLO) and proton PDFs
 - First ewk process in pp collisions at 7TeV!

- Benchmark point for lepton reconstruction and identification,
 ME_T
- Important related measurements:
 - Ratio W/Z cross section; uncertainty on luminosity cancels
 - Forward backward asymmetry of lepton pairs sensitive to NP (e.g. extra neutral gauge bosons)
 - W+jets production: test of pert. QCD and one of most important background processes!

Extraction of the W(Z) $\rightarrow \mu \nu (\mu \mu)$ signal

- Trigger HLT path: μ+X(p_T>9 GeV/c) |η|<2.
- QCD background shapes from data, others from MC

Extraction of the W(Z) \rightarrow ev(ee) signal

- Trigger HLT path: e/γ+X(E_T>15 GeV/c)
- Yield of W bosons determined using simultaneous fits to background and signal contributions

W and Z: cross section results

Important test of many analysis components:

Lumi, e,μ efficiency, ME_T resolution, background systematics,...

lepton charge asymmetry and W+jets

W⁺ and W⁻ produced at different rates in pp

collisions

More u than d quarks

 charge asymmetry measurement useful constraint for PDFs

- W + jets production:
 - important background to (single) top, Higgs,
 NP searches

Putting it all together: top quarks

So far only produced at Tevatron, discovery in 1995
Top physics tests all aspects of the reconstruction:
ME_T, leptons, jets, b-tagging.

Extremely interesting as place for NP discovery-massive X->tt, top decay,...

2 main channels:

- "lepton+jets": 4 jets (2 from b), and missing E_T from v
 - BF=24/81, but significant background
- "dilepton": 2 jets and missing E_T from ν
 - Clean, but low stat. BF=4/81

lepton+jets channel

- Pretag event selection:
 - Exactly one good isolated and central muon (electron) with pT>20(30)
 GeV, at least 4 central jets pT>30 GeV, no MET requirement
- In the presence of at least 1 b-tagged jet to suppress background:

plots are "out of the box", i.e. no syst., no data-driven background estimation, etc etc.

lepton+jets channel: combined

Observed: 4 events

Expected: 3.3 top events

Event display of a "golden" μ+jets event

Event passes all selection cuts

1 high-momentum muon significant MET > 100GeV $m_T(W) = 104 \text{ GeV/c}^2$ 4 high- p_T jets, one of which with good b-tag

reconst. top mass around 210 GeV/c²

masses of 2 untagged jets (3 possible comb.): 104, 105, 151 GeV/c²

Dilepton Channel

- Event selection:
 - 2 isolated, prompt, oppositely charged, central muons or electrons p_T>20 GeV, ME_T>30 GeV, at least 2 central jets p_T>20 GeV, Z veto

Golden μμ+jets event..cont'd

Preliminarily reconstr. mass is in the range 160–220 GeV/ c^2 (consistent with m_{top})

Multiple primary vertices → multiple *pp* collisions ("pile-up")

Jets & muons originate from same primary vertex

Outline of the talk

SSI

- 1. The basic objects, and CMS reconstruction performance with the early data
 - Tracks, Jets, b-tags
 - missing energy "MET"
 - Muons, electrons and photons
- 2. Standard Candles and Early Physics results
 - W,Z
 - QCD processes
 - Top
 - Early searches
- 3. Outlook
 - Higgs
 - New Physics: SUSY,...

8/2/2010

Outlook

- Higgs detection
 - SM H-> $\gamma\gamma$, WW, ZZ
 - Higgs production associated with b or t quarks
- New Physics
 - SUSY, UED, LH,... detected in signatures with jets, leptons, photons and ME_T
 - ME_T from undetected lightest new particle, the dark matter candidate
 - Many other channels, e.g. resonances, W'Z',top,QCD sector, B_s...
- Have shown performance and calibration of the important ingredients for the CMS discovery program: jets, MET, leptons, btags

SM Higgs Prospects

- SM Higgs: combination of γγ+WW+ZZ search channels
- With 7TeV,100pb⁻¹ by Nov and 1fb⁻¹ by end of 2011
 - expected 95% CL exclusion range: 145-190 GeV
 - Conservative estimate, based on γγ+WW+ZZ channels only

8/2/2010

Preparing for SUSY search

- Example: jets+ME_T signature ("hadronic search")
- Typically require ME_T>150 GeV
 - QCD multijet + mismeasured MET is not main background, but poorly known (and large) cross section needs to be estimated from data
- With current data set don't expect to have any sensitivity to SUSY, used for bkg testing

Example: ME_T shape prediction with templates

Form templates from data to model (true and fake) ME_T , using Jet and γ +jet triggers

Test template prediction in region relevant for SUSY searches

Summary

- CMS is taking and analyzing data at 7 TeV
 - 9 years after CMS construction began
 - Combined effort of thousands of people
- First results with up to 0.25pb⁻¹ show good performance of all sub-detectors, good control over standard candle processes and the first European top quarks!
 - Impressive turn around- data was taken only few weeks ago
- Ready for our discovery program!

Backup Material

Tracker Performance

Impact parameter Resolution

 Good agreement between data and MC for wide range of track p_T

B tag performance: mistag

- Mistag rate estimated from data using "negative tags"
- Examine jets that have a secondary vertex reconstructed behind the IP
 - Indicates rate of misreconstructed b-jets

B-tag purity for incl b-jet study

Exclusive B physics

First candidates for B_s→J/ψ φ

Tau identification

Charged track multiplicity

Jet p_⊤ resolution

 Measure p_T asymmetry of the two leading jets in back-to-back dijet events

open b prod cross section

- Require presence of a muon from semileptonic B decay
- See discrepancy with MC@NLO in pseudorapidity distribution

MSSM Higgs pp-->bbΦ, Φ -->ττ

B tag performance: efficiency

- efficiency is estimated from data using events with jets containing a muon
- Examine momentum of muon transverse to jet, p_t^{rel}
 - Muons from B have large p_t^{rel}
 - B fraction determined with template fits
 - Tagging efficiency calculated using b fraction and number of tagged

Trigger Performance

- Rates within 20% of expectation, smooth running and data delivery
- Optimal efficiency as measured with data

Example: Photon trigger
L1 & HLT Photon efficiency wrt
RECO SuperCluster:

Barrel & Endcaps nearly 100% efficient.

8/2/2010

SSI