Physics 310

The Estimation of Uncertainties in Experimental Results


It is common knowledge that if a measurement is repeated the value obtained may not agree with the previous result.  This observation is a part of the experience of anyone connected with an experimental science.  It is this experience which leads to a suspicion of measured values and results in an attempt on the part of every serious experimenter to assess the uncertainty involved in a measurement.


The difference between an experimentally measured value and the "true" value is often, incorrectly, called the experimental error.   Experimental error defined in  such a manner is always unknown, since the true value is not known.   At best we can make an estimate of the amount by which the experimentally determined value may differ from the true value.  This estimate is the experimental uncertainty we are interested in, and it will be referred to as "error" in this handout.  Differences between values measured in the lab and values from published references are merely discrepancies.  If the experimental uncertainties are correctly determined, they are likely to be comparable in size to discrepancies with published values, although they can occasionally be much larger or much smaller.  

1.  Types of Errors.


Experimental errors generally consist of two parts, systematic errors and random errors.  If an experiment is repeated under exactly the same conditions, the systematic error will always be the same; while the random error will fluctuate randomly from one measurement to the next.


Systematic errors are exemplified by miscalibration of instruments or components (e.g., the indication of a meter is incorrect or the resistance of a resistor differs from its given value).  Another common source of systematic error is the departure of equipment from the idealized model conceived by the experimenter.  Estimates of systematic calibration errors usually rely on someone's experience (e.g., the manufacturer's specifications).  Deviations of the properties of equipment from the ideal can usually be estimated by calculation or by further experiments designed for the purpose.


Random errors are exemplified by the fluctuations encountered in counting experiments involving radioactivity.  These errors lend themselves to an analysis based on the observation of the fluctuations themselves and are usually by far the easier of the two kinds to estimate.


In any experiment there are always factors beyond the control of the experimenter (e.g., environmental factors).  These fluctuate more or less randomly with time and create systematic errors which also vary.  Hence, there are always pseudo random errors which are actually systematic errors varying more or less randomly.  These errors are usually treated on the same footing as real random errors.

2.  Distribution of Random Errors.


If you measure a random variable, x, many times (let us say N times), the values xi that you get will be distributed in some way about a mean value, m.   A distribution function, f(x), describes how often each value is likely to occur.    This function will peak at or near the mean of the distribution, m, and it is also characterized by a parameter describing the width of the peak, called the standard deviation, s.  The average value m of your measurements is generally close to, but not identical with m; we will soon see  how close.  A plot of your N measured values will only yield estimates of the true mean, m,  and the true width, s, of the distribution.  m is the true value that we talked about  in the previous chapter,  m is the best estimate that we can make of m , and s is the uncertainty, or error, if we measure only one value xi.      






Fig. 1

In a sample of N measurements,  the sample mean m and sample variance s2 are given by





m =  EQ \f(1, N)  \s(N,∑,i=1)  xi




 s2  =   EQ \f(1,N-1)   \s(N,∑,i=1)  (xi  - m) 2  

s2 is the best estimate that we can make of the square of the standard deviation, s2, of the distribution.  Thus, if we could calculate s2 from only one measurement, it would be the best estimate of the error in that measurement.   If we made N measurements, however, the uncertainty in the sample mean, i.e. the estimate of how much m differs from the true value m, is smaller than the error s of a single measurement by a factor of  EQ \r(N) .  Thus the best estimate of the error in the mean is





sm =  EQ \f(s,\r(N))   
Again, quoting m as our result and sm as the error, 





  m ± sm
we have made the best possible estimate of the true value m and of our uncertainty sm in this estimate.

3.  Gaussian Distribution


We have so far discussed the mean and the width of a distribution, regardless of the shape of the distribution function.  The most common distribution function is the Gaussian.  Knowing the properties of the Gaussian distribution function is sufficient for almost all applications in Physics 310.  In the Appendix you will find a discussion of the binomial distribution and the Poisson distribution.
The importance of the Gaussian or normal distribution is that it has been found from experience that many types of measurements have probability distributions which approximate the normal distribution.  That is, if one is measuring a quantity which has a true value of µ, then the probability that the result of a measurement will be between x and x+Dx is 





P(x,µ)Dx  =   EQ \f(Dx,\r(2πs))   exp(-  EQ \f ((µ-x)2,2s2) )         .


(1)

The standard deviation s is determined by the apparatus.  The Gaussian distribution is plotted in Fig. 2.
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Fig. 2


The standard deviation is correlated with the width of the peak of a probability distribution.  The quantitative significance of the standard deviation depends on the particular probability distribution.  Its significance is most widely known for the Gaussian distribution.


