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Proton Collisions at 7 TeV
• Colliding two beams of 3.5 TeV protons at the LHC as of

March 2010
– 1 TeV=1012eV
– Factor 3.5 more energy than Tevatron p-anti-p collider

• First run ended last week: most of the data taken in 2
weeks before. ~1% of current Tevatron data set (40/pb)
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Overview
• Which questions do we want to answer with

the Large Hadron Collider (LHC)? What is the
LHC?

• A collider detector (CMS) at the LHC, and how
we do physics with it.

• How do we search for New Physics, and first
results from the early data.
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The “Standard Model”
• Over the last 4 decades we have

developed a model that explains all known
phenomena and has extraordinarily
successful prediction power
– Quantum Chromo Dynamics + Unified

Electroweak Theory

• We have tested it to energies O(100 GeV)
– ~10-18m
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The Standard Model (SM)

Electric charge

Q= -1

Q=0

Q=+2/3

Q=-1/3
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The Masses

• electron: Me   0.0005 GeV/c2 (  10-30kg)
• u-Quark: Mu   0.005 GeV/c2

• c-Quark: Mc   1.2 GeV/c2

• t-Quark: Mt = 173.3±1.1 GeV/c2

almost as heavy as an atom of gold!!

     These are experimental observations--
    masses cannot be predicted in the SM

!

!

!

!
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The Forces

  transmitted by exchange of Spin 1 Gauge-Bosons
between the Spin ½ Fermions

Quarks, gluons
Strongly charged

0Gluons gStrong
(nucl.binding)

Leptons, …
Electr. charged

0Photons γElectro-
magnetic

Couples toMassBosonForce

Quarks, leptons
W,Z
Weakly charged

91 GeV
80 GeV

W+-

Z0
Weak
(nucl.decay)
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EWK symmetry breaking in the SM:
the “Higgs Mechanism”

• W, Z and the fermions acquire mass by interaction with
the Higgs field

• Photon doesn’t interact with Higgs, remains mass-less
(and long-range)

• Large Fermion mass hierarchy put in by hand via
appropriate coupling constants spanning 5 orders of
magnitude

• Higgs not (yet) observed. It would be observable at the
TeV scale.

<H>
u

u

X

Analogy: effective mass of
electron moving through
crystal lattice
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 “Hierarchy”-Problem

• As the Higgs propagates, it interacts virtually with all
particles it can couple to, e.g. Fermions

•  this would contribute to the Higgs mass (“radiative
corrections”)

• Higgs mass can receive enormous corrections
proportional to the largest scale in the theory (“Planck
Mass”, 1019 GeV)
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One plausible solution:

Many theories suggested, one of them is
Supersymmetry (SUSY)
– We know that a boson loop would contribute to
ΔmH with opposite sign

– Supersymmetry allows for systematic cancellation
between Fermion and Boson loop contributions
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Supersymmetry
• Implies that for every known Fermion there

exists a new “superpartner” boson and vice-
versa.

• If this is true, the superpartners must be
heavier than the ordinary particles, and they
exist at the TeV scale.

• The lightest superpartner (e.g. neutralino) is
neutral and stable and would be an ideal
candidate for dark matter
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Superpartners

spinSuper
partner

spinname

1/2Higgsino0Higgs

1/2Zino1Z

1/2Wino1W+-

1/2gluino1gluon

1/2photino1photon

0squark1/2quark

0slepton1/2lepton

spinSuper
partner

spinname

Transmission of forces

Matter Particles
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Summary: Part 1
• The fundamental questions we are trying to

answer with experiments at the TeV scale:

– Does the Higgs boson exist? If not, something else
must be at work at the TeV scale.

– What is the complete picture? SUSY? Is the
lightest Superpartner = Dark Matter?

• The LHC is the machine that allows us to
explore the TeV energy regime
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Summary: Part 1
• The fundamental questions we are trying to

answer with experiments at the TeV scale:

– Does the Higgs boson exist? If not, something else
must be at work at the TeV scale.

– What is the complete picture? SUSY? Is the
lightest Superpartner = Dark Matter?

• The LHC is the machine that allows us to
explore the TeV energy regime

this talk
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What is the Large Hadron
Collider (LHC)?

