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The 2 Test


The test tells you how consistent your data are with a particular hypothesis about the functional dependence of your variables, and how good the choice of the parameters in that function is.  For example, you might have measured quantities yi  and xi where you expect  y to be a particular function f(x) of an independent variable x.  The function f could be a straight line, 

f(x) = ax + b , and the slope and intercept could be the pararmeters of interest.   The function could be more complicated, such as an exponential or a trigonometric function.  The question will always be:  Which function and which values of parameters fit our data best, and what are the errors in the values of the parameters that we used to get this best fit?


First we have to define what we mean when we talk of a good fit.  Without proof (see Bevington pp. 84-85, 100-102), the optimum fit to the data will be obtained if you minimize the following quantity:

 =  yi - f(xi))2 / i2

Here the i are the errors in yi, and the errors in xi are assumed to be zero. You can see how a data point that is far from the theoretical value will increase 2 much more than a point close to your  curve.  So, you might say, the smaller my 2, the "better" my data, since they agree with theory.  Not quite!  A 2 of nearly zero only implies that you overestimated your errors, thei, or that it was just "luck".  Since every experiment comes out a little different, will be different in each run of the experiment.  The most likely value of  is equal to the number of degrees of freedom, nD, which is equal to the number of data points minus the number of parameters determined in the fit.  Thus, if you determine the slope and intercept of a straight line from 10 data points, you expect a  of about 8; in the trivial case of using only two points, it would be zero.


If you do not know the values of the i from some measurements, you can turn this relation around and estimate the i, assuming that they are all equal.   You simply



(a)  Calculate 2 with i = 1, i.e. calculate (yi-f(xi))2, and



(b)  Let i 2 = 12/nD.

Of course, you have to be very confident that f(x) is the correct function for your data, and that there are no other errors.


Finding a minimum of provides a way of calculating the parameters.  The most common case is the linear least square fit (Bevington pp. 103-108) where the requirement that the best values of the parameters yield the smallest  leads to linear equations in those parameters which are easily solved.  There are also procedures for determining the errors of the parameters (pp. 113 and 114).  In many instances it is not possible to calculate the parameters analytically.  It may then be necessary to calculate  for many different sets of parameters and look which ones give the best fit, i. e. the smallest value of 2.

Example:  e/m - experiment. 

The angle  of a line on a cathode ray tube screen depends on the value of a magnetic field, B - in fact, it appears to increase linearly with B.  We have not measured i, the errors in the angle readings, but we will determine them from the data.  The random error in B is negligible, although there may be a systematic error that we consider elsewhere.  The ratio a = /B enters in the formula for e/m.  Below is a set of data (with arbitrary units for B, and the angle readings, ', starting at a nonzero angle); we need the best estimate for /B, and an error for that quantity.

     B :  xi   =   0.47     0.73      2.75     4.44      6.10     8.32

     ' :  yi   =    350       450       600       750       900      1050

The data form a straight line f(x) = ax + b  (try a plot). The slope, a, of the best fitting line is the best estimate of /B.  Using Bevington p.104 (and paying attention to his definition of the parameters a and b for a straight line!), we have

a  = (N xiyi xiyi) / 

    b = (xi2yixixiyi
with

 = N xi2(xi)2
Using N = 6 and the xi and yi in the table, we find a(in arbitraryunits) and b = 35.6oowwhat is the error in aWe assume that the errors i in reading the angles ' are the same for all angles.  In that case the error in a is given by 

a2 = N i2 / 

Bevington p.114), but we have not measured i.  However, being sure of the functional dependence, and convinced that there are no other errors, we can determinei as outlined above.  First, we let i = 1, and find 12 = 42.  With nD = 4 (why?), i = (12/nD)1/2 = 3.2o is the best estimate of the error in the measurements of the angles.  Our estimate of the error in a is then a = 0.47, and we report  a EQ \o(+,_) 0.47. 

There are several lab experiments in Physics 310 involving exponential functions (beta decay, gamma ray absorption, time constant of an RC-circuit).  In all these, you want to determine one or more parameter(s) in exponent(s).  You will have to decide whether it is possible to linearize the problem, or whether you need to embark on a search for the best fit by trial and error, i.e. systematically trying out values of the parameters and seeing what values of  they yield.  Another possibility is to write a program which searches for the minimum of 2 for a nonlinear function .  This a very complicated and specialized problem in numerical analysis.

Confidence Levels

The meaning of Confidence Level (CL) is briefly explained in the attached handout "Probability and Statistics".  The CL gives the probability that   is bigger than the number that you got in your one experiment.  You can calculate 2 if you know the values of the errors i from some measurements (i.e. repeatedly measuring yi for a given xi).  The CL is obtained (as explained in the handout) from the shape of the distribution function of 2.  For a given number of degrees of freedom, nD, you can read it from the supplied graph.  Note that if  is about equal to nD you are near the peak of the 2 distribution, and the probability of having a larger value will be roughly 50%.

Example: e/m - experiment.

Assume we had measured the i to be equal to 20.  Then 2 = 10.5, and with nD = 4,  we read from the graph a confidence level  CL = 0.04,  i.e. there is only a 4% chance that we would have found a value of  exceeding 10.5!   We have to conclude that most likely there is something wrong with the determination of the errors, or with the hypothysis of the functional dependence of the data.   For comparison, for nD = 4  a 2 of 4 has a confidence level of 0.4 on the graph.


Note that  the distribution function of 2 is not a symmetric function, especially for small nD.  For large nD it  looks more like a normal (Gaussian) distribution about nD with width 

(2nD - 1)1/2.  
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