By referring to Fig. 2 where a normal distribution is shown, it can be seen that most of the area under the curve lies within  the limits m-s and m+s.  It can be shown that an area of 0.68, or 68% of the total area, lies within these limits.  The total area is, of course, unity.  Hence a single measurement has a 68% chance of falling within one standard deviation of the mean value.  Similarly, the probability of obtaining a value within m ± 2s is 95% and within m ± 3s is 99.7%.


Alternatively, the probability that the mean value m will lie within ±s of the measured value x in a measurement to be made is 68%.  The interval ±s is thus said to be the 68% confidence interval and relates to the chances of success at the time the measurement is made.


Example: When dealing with statistical fluctuations, such as those of the number of decays from a radioactive source, the value of s can be calculated from the number of registered counts.  Strictly speaking, the distribution function in this case is the Poisson distribution, but  the Gaussian serves very well as an approximation, as long as the number of counts is not much lower than about 50.  If  you have registered n counts, your best estimates of m and s are






m = n






s  =  EQ \r(n) 
Refer to the section on the Poisson distribution in the appendix for a proof of these statements.

4. Propagation of Errors

The determination of most quantities of interest in experimental science involves more than one measurement.  As has been seen, even simple determinations involve repeated independent measurements of the same quantity.  In general, the quantity of interest, the derived quantity, will depend on several other quantities each of which is measured independently with an independent uncertainty.  The question arises as to what is the resulting uncertainty in the derived quantity.
Consider the case in which a derived quantity z depends on two independent quantities x and y.  The generalization to more than two independent quantities is straightforward.  Let the dependence of z on x and y be represented by the equation 





z = f(x,y)   

Here f is a functional dependence, not to be confused with the distribution function concept from the previous chapter.


Let xo, yo, zo be the true values of x, y, z.  If the experimental errors are small, then x, y, z will be nearly equal to xo, yo, zo and calculus provides the following result in good approximation




z - zo ~ EQ \d\ba5() =  f​x(xo,yo) (x - xo) + fy(xo,yo) (y - yo),

(2)

where fx(xo,yo) is the partial derivative of f(x,y) with respect to x evaluated at xo, yo.


Eq. (2)  gives the deviation of z from its true value in terms of the deviations of x and y from their true values.  These deviations are rarely known, however, so that Eq. (2) is often useless in its present form.  What usually is known is information concerning the widths of the  distributions functions of x and y.  Since z depends on x and y, it will have its own distribution function which must be determined by those for x and y.  A modification of Eq. (2) will provide the basis for calculating the standard deviation sz of the distribution for z in terms of the standard deviations sx and sy of the distributions for x and y.


The modification consists in using mean values - EQ \d\ba5() x and  - EQ \d\ba5() y instead of the unknown true values x0 and y0. The means,  - EQ \d\ba5() x and  - EQ \d\ba5() y , of the distributions will usually not coincide with the true values of the measured quantities but they will generally be close.  In terms of deviations from the means, the analog of Eq. (2) becomes




z - zo  ~ EQ \d\ba6() =   fx (- EQ \d\ba5() x,- EQ \d\ba5() y) (x -  - EQ \d\ba5() x)  +  fy (- EQ \d\ba5() x,- EQ \d\ba5() y) (y - ,- EQ \d\ba5() y)   


(3)

where zo is approximated by f(- EQ \d\ba5() x, - EQ \d\ba5() y) and will in general be nearly, but not exactly, equal to - EQ \d\ba5() z, the mean of the probability distribution for z.  Exact equality will generally hold only if f(x,y) is a linear function of x and y.


It will be assumed that the approximation




    zo  ~ EQ \d\ba6() =   - EQ \d\ba5() z    

holds, so that in approximation Eq. (3) becomes




z - - EQ \d\ba5() z  ~ EQ \d\ba6() =   fx(- EQ \d\ba5() x, - EQ \d\ba5() y) (x -  - EQ \d\ba5() x)  +  fy(- EQ \d\ba5() x, - EQ \d\ba5() y) (y -  - EQ \d\ba5() y)   


(4)

Denoting dx = x - - EQ \d\ba5() x, dy = y -  - EQ \d\ba5() y, and dz = z -  - EQ \d\ba5() z, and using the abbreviated symbols fx and fy for fx(- EQ \d\ba5() x,- EQ \d\ba5() y) and fy(- EQ \d\ba5() x, - EQ \d\ba5() y), Eq (4) takes the form 




dz = fx dx + fy dy          

Squaring this equation provides the result




dz2 = fx2  dx2  + fy2 dy2  +  2 fxfy dx dy        

Taking the mean of this equation will provide the mean square deviation sz2 of z about its mean.  The last term on the right will average to zero since x and y are independent and the mean deviation from the mean must be zero.  The other two terms on the right will in general not average to zero since they are always positive or zero, never negative.  The mean of dx2 will be sx2 and that of dy2 will be sy2.  Hence, the mean of the preceding equation can be written




sz2  =  fx2  sx2  +  fy2  sy2  .