• A 14 TeV proton-proton collider (currently at
7TeV)
– 1 TeV = 1012 eV
– A factor of 7 more energy than the Tevatron

• 27 Km long tunnel, 100 m below ground
• 9300 superconducting magnets (1232 dipoles)

– 60 tons of liquid helium
– 11,000 tons of liquid nitrogen

• Energy stored in magnets = 10 GJ



11/17/2010 Julia Thom, Cornell



11/17/2010 Julia Thom, Cornell

• Each of the 1232 dipoles....
– is 15 m long
– carries 11.8 kA of current
– provides a field of 8.3 T

• There are 2808 "bunches" of protons in each
beam
– 1011 protons per bunch

• When brought into collision the transverse
size of the bunches is of order 10 µm
– O(20) collisions per crossing
– Crossing occurs every 25ns
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Where do the protons come from?
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Picture of the tunnel
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Overview
• Which questions do we want to answer with

the Large Hadron Collider (LHC)? What is the
LHC?

• A collider detector (CMS) at the LHC, and how
we do physics with it.

• How do we search for New Physics, and first
results from the early data.
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The CMS collaboration:
3170 scientists and engineers (incl.800 students)

from 169 institutes and 39 countries
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What does the detector do?
• The detector tries to measure the 4-momenta of all

particles in a pp collisions

• 3-momenta of charged particles are inferred by
reconstructing tracks as they bend in a 4T magnetic field

• For neutrals (γ, neutrons), energy is measured by size of
"shower" in instrumented material (calorimeter)

• The interactions patterns
    of particles with the detector
    elements allows to "identify"
    the particle species

– e.g., electron vs muon vs proton

Cosmic muon



11/17/2010 Julia Thom, Cornell

Central feature of detector is
superconducting solenoid with 4T axial field:

Magnet insertion, 12,000 tons.  Stores enough energy to melt 18 tons of gold.
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Bore of the solenoid is outfitted with various particle
detection systems. Among them: the silicon pixel and
strip tracker which measures particle trajectories.

Insertion of the tracker.
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CMS silicon strip tracker
• Single-sided p-type strips on n-type bulk
• Thickness: 320-500 µm, strip pitches: 80-200 µm
• Small angle stereo angle of 100 mrad

25000 silicon strip sensors covering an area of 210 m2.
Have to control 9600000 electronic readout channels
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CMS silicon strip tracker

Cosmic muon track, reconstructed 
from charge deposition on Si strips
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Silicon pixel detector

• 3 layers + 2 forward disks
• 66 Million Pixels, 1m2 of silicon
• pixel size limited by readout circuit and

heat/power dissipation limit (150x150µm)
• Time to read out 1 hit: 6 bunch crossings
• Charge deposition threshold on a pixel ~2500e

Adds crucial tracking resolution in the area closest to the beam 
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Silicon pixel detector
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The Silicon tracker..
…allows us to reconstruct particle tracks with micrometer 
precision and extrapolate to their origin within the beam pipe

Data event display, zoomed into first
few cm. Observe 2 events (“Pile-up”)
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Collision recorded at CMS, 2010
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What are the objects we can
reconstruct with this detector?

1) Gluons and quarks do not directly show up in
the detector. They form “Jets”.
– Quarks and antiquarks are pulled from the

vacuum and bound states are formed (hadrons,
eg, pions, protons, etc)

– If the original gluon or quark is energetic
enough, the result is a spray of hadrons (=“jet”)
that preserves the direction and energy of the
original gluon or quark (more or less)
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Example: production of 2 gluons results in 2
jets (back to back) in the detector

• Can reconstruct the 4-vector of each jet and
determine the invariant mass

• Here: a di-jet data event with mjj=2.13 TeV
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• They do not interact
• Their presence is inferred by conservation of

momentum

2) Neutrinos (or dark matter particles)

In practice this can only be done in
the plane transverse to the beam
direction, since particles escaping
down the beampipe are not measured

–called “Missing Transverse
Energy” MET

•  Most SUSY models predict that dark matter
particles (LSPs) produce MET of at least 100 GeV



11/17/2010 Julia Thom, Cornell

MET: Experimental Challenge
•False MET can be created
by instrumental noise and
other effects

• a “hot” channel in the
calorimeter mimics MET
in the opposite direction
• cosmics, beam halo,..

•Great care has to be taken
to clean reconstructed MET
of these effects

CMS data, 2010
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An example of the detector response
to a complex decay: top quarks

Heaviest known quark,
discovered in 1995 at the
Tevatron

Top pairs are produced at the
LHC as well. In the SM, each
top quark decays to a W
boson and a b quark.

Example final state:
– at least 2 jets (from b quarks)
– missing ET from the two ν's
– two leptons
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Event display of a µµ+jets event

MET
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details: µµ+jets event
Multiple primary vertices →
multiple pp collisions (“pile-up”)
Jets & muons originate from
same primary vertex

y 
[c

m
]

Preliminarily reconstr. mass is in the
range 160–220 GeV/c2 (consistent
with mtop)

m(µµ) = 26 GeV/c2
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• The interesting collisions are the "violent" collisions
where a lot of transverse momentum is exchanged

• Here we can think of collisions between the
components of the proton (quarks, many many
gluons).
– Note: their momentum is unknown!

How top quark pairs (or
W,Higgs,SUSY etc) are produced
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The hard scatters: the production
cross sections as calculated in the SM

T. Han Tev4LHC
√s = 2          7     14 TeV

•Jet production is so large
because it is a strong
process, e.g. gg->gg

•Top quark pair production
(and other interesting
physics) is suppressed by
many orders  of magnitude

•SUSY particle production
of order 10-9mb
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How we beat down 9 orders of magnitude
of background: the ”Trigger”

•  σ(pp) ~ 100 mb
• Gives an "event rate" of order 100 MHz
• Each event is ~ 250 kb
• 250 kb x 100 MHz = 25 Tbytes/second

• Trigger is the system that
selects the ~ 200
events/second that are
saved for further study

• Most of the events are
thrown away!!!!
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Trigger (2)
• The decision on what to trigger on has enormous impact

on the physics that we can do

• Trigger selects objects (e, µ, MET, jets..) or
combinations thereof
– Currently have O(100) triggers

• All kinematical distributions fall steeply with PT 
trigger selects objects above a threshold
– compromise between competing priorities
– A source of great debate in the collaboration

• If you want to search for a particular NP signature:
1. Check that your events have been triggered on
2. If not, try to convince people to devote bandwidth to your idea
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• First decision (1GHz to 100 kHz) is made at detector level
• Second decision (100 kHz to 150 Hz) is made with software
• Current total trigger processing time per event: <50 ms

Trigger (3)
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Summary: Part 2
• Physics objects we observe in the detector are:

– Jets
– MET
– electrons, muons, photons,…

• They are the stable decay products of hard
scatters of the proton constituents
– Main process in hard pp scatters: jet production.

Higgs, top, SUSY, etc are very rare

• A trigger selects ~1 out of each million of events
to be saved for further study
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Overview
• Which questions do we want to answer with

the Large Hadron Collider (LHC)? What is the
LHC?

• A collider detector (CMS) at the LHC, and how
we do physics with it.

• How do we search for New Physics (NP), and
first results from the early data.
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how we plan to “discover NP”
1. Most dramatic: signals that stand out, e.g. mass peak

of di-jets
– E.g. a mass peak

• XAB, measure the 4-momenta of A & B, then, (PA+PB)2=MX
2

2. Less dramatic, but just as important: compare counts
of events of a given type with the SM expectations,

– e.g. if we select top quark decays, do we get the number of
events we expect?

3. compare distributions with the SM expectation,
– for example the MET in jet events.
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Example for a search for resonances:
the di-jet mass spectrum

• Many NP models predict
new massive objects
coupling to q,g, resulting
in resonances

• Starting to exclude
certain NP ranges, e.g.
– string resonances with

m<2.6 TeV decaying to qg
– Composite excited quark

mass m<1.6 TeV
– Many others..

Reach extending beyond the Tevatron
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Less dramatic “signal” search: check if
number of events passing event selection

larger than SM expectation

•Select events with 2 leptons (e,µ)
and high energetic jets, significant
missing energy (MET>30 GeV)

•Milestone for CMS: We have
“rediscovered” the top quark

•note: backgrounds are measured
from the data in control samples

! 

"(tt ) =194 ± 72(stat) ± 24(syst) ± 21(lum) pb

arXiv:1010.5994 ; CERN-PH-EP-2010-039

SM calculation: NLO: σ(tt)=157±23 pb at mt=172.5GeV/c2.
25x bigger than at Tevatron!
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Less dramatic “signal” search: check if
number of events passing event selection

larger than SM expectation

•Select events with 2 leptons (e,µ)
and high energetic jets, significant
missing energy (MET>30 GeV)

•Milestone for CMS: We have
“rediscovered” the top quark

•Checking for consistency with the
top mass hypothesis

! 

"(tt ) =194 ± 72(stat) ± 24(syst) ± 21(lum) pb

arXiv:1010.5994 ; CERN-PH-EP-2010-039

SM calculation: NLO: σ(tt)=157±23 pb at mt=172.5GeV/c2
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How well can we predict the
backgrounds?