 (5)

This equation gives the procedure for calculating the standard deviation of a quantity derived from two independent quantities with independent uncertainties.  The generalization to include more than two independent measurements consists simply in adding additional similar terms to the right hand side of this equation.


 Example 1: Consider an experiment in which the free-fall time t of an object falling through a distance d is used to determine the acceleration of gravity g.  Here 




g = f(d,t) =  EQ \f(2d,t2) 



fd = 2/t2



ft = - 4d/t 3         
so that




sg2  =   EQ \f(4,t4)  sd2  +   EQ \f(16d2,t6)   st2

This may be simplified considerably by working with relative standard deviations.   Remembering that g = 2d/t2, we find 





 EQ \f(sg2,g2)   =   EQ \f(sd2,d2)   +  4  EQ \f(st2,t2) 
This gives the relative standard deviation of g in a simple manner in terms of the relative standard deviations of d and t.


Such a simplification always exists in cases where f(x,y) is a product of powers (including negative powers) of the independent quantities x and y.  For z = xnym, the relative standard deviation is 





 EQ \f(sz2,z2)   =  n2   EQ \f(sx2,x2)   + m2  EQ \f(sy2,y2) 

Example 2:  Frequently in counting experiments the count rate consists of signals coming from a source that you are interested in  plus an ambient background.  Assume that the number of background counts has been determined to be b ± s b and that there are a total of n counts.  The net counts are  n -  b, but what is the error?  Again, we apply error propagation.  The uncertainty in  n is  EQ \r(n) , the uncertainty in  b is sb.   Using equation (5) we find




s =  EQ \r(sb2 + n)      
for our uncertainty in the net number of counts.

APPENDIX

A.  Binomial Distribution


Consider the performance of some random operation which will be supposed to have only two outcomes, either success or failure.  An example of this is:  A nucleus either decays (success) or not (failure).  Let p be the probability of the outcome success in any one trial.  The question then arises as to the probability P(x,n) of obtaining a total of x successes in a total of n trials.


An analysis of how the successes are obtained will lead to the evaluation of this probability.  In order to obtain x successes in n trials it is necessary also to obtain n-x failures.  The probability of a failure is obviously 1-p.  Since the trials are independent (the probability of the outcome of one trial does not depend on the outcomes of other trials) the probability of a given sequence of outcomes in n trials is just the product of the probabilities of the individual outcomes.  Thus the probability of obtaining x successes and n-x failures in a given sequence is just px(1-p)n-x.  There is, however, a number N of possible sequences leading to a total of x successes in n trials.  These sequences are mutually exclusive (if x successes are obtained via one sequence, they cannot in the same series of trials be obtained via another sequence).  Hence the probability of obtaining x successes in n trials via one or another of the possible sequences is just the sum of the probabilities of obtaining x successes via the various individual sequences, or since these probabilities are all the same, just N times the common individual probability, 




P(x,n) = Npx(1-p)n-x    

The number N of sequences is just the number of combinations of n trials taken x at a time, or 




N = ( EQ \a(n,x) ) =  EQ \f(n!,x! (n-x)!)      
Hence the probability P(x,n) becomes




P(x,n) =  EQ \f(n!,x! (n-x)!)   px(1-p)n-x      

(A1)

This is the binomial distribution.


Fig. 3  illustrates a binomial distribution for  p = 0.4 and n = 100.

Fig. 3

This distribution has a value at which the probability is a maximum and it has a width.  There are several different measures of these; the most important of these are the mean and standard deviation.  The mean or expected number m of successes in n trials is given by 



m  =  EQ \s(n,∑,x=o)   xP(x,n) =  EQ \s(n,∑,x=o)   \f(xn!,x!(n-x)!)   px(1-p)n-x    

To sum this series, a trick is used.  Define 1-p = q and consider q to be an independent variable.  You can then rewrite the expression as 




m = p  EQ \f(∂,∂p)   { EQ \s(n,∑,x = o) \f(n!,x!(n-x)!)   pxqn-x}  

The series is just the binomial expansion of (p+q)n.  So




m = p  EQ \f(∂,∂p)  (p+q) n = np(p+q)n-1 = np  


(A2) 

where p+q = 1 was used in the last step.  The mean is np, as would be expected.