• Our SM calculations give well-tested predictions
for many processes

• But some background processes are difficult to
calculate, due to
– instrumental effects in the detector
– We don’t know the fraction of transverse momentum

carried by the proton constituents
– Non-perturbative calculations

• Certain processes are unknown to O(2) or more
– Crucial to have a good estimate! Have to estimate

background from data itself, using clever tricks
– This is where 90% of the work goes!
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• pp  jets + MET is a generic signature of SUSY:

• Not trivial to distinguish it from a di-jet event with
  instrumental (fake) MET.
  Can we rely on calculations and detector simulations?

Example

1. Squark pairs are produced.

2.  Each squark decays to a
quark and a Neutralino
(Dark Matter particle).

3. We would “see” 2 jets and
MET (~60GeV or more)
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How well we can predict the tail of
the MET distribution?

• Example: di-jet events

Simulation includes known
detector effects. Agreement
not too bad, but even small
deviations in the tail are
important!

Data: from small initial data set,
where we don’t expect to have
any sensitivity to New Physics
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Example: MET shape prediction
from the data

Form templates from data to model (true and fake) MET,
using Jet and γ+jet triggers

• Test template prediction in region relevant for SUSY
searches



11/17/2010 Julia Thom, Cornell

Model Discrimination

• How much data is needed to
distinguish between two look-
alike New Physics models?
– For example: SuSy and Little

Higgs
– Same signature in the CMS

detector, but different spin
– jet angular correlations carry

information
• using full detector simulation:
    at least 2 fb-1 needed to

exclude wrong hypothesis

Perelstein, JT, et al Phys.Rev.D79:075024,2009

data points: assume SuSy
Histogram: LHT model

! 

Ldt = 2 fb
"1#

Example Distribution: cos Θ
between 2 most energetic jets
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Summary: Part 3

• We have begun to search for New
Physics in all ways we can think of
– Looking for mass peaks
– Looking for disagreement with SM

prediction, e.g. in MET shape
• Crucial: solid calibration of backgrounds

using data
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Outlook
• Our initial data sample, taken at half the design

COM energy of 7 TeV, is large enough to gain a
very solid understanding of the detector effects
and response to Standard Candles
– we are measuring top, W, Z cross sections, and much

more
– All detector components are working well

• We may even see first discrepancies with the
SM, but will become much more sensitive with
the next run and higher energy.

• Stay tuned for results to come out this winter!
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LHC operations: the future
Short term: at least 1 fb-1 delivered by end of 2011

– Will go back to pp collisions early next year
– Energy will increase slightly next year, and will increase to 14

TeV in 2013
Longer Term: 3000 fb-1 collected by end of LHC life

Preliminary Long Term
Predictions

14 TeV

today

From S.Meyers, ICHEP
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Backup Material
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SM Higgs Prospects
• SM Higgs: combination of γγ+WW+ZZ search

channels
• With 7TeV, 1fb-1 by end of 2011

– expected 95% CL exclusion range: 145-190 GeV
– Conservative estimate, based on γγ+WW+ZZ channels only
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SM Higgs: Tevatron
Status as of Summer 2010 (have 2x more data)

Tevatron extension through 2014:
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now taking
Pb-Pb data
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What happens when two protons
collide?

• Most of the times: not very much
• The protons might break up with most

daughter particles going down the
beampipe.  A few ( ~50-100) particles
with small transverse momentum (PT)
show up in the detector
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Elements of Particle Detectors
• Momentum measurement of charged particles

– path radius of charged particles in Magnetic Field

• Measure tracks of charged particles through
charge deposition on silicon microstrips and
silicon pixels (3D)

• Measure Energy (Calorimeters)
– Through electromagnetic and hadronic interactions

• Identify muons from tracks and hits in muon
drift chambers
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Experimental Challenges

• High Interaction rate
– data for only ~10 out of 1 million bunch crossings

can be recorded.
– Need to make quick decision if event should be

recorded (“Trigger”)
• 20 superimposed proton collisions in each

bunch crossing
–  ~1000 tracks stream into detector every 25 ns
– need high granularity of detector -> large number

of readout channels
• High radiation levels
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Higgs Production at LHC
• Proton Collision Center of Mass Energy is

7 TeV

• Probability to produce Higgs
    is ~1 in 1013

• That’s ~100 Higgs Bosons per day*
• detect them through their (stable) decay

products
* Not necessarily recorded!
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Higgs Decay Modes
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Higgs decays
• assuming mH~ 200 GeV
• Can decay into two Z bosons, each of which

decay into 2 muons,
• Final State: 4 muons
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Computing Power

• Average event size 1Mbyte
• Data production: 1TByte/day
• 300 readout crates, 10000 electronics boards
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Have found 4 muons..are we done?