The standard deviation s is a measure of the width of the distribution and is given by 




s = [ EQ \s(n,∑,x=o)(x-m) 2 P(x,n)]1/2    

This series is evaluated below




         s2  =  m2  EQ \s(n,∑,x=o) \f(n!,x!(n-x)!)    px (1-p)n-x   



                   - 2 m  EQ \s(n,∑,x=o)  \f(xn!,x!(n-x)!)    px (1-p)n-x



                   + p   EQ \f(∂,∂p)   \b\bc\[(p \f(∂,∂p)    \s(n,∑,x=o)  \f(n!,x!(n-x)!)   px qn-x) 



               = mq =  npq = np(1-p)

The standard deviation of the binomial distribution is 





s =  EQ \r(np(1-p))     




(A3)


The binomial distribution along with its limiting forms, the Gaussian and Poisson distributions, plays a large role in experimental physics.

B.  Poisson Distribution


The Poisson distribution is the limit of the binomial distribution when the number of trials tends to infinity and the probability of success in a given trial tends to zero in such a way that the expected number of successes remains finite.  It is important for any process which occurs randomly in any infinitesimal interval of some variable.


The decay of a radioactive nucleus will be used to illustrate this kind of process.  In this case a well defined probability l per unit time exists for the decay of the nucleus.  The probability of decaying during an infinitesimal interval dt is just ldt, so that the probability of not decaying is 1- ldt.    In order for the nucleus not to decay in the finite interval t it must not decay  in any of the t/dt infinitesimal intervals of which t is composed.  The probability for the occurrence of this series of events is just the product of the individual probabilities 1 - ldt of not decaying, since the conditional probability of not decaying in a particular interval dt, given that a decay has not taken place in any previous interval dt, is also 1 - ldt.  The probability of not decaying in the finite interval t is then 




(1 - ldt)t/dt   

The probability ldt of decaying in the interval dt is valid only in the limit as the time interval dt goes to zero.  In this limit the probability of not decaying in the finite interval t is, if use is made of the definition of the number e, 



 
q =  EQ \s( lim,dtÆo)  (1 - ldt ) t/dt = e-lt  

For one nucleus, the probability of decaying in the interval t is then just 




 p = 1 - q = 1 - e-lt  .




( A4)

For a radioactive source consisting of n radioactive nuclei, the probability of having x decays in a finite time interval t can be considered to be the probability P(x,n) of having x successes in a total of n trials where the probability of a success in any one trial is given by Eq.(A4).  Hence, the probability distribution for the number of decays of a radioactive source in a finite time interval is just the binomial distribution with p given by Eq. ( A4).


In many practical cases the number of radioactive nuclei is extremely large and the time interval t sufficiently short that the probability p of one particular atom's decaying in the interval is extremely small.  In this case the binomial distribution assumes a particularly simple limiting form.  Eq. (A1) can then be written




P(x) =  EQ \s(lim,nÆ•,pÆo)  \f(n(n-1)(n-2)...(n-x+1),x!)   px  (1-p)n-x




         =  EQ \f(1,x!)   \s(lim,nÆ•,pÆo)  (np) x   EQ \s(lim,nÆ•,pÆo)   (1-p) n           

np is just the expected number m of decays in the interval t and is finite even though nÆ• and pÆo.  The first limit in the above equation is thus µx.  The second limit is just the definition of e-np or e-µ.  Hence P(x) becomes 





P(x) =  EQ \f(µxe-µ,x!)       



(A5)


This is the Poisson distribution and holds whenever the number of trials can be considered to tend to infinity and the probability of success in a given  trial to tend to zero in such a way that the expected number of successes remains finite.  It can be shown that P(x) has its maximum value both for x = µ-1 and x = µ and that values of x either smaller than µ-1 or larger than µ lead to smaller values of P(x).  Hence P(x) is peaked about µ-1 and µ together.  x is, of course, an integer number.

The standard deviation of the Poission distribution is the standard deviation of the binomial distribution in the limit 




s =   EQ \s(lim,nÆo,np remains finite) \r(np(1-p))  =  EQ \r(µ)  
.

(A6)

This allows an estimation of the statistical uncertainty in measurements of radioactive decay because it can be shown that in the limit of large µ, the probability of obtaining a measurement within the range of µ- EQ \r(µ)  to µ+ EQ \r(µ)  is 0.68 (just as the probability of having a measurement within one standard deviation of the true value is 0.68 for the normal distribution).  It is interesting to note that the quantity of importance in determining statistical uncertainties is the total number of counts measured, independent of the time necessary for their accumulation.
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