• Background from
– 4 unrelated muons from other decays
– Particles that look like muons

• Need other characteristics of H->ZZ->4µ to
reject these and estimate remaining
background events

• use energy measurement of the muons: they
have to add up to to a Higgs mass
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Red: simulated muons from Higgs
Blue: backgrounds from b, cosmics, …
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More realistically..

We know that Higgs mass is <200GeV
Most probable detection mode is H->γγ
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Very difficult measurement..
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Summary
• We believe that we’re just around the corner of a

revolution in particle physics- the LHC is our tool
for the next decades of experiments

• LHC has started taking data and is reaching the
critical point where we could make discoveries any
day now. Stay tuned!
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MET resolutionMET resolution due to noise, calorimeter response etc
strongly depends on the associated sum of transverse
energy, ΣET

Very good (5-10 %) MET resolution, esp. for particle flow
and track-corrected MET, as measured in minimum-bias
data

Particle flow

Calorimeter only

Calo+tracks
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Physics 105B: Billiard ball scattering:
 σ=4 π R2

  Rproton ~ 10-15 m   σ(pp)~10-29 m2=100 mb



11/17/2010 Julia Thom, Cornell

• Think of the LHC as a parton-parton collider
• Broadband collider. Partons in the proton can

take any fraction of the proton momentum.
• In a probabilistic way, that we cannot

calculate from first principles  measure it

• fi(x) = prob of parton i
having momentum
x*Pproton

• Parton Distribution
Function (pdf)

• Note that there are
many many many gluons.

• LHC = gluon collider
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A two jet event from D0:

Two jets back-to-back in φ
Note: 45 GeV of MET
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Cornell’s experimental HEP group at
the Large Hadron Collider

• 7 faculty, 7 postdocs, 8 graduate students and 10
undergraduate students, working at CERN and CU

• Our contribution to the Compact Muon Solenoid (CMS)
Experiment
– Software
– Pixel Detector
– Trigger
– Calorimeter
– Physics analysis
– Tracker Upgrade
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CMS pixel detector
• “Hybrid active pixels”. Presently
only technology for LHC application

• Need pixels because of huge track
multiplicity
– Readout chip has same pixelation as sensor, bump-bonded onto

sensor
– pixel size limited by readout circuit and heat/power dissipation limit

(150x150µm)
– 2% X0 per layer (3 pixel layers 4, 7, 11cm, material budget driven by

COOLING)
– Readout chip:0.25µ CMOS technology

• rad hard “Complemetary metal oxide semiconductor”, Field effect
Transistor circuit (fast)
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Vertexing and track reconstruction in a harsh
environment!
– Radiation:

• dose: 3x1014pcm-2yr
– Rate

• up to 20MHz/cm2 of particles

For b-tagging, vertex reconstruction: 100GeV B
jet, flight path ~100µ
– need ~20 µ resolution, 3D space point
– All hit information has to be stored until L1 decision
– Trigger latency: 3µs, 10Tbit/sec stored and

transferred by ROC
Also want low cost, easy cooling & cabling, low

material budget
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CMS pixel detector
• 66 Million Pixels, 1m2 of silicon
• pixel size limited by readout circuit and

heat/power dissipation limit (150x150µm)
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Higgs Mechanism
• Introduce weak doublet spin 0 “higgs field” H with

classical potential

• H acquires non-vanishing vacuum-expectation value
if Higgs mass mH

2<0

• If superpartners too heavy introduce a mini-
hierarchy problem (ΔmH proportional to mS

2)
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Higgs mass constraints
“Indirect”:
• Top and Higgs loops contribute to W and Z

mass

• We have measured W and Z masses with high
precision, can indirectly constrain Higgs mass

         mH
SM < 200 GeV

Direct searches in current experiments:
         mH

SM > 115 GeV

Z
Wt, H

t

b
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How are the masses generated:
Electroweak Symmetry Breaking

• High energy: electromagnetic and weak
forces are unified, i.e. equal couplings;
gauge bosons mass-less

• Observation: Mγ=0  but MZ,MW ~100 GeV

• How does this difference arise?
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The Higgs Field
• Introduce Spin 0 Higgs field

• Introduce classical potential for Higgs field such
that at minimum Higgs acquires “vacuum
expectation value”

• Higgs is electrically neutral (doesn’t couple to
photons) but weakly charged

• “Spontaneous symmetry breaking”

0!H


